Skip to content
2000
Volume 5, Issue 3
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Understanding nanocomposites' morphological characteristics is important for explaining their properties and their usefulness.

In this paper, we present the method for interfacial synthesis of polypyrrole and its gold nanocomposites with varying concentrations of polymer. The bonding involved in the nanocomposites is understood from Fourier transform infrared spectroscopy and X-ray diffraction studies confirmed the crystalline nature of the particles.

Scanning electron microscope and transmission electron microscopy studies showed that the spherical and globular nature of the particles is mutually connected to form nanocomposites compared with virgin polymer.

Catalytic behavior of gold nanoparticles in polymer composites is observed from the thermal analysis.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271605666220820124619
2022-12-01
2024-12-26
Loading full text...

Full text loading...

References

  1. TamayoL. PalzaH. BejaranoJ. ZapataP.A. Polymer composites with Metal nanoparticles: Synthesis, properties, and applications. In:polymer composites with functionalized nanoparticles.Amsterdam: Elsevier201924928610.1016/B978‑0‑12‑814064‑2.00008‑1
    [Google Scholar]
  2. HeZ. ZhangZ. BiS. Nanoparticles for organic electronics applications.Mater. Res. Express20207101200410.1088/2053‑1591/ab636f
    [Google Scholar]
  3. NamsheerK. RoutC.S. Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications.RSC Advances202111105659569710.1039/D0RA07800J
    [Google Scholar]
  4. MaheshD.B. BasavarajS. DeshpandeR. BalajiD.S. VenkataramanA. Preparation and characterization of polypyrrole silver nanocomposites via interfacial polymerization.Int. J. Polym. Mater.201059853154310.1080/00914031003760642
    [Google Scholar]
  5. StamenovicU. DavidovicS. SandraP.S. LeskovacA. StoiljkovicM. VesnaV. Antimicrobial and biological effects of polyaniline/polyvinylpyrrolidone nanocomposites loaded with silver nanospheres/triangles.New J. Chem.20214528127111272010.1039/D1NJ02729H
    [Google Scholar]
  6. KhannaP.K. SinghN. CharanS. ViswanathA.K. Synthesis of Ag/polyaniline nanocomposite via an in situ photo-redox mechanism.Mater. Chem. Phys.200592121421910.1016/j.matchemphys.2005.01.011
    [Google Scholar]
  7. ZhangZ ZhangL WangS ChenW LeiY. A convenient route to polyacrylonitrile/silver nanoparticle composite by simultaneous polymerization-reduction approach.20014283158318
    [Google Scholar]
  8. SharmaS. SudhakaraP. OmranA.A.B. SinghJ. IlyasR.A. Recent trends and developments in conducting polymer nanocomposites for multifunctional applications.Polymer20211317289810.3390/polym1317289834502938
    [Google Scholar]
  9. AtehD.D. NavsariaH.A. VadgamaP. Polypyrrole-based conducting polymers and interactions with biological tissues.J. R. Soc. Interface200631174175210.1098/rsif.2006.014117015302
    [Google Scholar]
  10. SangiorgiN. SansonA. Influence of electropolymerized polypyrrole optical properties on bifacial Dye-Sensitized Solar Cells.Polymer201712520821610.1016/j.polymer.2017.08.014
    [Google Scholar]
  11. Shu GaoJiang Zhong XueGuobin WangBo Study on enhancement mechanism of conductivity induced by graphene oxide for polypyrrole nanocomposites.Macromol201548515921597
    [Google Scholar]
  12. MasatoA. HiroyukiY. Preparation of polypyrrole by emulsion polymerization using hydroxypropyl cellulose.Polym. J.200638770370910.1295/polymj.PJ2005198
    [Google Scholar]
  13. WangH. LiuY. FeiG. LanJ. Preparation, morphology, and conductivity of waterborne, nanostructured, cationic polyurethane/polypyrrole conductive coatings.J. Appl. Polym. Sci.201513264144510.1002/app.41445
    [Google Scholar]
  14. NazarenkoO.B. AmelkovichY.A. BannovA.G. BerdyuginaI.S. ManiyanV.P. Thermal stability and flammability of epoxy composites filled with multi-walled carbon nanotubes, boric Acid, and sodium bicarbonate.Polymers202113463810.3390/polym1304063833669925
    [Google Scholar]
  15. LaoutidF. BonnaudL. AlexandreM. LopezJ.M. DuboisP. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites.Mater. Sci. Eng. Rep.200963310012510.1016/j.mser.2008.09.002
    [Google Scholar]
