Skip to content
2000
Volume 4, Issue 2
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

This work presents the preparation and characterization of the polymeric nanocomposites based on methyl methacrylate (MMA), ethyl acrylate (EA), and natural and modified clays. The clays used to prepare the composite were natural green bentonite (GBC-N) and organophilic clays modified with ammonium quaternary salts: Praepagen (GCB-P), Dodigen (GCB-D) and Praepagen/Dodigen mixture 1:1 in weight (GCB-P/D).

The experimental studies focused on the evaluation of the effect of clays (in nature and chemically modified) on the final quality of the polymeric nanocomposites containing around 3 wt%. of clay nanocharges in association with MMA to produce poly(methyl methacrylate)/clays, and MMA/EA to form poly(methyl methacrylate--ethyl acrylate)/clays.

The poly(methyl methacrylate)/clay and poly(methyl methacrylate--ethyl acrylate)/clay materials were synthesized through mass-suspension polymerization process. The natural and modified green bentonite clays were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) analyses to understand its effect on the basal spacing, d001 (compared to the pure clay), as a result of cation exchange step, which also improved the thermal efficiency of the final nanocomposites.

The proper incorporation of MMA and MMA/AE monomers between the layers of natural and modified clays occurred through mass-suspension polymerization, leading to a successful exfoliation of clay layers during the growth of the polymer chains.

The IR, SEM, TGA and DSC analyses confirmed the improvement in the thermal property of the composites compared to polymers formed in the absence of clays. The experimental results are very promising, indicating that the experimental protocol based on the formation of polymer nanocomposites by using sequential mass-suspension polymerization consisting of an interesting tool.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271604666210120090014
2021-08-01
2025-01-10
Loading full text...

Full text loading...

