Skip to content
2000
Volume 5, Issue 3
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

For the past two decades, environmentally friendly natural rubber composites and nanocomposites reinforced with renewable and biodegradable natural fillers have attracted the increasing attention of polymer researchers from both industrial and environmental viewpoints. The use of bio-based fillers in rubber materials has emerged as extremely promising in the progress of green rubber technology. The dispersion of bio-based fillers within the rubber matrix is the key parameter that decides the overall performance of bio-based rubber composites. An important criterion for obtaining superior properties in rubber composites is good interfacial adhesion between natural fillers and natural rubber matrix, along with good dispersion and distribution of fillers within the matrix. Natural fillers represent materials that are environmentally friendly, easily available, comprising of valuable lignocellulosic fractions and are from a bio-based feedstock. Recent developments in this area focus on renewable fillers such as cellulose, chitin and lignin in their micro and nanoforms. Additionally, recent studies have focused on the use of different types of biomass residue wastes in rubber composites with a view to adapting to the recent circular economy principles. This review presents an overview of various studies and highlights the area of bio-based filler reinforced natural rubber composites and also discusses the applications of such materials in industrial sectors.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271605666220823101517
2022-12-01
2024-12-25
Loading full text...

Full text loading...

References

  1. SinghaN.R. MahapatraM. KarmakarM. ChattopadhyayP.K. Processing, characterization and application of natural rubber based environmentally friendly polymer composites. Inamuddin ThomasS Kumar MishraR AsiriA Sustainable Polymer Composites and Nanocomposites.Cham: New York Springer201985589710.1007/978‑3‑030‑05399‑4_29
    [Google Scholar]
  2. El MogyS.A. DarwishN.A. AwadA. Comparative study of the cure characteristics and mechanical properties of natural rubber filled with different calcium carbonate resources.J. Vinyl and Addit Technol.202026330931510.1002/vnl.21745
    [Google Scholar]
  3. PontawitK.P. JareratA. PoompradubS. Mechanical properties and biodegradability of cuttlebone/NR composites.J. Polym. Environ.201321376677910.1007/s10924‑012‑0555‑x
    [Google Scholar]
  4. MoopayakW. TangbooribonN. Mangosteen peel and seed as antimicrobial and drug delivery in rubber products.J. Appl. Polym. Sci.2020137374911910.1002/app.49119
    [Google Scholar]
  5. PatmanathanT. ChaiT.A. KamaruddinS. Design and development of engineering component using natural rubber biocomposites.Mater. Sci. Energy Technol.20205114651472
    [Google Scholar]
  6. SareenaC. RamesanM.T. PurushothamanE. Utilization of peanut shell powder as a novel filler in natural rubber.J. Appl. Polym. Sci.201212532322233410.1002/app.36468
    [Google Scholar]
  7. SareenaC. RamesanM.T. PurushothamanE. Utilization of coconut shell powder as a novel filler in natural rubber.J. Reinf. Plast. Compos.201231853354710.1177/0731684412439116
    [Google Scholar]
  8. LiL.F. ZengZ.Q. WangZ.F. Effect of oyster shell powder loading on the mechanical and thermal properties of natural rubber/oyster shell composites.Polym. Polymer Compos.2017251172210.1177/096739111702500103
    [Google Scholar]
  9. PinpatW. KeawwattanaW. TangbunsukS. Effect of ashes as biomass in silica filled natural rubber.Key Eng. Mater.201773515315710.4028/www.scientific.net/KEM.735.153
    [Google Scholar]
