Skip to content
2000
Volume 4, Issue 2
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Polysarcosine (psar) is a non-ionic hydrophilic polypeptoid with numerous biologically relevant properties. Polysarcosine is poly (n-methylated glycine) and has been reported first by Weslay and co-workers in the 1920s. Polysarcosine was first synthesized ring-opening polymerization (rop) of sarcosine -carboxyanhydride, using high-vacuum techniques. Overall, findings highlight the potential of poly(sarcosine) as an alternative corona-forming polymer to poly (ethylene glycol)-based analogues of (polymerization-induced self- pisa assemblies for use in various pharmaceutical and biomedical applications. Numerous studies suggested that such polypeptoids hold enormous potential for many biomedical applications, including protein delivery, colloidal stabilization, and nanomedicine.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271604999201124222313
2021-08-01
2025-01-10
Loading full text...

Full text loading...

References

  1. VeroneseFM MeroAJB The impact of PEGylation on biological therapies200822531532910.2165/00063030‑200822050‑00004
    [Google Scholar]
  2. ThordarsonP. Le DroumaguetB. VeloniaK. Well-defined protein-polymer conjugates--synthesis and potential applications.Appl. Microbiol. Biotechnol.200673224325410.1007/s00253‑006‑0574‑417061132
    [Google Scholar]
  3. HuY. HouY. WangH. LuH. Polysarcosine as an alternative to PEG for therapeutic protein conjugation.Bioconjug. Chem.20182972232223810.1021/acs.bioconjchem.8b0023729863329
    [Google Scholar]
  4. ConilhL. FournetG. FourmauxE. MurciaA. MateraE.L. JosephB. DumontetC. ViricelW. Exatecan antibody drug conjugates based on a hydrophilic polysarcosine drug-linker platform.Pharmaceuticals (Basel)202114324710.3390/ph1403024733803327
    [Google Scholar]
  5. SkoulasD. StuettgenV. GaulR. CryanS.A. BraydenD.J. HeiseA. Amphiphilic star polypept (o) ides as nanomeric vectors in mucosal drug delivery.Biomacromolecules20202162455246210.1021/acs.biomac.0c0038132343127
    [Google Scholar]
  6. HörtzC. BirkeA. KapsL. Cylindrical brush polymers with polysarcosine side chains: A novel biocompatible carrier for biomedical applications.Macromolecules20154872074208610.1021/ma502497x
    [Google Scholar]
  7. ZengG. QiuL. WenT.J.P.C. Recent advances in crystallization and self‐assembly of polypeptoid polymers.Polym Crystal201923e1006510.1002/pcr2.10065
    [Google Scholar]
  8. BarzM. LuxenhoferR. ZentelbR. VicentJ.M. Overcoming the PEG-addiction: well-defined alternatives to PEG, from structure–property relationships to better defined therapeutics.Polym. Chem.2011291900191810.1039/c0py00406e
    [Google Scholar]
  9. ParkY. AndrewK.Y.L. AlissaP.A.H. PetitC. Recent advances in anhydrous solvents for CO2 capture: ionic liquids, switchable solvents, and nanoparticle organic hybrid materials.Front. Energy Res.201534210.3389/fenrg.2015.00042
    [Google Scholar]
  10. LiarouE. VarlasS. SkoulasD. Smart polymersomes and hydrogels from polypeptide-based polymer systems through α-amino acid N-carboxyanhydride ring-opening polymerization.Prog. Polym. Sci.201883287810.1016/j.progpolymsci.2018.05.001
    [Google Scholar]
  11. KappelC. SeidlC. Medina-MontanoC. SchinnererM. AlbergI. LepsC. SohlJ. HartmannA.K. FichterM. KuskeM. SchunkeJ. KuhnG. TubbeI. PaßlickD. HobernikD. BentR. HaasK. MontermannE. WalzerK. DikenM. SchmidtM. ZentelR. NuhnL. SchildH. TenzerS. MailänderV. BarzM. BrosM. GrabbeS. Density of Conjugated Antibody Determines the Extent of Fc Receptor Dependent Capture of Nanoparticles by Liver Sinusoidal Endothelial Cells.ACS Nano2021159151911520910.1021/acsnano.1c0571334431291
    [Google Scholar]
  12. LangelÜ. CPP, cell-penetrating peptides.SingaporeSpringer20191210.1007/978‑981‑13‑8747‑0
    [Google Scholar]