References

  1. ChenB. Polymer–clay nanocomposites: an overview with emphasis on interaction mechanisms.Br. Ceram. Trans.2004103624124910.1179/096797804X4592
    [Google Scholar]
  2. BockstallerM.R. MickiewiczR.A. ThomasE.L. Block Copolymer Nanocomposites: Perspectives for Tailored Functional Materials.Adv. Mater.200517111331134910.1002/adma.200500167
    [Google Scholar]
  3. PaulD.R. RobesonL.M. Polymer nanotechnology: Nanocomposites.Polymer (Guildf.)200849153187320410.1016/j.polymer.2008.04.017
    [Google Scholar]
  4. KumarA.P. DepanD. SinghT.N. PalS.R. Nanoscale particles for polymer degradation and stabilization—Trends and future perspectives.Prog. Polym. Sci.200934647951510.1016/j.progpolymsci.2009.01.002
    [Google Scholar]
  5. AlvesT.S. BarbosaR. Carvalho LHd, Canedo EL. Flammability of polypropylene/organoclay nanocomposites.Polímeros201424330731310.4322/polimeros.2014.030
    [Google Scholar]
  6. RayS.S. Clay-Containing Polymer Nanocomposites: From Fundamentals to Real Applications.1st edNew YorkElsevier Science2013
    [Google Scholar]
  7. AlcântaraA.C.S. DarderM. Building Up Functional Bionanocomposites from the Assembly of Clays and Biopolymers.Chem. Rec.2018187-869671210.1002/tcr.20170007629314621
    [Google Scholar]
  8. FengK. HungG-Y. YangX. LiuM. High-strength and physical cross-linked nanocomposite hydrogel with clay nanotubes for strain sensor and dye adsorption application.Compos. Sci. Technol.201918110770110.1016/j.compscitech.2019.107701
    [Google Scholar]
  9. TessarolliF.G.C. SouzaS.T.S. GomesA.S. MansurC.R.E. Influence of polymer structure on the gelation kinetics and gel strength of acrylamide-based copolymers, bentonite and polyethylenimine systems for conformance control of oil reservoirs.J. Appl. Polym. Sci.2019136224755610.1002/app.47556
    [Google Scholar]
  10. ChenL. WuQ. ZhangJ. ZhaoT. JinX. LiuM. Anisotropic thermoresponsive hydrogels by mechanical force orientation of clay nanosheets.Polymer (Guildf.)202019212230910.1016/j.polymer.2020.122309
    [Google Scholar]
  11. StanlyS. JelmyE.J. JohnH. Studies on Modified Montmorillonite Clay and Its PVA Nanohybrid for Water Purification.J. Polym. Environ.2020289>2433244310.1007/s10924‑020‑01786‑9
    [Google Scholar]
  12. VeldeB. Origin and Mineralogy of Clays: Clays and the Environment.1st edNew YorkSpringer Berlin Heidelberg199510.1007/978‑3‑662‑12648‑6
    [Google Scholar]
  13. NewmanACD The chemical constitution of clays.Chemistry of Clays and Clay Minerals. Geology198716986186310.1130/0091‑7613(1988)016<0861:BR>2.3.CO;2
    [Google Scholar]
  14. MurrayH.H. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview.Appl. Clay Sci.2000175-620722110.1016/S0169‑1317(00)00016‑8
    [Google Scholar]
  15. NicolosiV. ChhowallaM. KanatzidisM.G. StranoM.S. ColemanJ.N. Liquid Exfoliation of Layered Materials.Science20133406139122641910.1126/science.1226419
    [Google Scholar]
  16. ShaoJ-J. RaidongiaK. KoltonowA.R. HuangJ. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability.Nat. Commun.201561760210.1038/ncomms860226165550
    [Google Scholar]
  17. ZhaoL.Z. ZhouC.H. WangJ. TongD.S. YuW.H. WangH. Recent advances in clay mineral-containing nanocomposite hydrogels.Soft Matter201511489229924610.1039/C5SM01277E26435008
    [Google Scholar]
  18. DedzoG.K. DetellierC. Clay Minerals—Ionic Liquids, Nanoarchitectures, and Applications.Adv. Funct. Mater.20182827170384510.1002/adfm.201703845
    [Google Scholar]
  19. BergayaF. LagalyG. General Introduction: Clays, Clay Minerals, and Clay Science. In: BergayaF. LagalyG. New YorkElsevierEds. Handbook of Clay Science. 5.2013119
    [Google Scholar]
  20. LiuJ. ZhangG. Recent advances in synthesis and applications of clay-based photocatalysts: a review.Phys. Chem. Chem. Phys.201416188178819210.1039/C3CP54146K24660221
    [Google Scholar]
  21. ZhouY. LaChanceA.M. SmithA.T. ChengH. LiuQ. SunL. Strategic Design of Clay-Based Multifunctional Materials: From Natural Minerals to Nanostructured Membranes.Adv. Funct. Mater.20192916180761110.1002/adfm.201807611
    [Google Scholar]
  22. UddinF. Clays, Nanoclays, and Montmorillonite Minerals.Metallurgical & Materials Transactions Part A.200839122804281410.1007/s11661‑008‑9603‑5
    [Google Scholar]
  23. de OliveiraC.I.R. RochaM.C.G. Silva ALNd, Bertolino LC. Characterization of bentonite clays from Cubati, Paraíba (Northeast of Brazil).Ceramica20166236327227710.1590/0366‑69132016623631970
    [Google Scholar]
  24. AmorimL.V. GomesC.M. LiraH.L. FrançaK.B. FerreiraH.C. Bentonites from Boa Vista, Brazil: physical, mineralogical and rheological properties.Mater. Res.20047458359310.1590/S1516‑14392004000400012