  10. OoiZ.X. AzharH.I. BakarA. Optimisation of oil palm ash as reinforcement in natural rubber vulcanisation: A comparison between silica and carbon black fillers.Polym. Test.201332462563010.1016/j.polymertesting.2013.02.007
    [Google Scholar]
  11. KankingS. NiltuiP. WimolmalaE. SombatsompopN. Use of bagasse fiber ash as secondary filler in silica or carbon black filled natural rubber compound.Mater. Des.201241748210.1016/j.matdes.2012.04.042
    [Google Scholar]
  12. LayM. RusliA. AbdullahM.K. Zuratul AinA.H.Z.A.A. ShuibR.K. Converting dead leaf biomass into activated carbon as a potential replacement for carbon black filler in rubber composites.Composites Part B: Engineering201920110836610.1016/j.compositesb.2020.108366
    [Google Scholar]
  13. FormelaK. HejnaA. PiszczykŁ SaebMR ColomX Processing and structure–property relationships of natural rubber/wheat bran biocomposites.Cellulose20162353157317510.1007/s10570‑016‑1020‑0
    [Google Scholar]
  14. MasłowskiM MiedzianowskaJ StrzelecK Natural rubber biocomposites containing corn, barley and wheat straw.Polym. Test.201763849110.1016/j.polymertesting.2017.08.003
    [Google Scholar]
  15. JayathilakaL.P.I. AriyadasaT.U. EgodageS.M. Development of biodegradable natural rubber latex composites by employing corn derivative bio‐fillers.J. Appl. Polym. Sci.2020137404932510.1002/app.49205
    [Google Scholar]
  16. AfiqM.M. AzuraA.R. Effect of sago starch loadings on soil decomposition of Natural Rubber Latex (NRL) composite films mechanical properties.Int. Biodeterior. Biodegrad2013201385139
    [Google Scholar]
  17. BacarinG.B. DognaniG. Dos SantosR.J. Natural rubber composites with grits waste from cellulose industry.J. Mater. Cycles Waste Manag.20202241126113910.1007/s10163‑020‑01011‑8
    [Google Scholar]
  18. BittencourtN.L. BacarinG.B. PaivaF.F. Natural rubber composites reinforced with dregs residue from cellulose kraft industry.Prog. Rubber Plast. Recycl. Technol.202036210211410.1177/1477760619895004
    [Google Scholar]
  19. SoltaniS. NaderiG. GhoreishyM.H.R. Mechanical and rheo-logical properties of short nylon fibre NR/SBR composites.J Rubber Res2010132110112
    [Google Scholar]
  20. JacobM.J. AnandjiwalaR.D. ThomasS. Dynamical mechanical analysis of sisal/oil palm hybrid fiber‐reinforced natural rubber composites.Polym. Comp.200827671680
    [Google Scholar]
  21. JosephS. JosephK. ThomasS. Green composites from natural rubber and oil palm fibre: Physical and mechanical properties.Int. J. Polym. Mater.2006551192594510.1080/00914030600550505
    [Google Scholar]
  22. VargheseS. KuriakoseB. ThomasS. Stress relaxation in short sisal‐fiber‐reinforced natural rubber composites.J. Appl. Polym. Sci.19945381051106010.1002/app.1994.070530807
    [Google Scholar]
  23. GeethammaV.G. KalaprasadG. GroeninckxG. ThomasS. Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites.Compos Part A: Appl. Sci. Manuf.200536111499150610.1016/j.compositesa.2005.03.004
    [Google Scholar]
  24. BhattacharyaT.B. BiswasA.K. ChatterjeeJ. PramanickD. Short pineapple leaf fibre reinforced rubber composites.Plast Rubber Process Appl198662119125
    [Google Scholar]
  25. IsmailH. RosnahN. IshiakuU.S. Oil palm fibre‐reinforced rubber composite: Effects of concentration and modification of fibre surface.Polym. Int.199743322323010.1002/(SICI)1097‑0126(199707)43:3<223::AID‑PI759>3.0.CO;2‑D
    [Google Scholar]
  26. IsmailH. JaffriR.M. RozmanH.D. Oil palm wood flour filled natural rubber composites: Fatigue and hysteresis behaviour.Polym. Int.200049661862210.1002/1097‑0126(200006)49:6<618:AID‑PI418>3.0.CO;2‑#
    [Google Scholar]
  27. DasD. DattaM. ChavanR.B. DattaS.K. Coating of jute with natural rubber.J. Appl. Polym. Sci.200598148448910.1002/app.22048
    [Google Scholar]