  16. KangH. GeckelerK. Enhanced electrical conductivity of polypyrrole prepared by chemical oxidative polymerization. Effect of the preparation technique and polymer additive.Polymer200041186931693410.1016/S0032‑3861(00)00116‑6
    [Google Scholar]
  17. BartlewiczO. DąbekI. SzymańskaA. MaciejewskiH. Heterogeneous catalysis with the participation of ionic liquids.Catalysts20201011122710.3390/catal10111227
    [Google Scholar]
  18. LeT.H. KimY. YoonH. Electrical and electrochemical properties of conducting polymers.Polymers20179415010.3390/polym904015030970829
    [Google Scholar]
  19. DongY.Z. ChoiK. KwonS.H. NamJ.D. ChoiH.J. Nanoparticles functionalized by conducting polymers and their electrorheological and magnetorheological applications.Polymers202012120410.3390/polym1201020431941163
    [Google Scholar]
  20. KurcB. PigłowskaM. RymaniakŁ FućP Modern nanocomposites and hybrids as electrode materials used in energy carriers.Nanomaterials202111253810.3390/nano1102053833669863
    [Google Scholar]
  21. AshB. KhetiJ. SanjayK. SubbaiahT. AnandS. ParamguruR. Physico-chemical and electro-chemical properties of nickel hydroxide precipitated in the presence of metal additives.Hydrometallurgy2006843-425025510.1016/j.hydromet.2006.05.007
    [Google Scholar]
  22. YagatiA.K. ChavanS.G. BaekC. LeeM.H. MinJ. Label-free impedance sensing of aflatoxin B1 with polyaniline nanofibers/Au nanoparticle electrode array.Sensors2018185132010.3390/s1805132029695134
    [Google Scholar]
  23. SelvanS.T. Novel nanostructures of gold–polypyrrole composites.Chem. Commun.19983335135210.1039/a708050f
    [Google Scholar]
  24. SelvanS.T. SpartzJ.P. KlokH.A. MollerM. Gold–polypyrrole core–shell particles in diblock copolymer micelles.Adv. Mater.1998102323410.1002/(SICI)1521‑4095(199801)10:2<132::AID‑ADMA132>3.0.CO;2‑Y
    [Google Scholar]
  25. ShinH.J. HwangI.W. HwangY.N. Comparative investigation of energy relaxation dynamics of gold nanoparticles and gold-polypyrrole encapsulated nanoparticles.J. Phys. Chem. B20031072046990410.1021/jp022055o
    [Google Scholar]
  26. ParkS. LimJ.H. ChungS.W. MirkinC.A. Self-assembly of mesoscopic metal-polymer amphiphiles.Science2004303565634835110.1126/science.109327614726585
    [Google Scholar]
  27. LuX. ChaoD. ChemJ. ZhangW. WeiY. Preparation and characterization of inorganic/organic hybrid nanocomposites based on Au nanoparticles and polypyrrole.Mater. Lett.200660232851285410.1016/j.matlet.2006.02.002
    [Google Scholar]
  28. BegumB. BilalS. ShahA.U.H.A. RöseP. Physical, chemical, and electrochemical properties of redox-responsive polybenzopyrrole as electrode material for faradaic energy storage.Polymers20211317288310.3390/polym1317288334502922
    [Google Scholar]
  29. MaruthapandiM. GedankenA. A short report on the polymerization of pyrrole and its copolymers by sonochemical synthesis of fluorescent carbon dots.Polymers2019118124010.3390/polym1108124031357422
    [Google Scholar]
  30. JangK.S. KoH.C. MoonB. LeeH. Observation of photoluminescence in polypyrrole micelles.Synth. Met.2005150212713110.1016/j.synthmet.2005.01.013
    [Google Scholar]
  31. GomesA. CarnereroJ.M. Jimenez-RuizA. GruesoE. Giráldez-PérezR.M. Prado-GotorR. Lysozyme-AuNPs interactions: Determination of binding free energy.Nanomaterials2021118213910.3390/nano1108213934443969
    [Google Scholar]
  32. LuceñoJ.A. DíezA.M. Grafting of polypyrrole-3-carboxylic acid to the surface of hexamethylene diisocyanate-functionalized graphene oxide.Nanomaterials201998109510.3390/nano908109531370134
    [Google Scholar]
  33. BenhammadaA. TracheD. KesraouiM. CheloucheS. Hydrothermal synthesis of hematite nanoparticles decorated on carbon mesospheres and their synergetic action on the thermal decomposition of nitrocellulose.Nanomaterials20201096810.3390/nano10050968
    [Google Scholar]
  34. SavvaI KalogirouAS AchilleosM VasileE KoutentisPA KrasiaT Evaluation of PVP/Au nanocomposite fibers as heterogeneous catalysts in indole synthesis.molecules2016211218
    [Google Scholar]
  35. ChalmersE. LeeH. ZhuC. LiuX. Increasing the conductivity and adhesion of polypyrrole hydrogels with electropolymerized polydopamine.Chem. Mater.202032123424410.1021/acs.chemmater.9b03655
    [Google Scholar]
/content/journals/caps/10.2174/2452271605666220820124619
Loading
/content/journals/caps/10.2174/2452271605666220820124619
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test