  13. SanbornT.J. WuC.W. ZuckermannR.N. BarronA.E. Extreme stability of helices formed by water-soluble poly-N-substituted glycines (polypeptoids) with α-chiral side chains.Biopolymers2002631122010.1002/bip.105811754344
    [Google Scholar]
  14. TaoX. DengC. LingJ. PEG-amine-initiated polymerization of sarcosine N-thiocarboxyanhydrides toward novel double-hydrophilic PEG-b-polysarcosine diblock copolymers.Macromol. Rapid Commun.201435987588110.1002/marc.20140006624668926
    [Google Scholar]
  15. DomingosS.R. Ramos SilvaM. MartinsN.D. Matos BejaA. PaixãoJ.A. Pyromellitic acid-sarcosine (1/2).Acta Crystallogr. Sect. E Struct. Rep. Online200864Pt 5o82610.1107/S160053680800904521202315
    [Google Scholar]
  16. MostadA. NatarajanS. Crystal and molecular structure of sarcosine.Acta Chem. Scand.198943101004100610.3891/acta.chem.scand.43‑10042484928
    [Google Scholar]
  17. ZhouJ. NiuX. YangW. Surface action mechanism and planarization effect of sarcosine as an auxiliary complexing agent in copper film chemical mechanical polishing.Appl. Surf. Sci.202052914710910.1016/j.apsusc.2020.147109
    [Google Scholar]
  18. MurshidG. ButtW.A. GargS. Investigation of thermophysical properties for aqueous blends of sarcosine with 1-(2-aminoethyl) piperazine and diethylenetriamine as solvents for CO2 absorption.J. Mol. Liq.201927858459110.1016/j.molliq.2019.01.079
    [Google Scholar]
  19. BirkeA. LingJ. BarzM. Polysarcosine-containing copolymers: Synthesis, characterization, self-assembly, and applications.Prog. Polym. Sci.20188116320810.1016/j.progpolymsci.2018.01.002
    [Google Scholar]
  20. OzekiE KimuraS MakinoA Branched amphipathic block polymer and molecular aggregate and drug delivery system using same.US000009821078B22017
  21. SellaturayP. NasserS. EwanP. Polyethylene Glycol-Induced Systemic Allergic Reactions (Anaphylaxis).J. Allergy Clin. Immunol. Pract.20219267067510.1016/j.jaip.2020.09.02933011299
    [Google Scholar]
  22. YuH. IngramN. RowleyJ.V. Thermoresponsive polysarcosine-based nanoparticles.J. Mater. Chem. B Mater. Biol. Med.20197264217422310.1039/C9TB00588A
    [Google Scholar]
  23. AoiK. NakamuraR. OkadaM. Polypeptide‐synthetic polymer hybrids, 2. Miscibility of poly (vinyl alcohol) with polysarcosine.Macromol. Chem. Phys.2000201111059106610.1002/1521‑3935(20000701)201:11<1059::AID‑MACP1059>3.0.CO;2‑O
    [Google Scholar]
  24. SettanniG. SchäferT. MuhlC. BarzM. SchmidF. Poly-sarcosine and Poly (Ethylene-Glycol) interactions with proteins investigated using molecular dynamics simulations.Comput. Struct. Biotechnol. J.20181654355010.1016/j.csbj.2018.10.01230524669
    [Google Scholar]
  25. BleherS. BuckJ. MuhlC. SieberS. BarnertS. WitzigmannD. HuwylerJ. BarzM. SüssR. Poly(Sarcosine) surface modification imparts stealth-like properties to liposomes.Small20191550e190471610.1002/smll.20190471631722126
    [Google Scholar]
  26. SiefkerD. ZhangD. Ring-opening polymerization of N-carboxyanhydrides using organic initiators or catalysts. DoveA. SardonH. StefanN. Organic catalysis for polymerisation.UKRSC Publishing20183136740510.1039/9781788015738‑00367
    [Google Scholar]
  27. MatsutaniE OzekiE KawabeT Method for producing molecular assemblies, and device for producing molecular assemblies.US201800217482016
  28. WeberB. BirkeA. FischerK. SchmidtM. BarzM. Solution properties of polysarcosine: From absolute and relative molar mass determinations to complement activation.Macromolecules20185172653266110.1021/acs.macromol.8b00258
    [Google Scholar]
  29. SchäferO. KlinkerK. BraunL. Combining orthogonal reactive groups in block copolymers for functional nanoparticle synthesis in a single step.ACS Macro Lett.20176101140114510.1021/acsmacrolett.7b00678
    [Google Scholar]
  30. MaG. NguyenH. RomoD. Concise total synthesis of (+/-)-salinosporamide A, (+/-)-cinnabaramide A, and derivatives via a bis-cyclization process: implications for a biosynthetic pathway?Org. Lett.20079112143214610.1021/ol070616u17477539