    [Google Scholar]
  25. SilvaS.M.L. AraújoP.E.R. FerreiraK.M. CanedoE.L. CarvalhoL.H. RaposoC.M.O. Effect of clay/water ratio during bentonite clay organophilization on the characteristics of the organobentonites and its polypropylene nanocomposites.Polym. Eng. Sci.20094991696170210.1002/pen.21399
    [Google Scholar]
  26. Sinha RayS. OkamotoM. Polymer/layered silicate nanocomposites: a review from preparation to processing.Prog. Polym. Sci.200328111539164110.1016/j.progpolymsci.2003.08.002
    [Google Scholar]
  27. AuerbachS.M. CarradoK.A. DuttaP.K. Handbook of Layered Materials.1st edNew YorkCRC Press200410.1201/9780203021354
    [Google Scholar]
  28. SchoonheydtR.A. JohnstonC.T. Surface and Interface Chemistry of Clay Minerals.Handbook of Clay Science. 1.1st ed BergayaF. ThengB.K.G. LagalyG. New YorkElsevier20068711310.1016/S1572‑4352(05)01003‑2
    [Google Scholar]
  29. GrimR.E. Clay mineralogy.New YorkMcGraw-Hill1968
    [Google Scholar]
  30. VaiaR.A. IshiiH. GiannelisE.P. Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates.Chem. Mater.19935121694169610.1021/cm00036a004
    [Google Scholar]
  31. LeBaronP.C. WangZ. PinnavaiaT.J. Polymer-layered silicate nanocomposites: an overview.Appl. Clay Sci.1999151-2112910.1016/S0169‑1317(99)00017‑4
    [Google Scholar]
  32. SchoonheydtR.A. Reflections on the material science of clay minerals.Appl. Clay Sci.201613110711210.1016/j.clay.2015.12.005
    [Google Scholar]
  33. PavlidouS. PapaspyridesC.D. A review on polymer–layered silicate nanocomposites.Prog. Polym. Sci.200833121119119810.1016/j.progpolymsci.2008.07.008
    [Google Scholar]
  34. KotalM. BhowmickA.K. Polymer nanocomposites from modified clays: Recent advances and challenges.Prog. Polym. Sci.20155112718710.1016/j.progpolymsci.2015.10.001
    [Google Scholar]
  35. WangL. WangK. ChenL. ZhangY. HeC. Preparation, morphology and thermal/mechanical properties of epoxy/nanoclay composite.Compos., Part A Appl. Sci. Manuf.200637111890189610.1016/j.compositesa.2005.12.020
    [Google Scholar]
  36. KausarA. A review of fundamental principles and applications of polymer nanocomposites filled with both nanoclay and nano-sized carbon allotropes – Graphene and carbon nanotubes.J. Plast. Film Sheeting201936220922810.1177/8756087919884607
    [Google Scholar]
  37. FagundesA.P. MacuveleD.L.P. PadoinN. SoaresC. Gracher RiellaH. A novel ultrahigh-molecular-weight polyethylene-based nanocomposite for contaminants adsorption in aqueous systems.Mater. Lett.201924019720010.1016/j.matlet.2018.12.102
    [Google Scholar]
  38. MacuveleD.L.P. CollaG. CescaK. RibeiroL.F.B. da CostaC.E. NonesJ. BreitenbachE.R. PortoL.M. SoaresC. FioriM.A. RiellaH.G. UHMWPE/HA biocomposite compatibilized by organophilic montmorillonite: An evaluation of the mechanical-tribological properties and its hemocompatibility and performance in simulated blood fluid.Mater. Sci. Eng. C201910041142310.1016/j.msec.2019.02.10230948077
    [Google Scholar]
  39. PereiraK.A.B. AguiarK.L.N.P. OliveiraP.F. VicenteB.M. PedroniL.G. MansurC.R.E. Synthesis of Hydrogel Nanocomposites Based on Partially Hydrolyzed Polyacrylamide, Polyethyleneimine, and Modified Clay.ACS Omega20205104759476910.1021/acsomega.9b0282932201761
    [Google Scholar]
  40. BrooksB. Suspension Polymerization Processes.Chem. Eng. Technol.201033111737174410.1002/ceat.201000210
    [Google Scholar]
  41. MachadoF. LimaE.L. PintoJ.C. Uma revisão sobre os processos de polimerização em suspensão.Polímeros200717216617910.1590/S0104‑14282007000200016
    [Google Scholar]
  42. VictorP.A. GonçalvesS.B. MachadoF. Styrene/Lignin-Based Polymeric Composites Obtained Through a Sequential Mass-Suspension Polymerization Process.J. Polym. Environ.20182651755177410.1007/s10924‑017‑1078‑2
    [Google Scholar]
  43. CampeloN.M. MachadoF. Reciclagem de poli(estireno-divinilbenzeno) via processo de polimerização em massa-suspensão.Polímeros20132321222210.1590/S0104‑14282013005000020
    [Google Scholar]
  44. PintoM.C.C. SantosJ.G.F.Jr MachadoF. PintoJ.C. Suspension Polymerization Processes. In: MatyjaszewskiK. Ed. Encyclopedia of Polymer Science and Technology. 1.4th edNew YorkJohn Wiley & Sons, Inc.201313110.1002/0471440264.pst597
    [Google Scholar]
  45. KiliarisP. PapaspyridesC.D. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy.Prog. Polym. Sci.201035790295810.1016/j.progpolymsci.2010.03.001
    [Google Scholar]
  46. ReddyB. Advances in Diverse Industrial Applications of Nanocomposites.1st edLondonIntechOpen201110.5772/1931
    [Google Scholar]