  28. HaseenaA.P. DasanK.P. UnnikrishnanG. ThomasS. Mechanical properties of sisal/coir hybrid fibre reinforced natural rubber.Prog. Rubber Plast. Recycl. Technol.200521315518110.1177/147776060502100301
    [Google Scholar]
  29. JohnM.J. ThomasS. Biofibres and biocomposites.Carbohydr. Polym.200871334336410.1016/j.carbpol.2007.05.040
    [Google Scholar]
  30. JohnM.J. FrancisB. VarugheseK.T. ThomasS. Effect of chemical modification on properties of hybrid fiber biocomposites.Compos., Part A Appl. Sci. Manuf.200839235236310.1016/j.compositesa.2007.10.002
    [Google Scholar]
  31. SmitthipongW. SuethaoS. ShahD. Fritz VollrathF. Interesting green elastomeric composites: Silk textile reinforced natural rubber.Polym. Test.200655172410.1016/j.polymertesting.2016.08.007
    [Google Scholar]
  32. CorrieaCA Cellulose nanocrystals and jute fiber-reinforced natural rubber composites: Cure characteristics and mechanical properties.MMat Res201922suppl. 110.1590/1980‑5373‑MR‑2019‑0192
    [Google Scholar]
  33. De PaivaF.F.G. De MariaV.P.K. TorresG.B. Sugarcane bagasse fiber as semi-reinforcement filler in natural rubber composite sandals.J. Mater. Cycles Waste Manag.201921232633510.1007/s10163‑018‑0801‑y
    [Google Scholar]
  34. KumagaiA. TajimaN. IwamotoS. Properties of natural rubber reinforced with cellulose nanofibers based on fiber diameter distribution as estimated by differential centrifugal sedimentation.Int. J. Biol. Macromol.201912198999510.1016/j.ijbiomac.2018.10.09030342153
    [Google Scholar]
  35. VisakhP.M. ThomasS. OksmanK. MathewA.P. Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: Processing and mechanical/thermal properties.Compos Part A: Appl. Sci. Manuf.201243473574110.1016/j.compositesa.2011.12.015
    [Google Scholar]
  36. CaoL. FuX. XuC. YinS. ChenY. High-performance natural rubber nanocomposites with marine biomass (tunicate cellulose).Cellulose20172472849286010.1007/s10570‑017‑1293‑y
    [Google Scholar]
  37. MarianoM. El KissiN. DufresneA. Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites.Carbohydr. Polym.201613717418310.1016/j.carbpol.2015.10.02726686118
    [Google Scholar]
  38. KhanA. ColmenaresJ.C. GläserR. Lignin-based composite materials for photocatalysis and photovoltaics. In:Lignin Chemistry.Cham, New YorkSpringer202013110.1007/978‑3‑030‑00590‑0_1
    [Google Scholar]
  39. SenS. PatilS. ArgyropoulosD.S. Thermal properties of lignin in copolymers, blends, and composites: A review.Green Chem.201517114862488710.1039/C5GC01066G
    [Google Scholar]
  40. YuP. HeH. JiaY. A comprehensive study on lignin as a green alternative of silica in natural rubber composites.Polym. Test.20165417618510.1016/j.polymertesting.2016.07.014
    [Google Scholar]
  41. DattaJ. ParchetaP. SurówkaJ. Softwood-lignin/natural rubber composites containing novel plasticizing agent: Preparation and characterization.Ind. Crops Prod.20179567568510.1016/j.indcrop.2016.11.036
    [Google Scholar]
  42. BaranaD. AliS.D. SalantiA. Influence of lignin features on thermal stability and mechanical properties of natural rubber compounds.ACS Sustain. Chem. Eng.20164105258526710.1021/acssuschemeng.6b00774
    [Google Scholar]
  43. DattaJ. ParchetaP. A comparative study on selective properties of kraft lignin–natural rubber composites containing different plasticizers.Iran. Polym. J.201726645346610.1007/s13726‑017‑0534‑0
    [Google Scholar]
  44. JohnS. IssacJ.M. AlexR. Mechanical properties of natural rubber composites reinforced with lignin from caryota fibre.Int. J. Emerg. Technol. Adv. Eng.20144567570
    [Google Scholar]
  45. BaranaD. OrlandiM. SalantiA. CastellaniL. HanelT. ZoiaL. Simultaneous synthesis of cellulose nanocrystals and a lignin-silica biofiller from rice husk: Application for elastomeric compounds.Ind. Crops Prod.201914111182210.1016/j.indcrop.2019.111822