    [Google Scholar]
  31. FetschC. LuxenhoferR. Highly defined multiblock copolypeptoids: pushing the limits of living nucleophilic ring-opening polymerization.Macromol. Rapid Commun.201233191708171310.1002/marc.20120018922674859
    [Google Scholar]
  32. LiuY. von GuntenH.R. Migration chemistry and behaviour of iodine relevant to geological disposal of radioactive wastes A literature review with a compilation of sorption data. Available from:https://inis.iaea.org/collection/NCLCollectionStore/_Public/20/005/20005563.pdf?r=1
  33. KatchalskiE. Poly-α-amino acids.Adv. Protein Chem.1951612318510.1016/S0065‑3233(08)60503‑314846695
    [Google Scholar]
  34. DavidH. AdrianS. BenjaminW. MatthiasB. A head-to-head comparison of poly (sarcosine) and poly (ethylene glycol) in peptidic, amphiphilic block copolymers.Polymer (Guildf.)20156724024810.1016/j.polymer.2015.04.070
    [Google Scholar]
  35. DoritiA. BrosnanS.M. WeidnerbM.S. SchlaadH. Synthesis of polysarcosine from air and moisture stable N-phenoxycarbonyl-N-methylglycine assisted by tertiary amine base.Polym. Chem.20167183067307010.1039/C6PY00221H
    [Google Scholar]
  36. WeberB. SeidlC. SchwiertzD. SchererM. BleherS. SüssR. BarzM. Polysarcosine-based lipids: from lipopolypeptoid micelles to stealth-like lipids in langmuir blodgett monolayers.Polymers (Basel)201681242710.3390/polym812042730974703
    [Google Scholar]
  37. LauK.H.A. Peptoids for biomaterials science.Biomater. Sci.20142562763310.1039/C3BM60269A32481842
    [Google Scholar]
  38. SonK. UedaM. TaguchiK. MaruyamaT. TakeokaS. ItoY. Evasion of the accelerated blood clearance phenomenon by polysarcosine coating of liposomes.J. Control. Release202032220921610.1016/j.jconrel.2020.03.02232194174
    [Google Scholar]
  39. KleinP.M. KlinkerK. ZhangW. KernS. KesselE. WagnerE. BarzM. Efficient shielding of polyplexes using heterotelechelic polysarcosines.Polymers (Basel)201810668910.3390/polym1006068930966723
    [Google Scholar]
  40. DengY. ZouT. TaoX. SemeteyV. TrepoutS. MarcoS. LingJ. LiM.H. Poly (ε-caprolactone)-block-polysarcosine by ring-opening polymerization of sarcosine N-thiocarboxyanhydride: synthesis and thermoresponsive self-assembly.Biomacromolecules201516103265327410.1021/acs.biomac.5b0093026388179
    [Google Scholar]
  41. EnglandR.M. MossJ.I. GunnarssonA. ParkerJ.S. AshfordM.B. Synthesis and characterization of dendrimer-based polysarcosine star polymers: Well-defined, versatile platforms designed for drug-delivery applications.Biomacromolecules20202183332334110.1021/acs.biomac.0c0076832672451
    [Google Scholar]
  42. GangloffN. UlbrichtJ. LorsonT. SchlaadH. LuxenhoferR. Peptoids and polypeptoids at the frontier of supra-and macromolecular engineering.Chem. Rev.201611641753180210.1021/acs.chemrev.5b0020126699377
    [Google Scholar]
  43. BauerT.A. ImschweilerJ. MuhlC. WeberB. BarzM. Secondary Structure-Driven Self-Assembly of Thiol-Reactive Polypept(o)ides.Biomacromolecules20212252171218010.1021/acs.biomac.1c0025333830742
    [Google Scholar]
  44. HouY. LuH. Protein PEPylation: A new paradigm of protein–polymer conjugation.Bioconjug. Chem.20193061604161610.1021/acs.bioconjchem.9b0023631045353
    [Google Scholar]
  45. PorcuE.P. SalisA. GaviniE. RassuG. MaestriM. GiunchediP. Indocyanine green delivery systems for tumour detection and treatments.Biotechnol. Adv.201634576878910.1016/j.biotechadv.2016.04.00127090752
    [Google Scholar]
  46. SajiH KoheiS AkiraM Conjugate of polysarcosine and nir contrast agent for photoacoustic imaging.US201802805472017
/content/journals/caps/10.2174/2452271604999201124222313
Loading
/content/journals/caps/10.2174/2452271604999201124222313
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test