  47. AlexandreM. DuboisP. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials.Mater. Sci. Eng. Rep.200028116310.1016/S0927‑796X(00)00012‑7
    [Google Scholar]
  48. ShakeriF. NodehiA. AtaiM. PMMA/double-modified organoclay nanocomposites as fillers for denture base materials with improved mechanical properties.J. Mech. Behav. Biomed. Mater.201990111910.1016/j.jmbbm.2018.09.03330342275
    [Google Scholar]
  49. GodiyaC.B. MarcantoniE. DunjićB. TomićM. NikolićM.S. MaletaškićJ. Effect of organoclay modifier structure on the viscoelastic and thermal properties of poly(methyl methacrylate)/organoclay nanocomposites.Polym. Bull.2020782911293210.1007/s00289‑020‑03248‑7
    [Google Scholar]
  50. MotaM.F. RodriguesM.G.F. MachadoF. Oil–water separation process with organoclays: A comparative analysis.Appl. Clay Sci.20149923724510.1016/j.clay.2014.06.039
    [Google Scholar]
  51. SantosP.S. Ciência e Tecnologia de Argilas.2nd edSão PauloEdgard Blücher Ltda1989
    [Google Scholar]
  52. RussellJ.D. FraserA.R. Infrared methods. In: WilsonM.J. Ed. Clay Mineralogy: Spectroscopic and Chemical Determinative Methods.DordrechtSpringer Netherlands1994116710.1007/978‑94‑011‑0727‑3_2
    [Google Scholar]
  53. Natali SoraI. PelosatoR. ZamporiL. BottaD. DotelliG. VitelliM. Matrix optimisation for hazardous organic waste sorption.Appl. Clay Sci.2005281-4435410.1016/j.clay.2004.01.015
    [Google Scholar]
  54. BarbosaR. AlvesT. AraújoE. MéloT. CaminoG. FinaA. Flammability and morphology of HDPE/clay nanocomposites.J. Therm. Anal. Calorim.2014115162763410.1007/s10973‑013‑3310‑1
    [Google Scholar]
  55. LinW. HouA. FengY-H. YangZ-T. QuJ-P. UHMWPE/organoclay nanocomposites fabricated by melt intercalation under continuous elongational flow: Dispersion, thermal behaviors and mechanical properties.Polym. Eng. Sci.201959354755410.1002/pen.24964
    [Google Scholar]
  56. ZhengX. JiangD.D. WangD. WilkieC.A. Flammability of styrenic polymer clay nanocomposites based on a methyl methacrylate oligomerically-modified clay.Polym. Degrad. Stabil.200691228929710.1016/j.polymdegradstab.2005.05.007
    [Google Scholar]
  57. MorganA.B. HarrisJ.D. Exfoliated polystyrene-clay nanocomposites synthesized by solvent blending with sonication.Polymer (Guildf.)200445268695870310.1016/j.polymer.2004.10.067
    [Google Scholar]
  58. HorrocksA.R. KandolaB.K. DaviesP.J. ZhangS. PadburyS.A. Developments in flame retardant textiles – a review.Polym. Degrad. Stabil.200588131210.1016/j.polymdegradstab.2003.10.024
    [Google Scholar]
  59. GilmanJ.W. KashiwagiT. LitchtenhanJ.D. Nanocomposites: a revolucionary a new flame retardant approach.Sample1997334406
    [Google Scholar]
  60. FornesT.D. YoonP.J. KeskkulaH. PaulD.R. Nylon 6 nanocomposites: the effect of matrix molecular weight.Polymer (Guildf.)20014225099290994010.1016/S0032‑3861(01)00552‑3
    [Google Scholar]
  61. PramodaK.P. LiuT. LiuZ. HeC. SueH-J. Thermal degradation behavior of polyamide 6/clay nanocomposites.Polym. Degrad. Stabil.2003811475610.1016/S0141‑3910(03)00061‑2
    [Google Scholar]
  62. MekhzoumM.E.M. RajiM. RodrigueD. Qaiss A, Bouhfid R. The effect of benzothiazolium surfactant modified montmorillonite content on the properties of polyamide 6 nanocomposites.Appl. Clay Sci.202018510541710.1016/j.clay.2019.105417
    [Google Scholar]
  63. IbrahimN. JollandsM. ParthasarathyR. Mechanical and thermal properties of melt processed PLA/organoclay nanocomposites.IOP Conf. Series Mater. Sci. Eng.201719101200510.1088/1757‑899X/191/1/012005
    [Google Scholar]
  64. MorawiecJ. PawlakA. SloufM. GaleskiA. PiorkowskaE. KrasnikowaN. Preparation and properties of compatibilized LDPE/organo-modified montmorillonite nanocomposites.Eur. Polym. J.20054151115112210.1016/j.eurpolymj.2004.11.011
    [Google Scholar]
  65. BartholmaiM. SchartelB. Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system.Polym. Adv. Technol.200415735536410.1002/pat.483
    [Google Scholar]
  66. StoefflerK. LafleurP.G. DenaultJ. Thermal decomposition of various alkyl onium organoclays: Effect on polyethylene terephthalate nanocomposites’ properties.Polym. Degrad. Stabil.20089371332135010.1016/j.polymdegradstab.2008.03.029
    [Google Scholar]
  67. CherifiZ. BoukoussaB. ZaouiA. BelbachirM. MeghabarR. Structural, morphological and thermal properties of nanocomposites poly(GMA)/clay prepared by ultrasound and in-situ polymerization.Ultrason. Sonochem.20184818819810.1016/j.ultsonch.2018.05.02730080541
    [Google Scholar]
/content/journals/caps/10.2174/2452271604666210120090014
Loading
/content/journals/caps/10.2174/2452271604666210120090014
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test