    [Google Scholar]
  46. JiangC. HeH. YuP. WangD.K. ZhouL. JiaD.M. Plane-interface-induced lignin-based nanosheets and its reinforcing effect on styrene-butadiene rubber.Express Polym. Lett.20148961963410.3144/expresspolymlett.2014.66
    [Google Scholar]
  47. XiaoS. FengJ. ZhuJ. WangX. YiC. SuS. Preparation and characterization of lignin‐layered double hydroxide/styrene‐butadiene rubber composites.J. Appl. Polym. Sci.201313021308131210.1002/app.39311
    [Google Scholar]
  48. BahlK. JanaS.C. Surface modification of lignosulfonates for reinforcement of styrene–butadiene rubber compounds.J. Appl. Polym. Sci.201413174012310.1002/app.40123
    [Google Scholar]
  49. MohamadA.N.A. OthmanN. HussinM.H. SahakaroK. HayeemasaeN. Effect of extraction methods on the molecular structure and thermal stability of kenaf (Hibiscus cannabinus core) biomass as an alternative bio-filler for rubber composites.Int. J. Biol. Macromol.20191541255126410.1016/j.ijbiomac.2019.10.28031765744
    [Google Scholar]
  50. Gopalan NairK. DufresneA. Crab shell chitin whisker rein-forced natural rubber nanocomposites. 2. Mechanical behavior.Biomacromolecules20034366667410.1021/bm020128412741783
    [Google Scholar]
  51. Gopalan NairK. DufresneA. GandiniA. BelgacemM.N. Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers.Biomacromolecules2003461835184210.1021/bm030058g14606916
    [Google Scholar]
  52. GopalanN.K. DufresneA. Crab shell chitin whisker rein-forced natural rubber nanocomposites. 1. Processing and swelling behavior.Biomacromolecules20034365766510.1021/bm020127b12741782
    [Google Scholar]
  53. LiuY. WuF. ZhaoX. LiuM. High-performance strain sensors based on spirally structured composites with carbon black, chitin nanocrystals, and natural rubber.ACS Sustain. Chem. Eng.201868105951060510.1021/acssuschemeng.8b01933
    [Google Scholar]
  54. LiuY. LiuM. YangS. LuoB. ZhouC. Liquid crystalline behaviors of chitin nanocrystals and their reinforcing effect on natural rubber.ACS Sustain. Chem. Eng.20186132533610.1021/acssuschemeng.7b02586
    [Google Scholar]
  55. DingB. HuangS. ShenK. Natural rubber bio-nanocomposites reinforced with self-assembled chitin nano-fibers from aqueous KOH/urea solution.Carbohydr. Polym.201922511523010.1016/j.carbpol.2019.11523031521261
    [Google Scholar]
  56. HuJ. TianX. SunJ. YuanJ. YuanY. Chitin nanocrystals reticulated self-assembled architecture reinforces deproteinized natural rubber latex film.J. Appl. Polym. Sci.2020137394917310.1002/app.49173
    [Google Scholar]
  57. NieJ. MouW. DingJ. ChenY. Bio-based epoxidized natural rubber/chitin nanocrystals composites: Self-healing and enhanced mechanical properties.Compos., Part B Eng.201917215216010.1016/j.compositesb.2019.04.035
    [Google Scholar]
  58. YinJ. HouJ. HuangS. Effect of surface chemistry on the dispersion and pH-responsiveness of chitin nanofibers/natural rubber latex nanocomposites.Carbohydr. Polym.201920755556210.1016/j.carbpol.2018.12.02530600039
    [Google Scholar]
  59. EgbujuoW.O. AnyanwuP.I. ObasiH.O. Utilization of chitin powder as a filler in natural rubber vulcanizates: In comparison with carbon black filler.Int Rev Appl Sci Eng2020111435110.1556/1848.2020.00006
    [Google Scholar]
  60. ZhangN. CaoH. Enhancement of the antibacterial activity of natural rubber latex foam by blending it with chitin.Materials (Basel)2020135103910.3390/ma1305103932110858
    [Google Scholar]
/content/journals/caps/10.2174/2452271605666220823101517
Loading
/content/journals/caps/10.2174/2452271605666220823101517
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomass; chitin; composites; lignin; natural fibres; Natural rubber
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test