Skip to content
2000
Volume 5, Issue 3
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Chitosan is an amino-polysaccharide polymer that has a unique structure, multi properties, highly sophisticated functionality and a wide range of applications in biomedical and pharmaceutical research as well as other industrial applications in connection with both pharmaceutical and medical fields. Additionally, it appears that this unique material can be emphasized as a good candidate for drugs variety carrier, drug release applications, and ocular and antimicrobial applications including treatment of diabetes. This review highlights the importance and pharmaceutical applications of chitosan in different fields of research and applications.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271606666221117163317
2022-12-01
2024-12-26
Loading full text...

Full text loading...

References

  1. AkakuruO.U. LouisH. AmosP.I. AkakuruO.C. NosikeE.I. OguleweE.F. The chemistry of chitin and chitosan justifying their nanomedical utilities.Biochem. Pharmacol.20187116
    [Google Scholar]
  2. UgraskanV. Chitosan: Structure, properties and applications. materials research forum LLC.Pub Mater Sci Engin201828
    [Google Scholar]
  3. LiuX. MaL. MaoZ. GaoC. Chitosan based biomaterials for tissue repair and regeneration. Chitosan for biomaterials II. Advances. InPolymer Science.HeidelbergSpringer Berlin201181127
    [Google Scholar]
  4. PillaiO. PanchagnulaR. Insulin therapies past, present and future.Drug Discov. Today20016201056106110.1016/S1359‑6446(01)01962‑611590034
    [Google Scholar]
  5. BaldrickP. The safety of chitosan as a pharmaceutical excipient.Regul. Toxicol. Pharmacol.201056329029910.1016/j.yrtph.2009.09.01519788905
    [Google Scholar]
  6. Ravi KumarM.N.V. MuzzarelliR.A.A. MuzzarelliC. SashiwaH. DombA.J. Chitosan chemistry and pharmaceutical perspectives.Chem Rev Am Chem Society20041041260176084
    [Google Scholar]
  7. KumirskaJ CzerwickaM KaczyńskiZ Application of spectroscopic methods for structural analysis of chitin and chitosan.Mar. Drugs2010851567163610.3390/md805156720559489
    [Google Scholar]
  8. DimzonI.K. KnepperT.P. Degree of deacetylation of chitosan by infrared spectroscopy and partial least squares.Int. J. Biol. Macromol.20157293994510.1016/j.ijbiomac.2014.09.05025316417
    [Google Scholar]
  9. KasaaiM.R. Various methods for determination of the degree of N-acetylation of chitin and chitosan: A review.J. Agric. Food Chem.20095751667167610.1021/jf803001m19187020
    [Google Scholar]
  10. SannanT. KuritaK. IwakuraY. MakromolekulareD. Studies on Chitin, effect of deacetylation on solubility.Makromol. Chem.1976177123589360010.1002/macp.1976.021771210
    [Google Scholar]
  11. SchatzC. VitonC. DelairT. PichotC. DomardA. Typical physicochemical behaviors of chitosan in aqueous solution.Biomacromolecules20034364164810.1021/bm025724c12741780
    [Google Scholar]
  12. SkolnickJ. FixmanM. Electrostatic persistence length of a wormlike polyelectrolyte.Macromolecules197710594494810.1021/ma60059a011
    [Google Scholar]
  13. KhanR. KaushikA. SolankiP.R. AnsariA.A. PandeyM.K. MalhotraB.D. Zinc oxide nanoparticles chitosan composite film for cholesterol biosensor.Anal. Chim. Acta2008616220721310.1016/j.aca.2008.04.01018482605
    [Google Scholar]
  14. OgawaK. YuiT. Structure and function of chitosan. 3. Crystallinity of partially N-acetylated chitosans.Biosci. Biotechnol. Biochem.199305714661469
    [Google Scholar]
  15. BadawyM.E. A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection.Int. J. Carbohydr. Chem.2011
    [Google Scholar]
  16. RinaudoM. Chitin and chitosan: Properties and applications.Prog. Polym. Sci.200631760363210.1016/j.progpolymsci.2006.06.001
    [Google Scholar]
  17. KushwahaK.S. RaiAwani K, Satyawan S. Chitosan: A platform for targeted drug delivery.Int. J. Pharm. Tech. Res.20102422712282
    [Google Scholar]
  18. ShuklaS.K. MishraA.K. ArotibaO.A. MambaB.B. Chitosan based nanomaterials: A state of the art review.Int. J. Biol. Macromol.201359465810.1016/j.ijbiomac.2013.04.04323608103
    [Google Scholar]
  19. CroisierF. JérômeC. Chitosan based biomaterials for tissue engineering.Eur. Polym. J.201349478079210.1016/j.eurpolymj.2012.12.009
    [Google Scholar]
  20. ZargarV. AsghariM. DashtiA. A review on chitin and chitosan polymers: Structure,chemistry, solubility, derivatives, and applications.ChemBioEng Rev.20152320422610.1002/cben.201400025
    [Google Scholar]
  21. ThakurV.K. ThakurM.K. Recent advances in graft copolymerization and applications of chitosan: A Review.ACS Sust. Chem. Eng.20142122637265210.1021/sc500634p
    [Google Scholar]
  22. SánchezDI Chitosan.Non vitamin and non mineral nutritional supplements2019485493
    [Google Scholar]
  23. AdbullinV.F. ShipovskayaA.B. FominaV.I. ArtemenkoS.E. OvchinikovaG.P. PchelinysevaE.V. Physicochemical properties of chitosan from different raw material sources.Fibre Chem.20084013336
    [Google Scholar]
  24. CriniG. Non conventional low cost adsorbents for dye removal: A review.Bioresour. Technol.20069791061108510.1016/j.biortech.2005.05.00115993052
    [Google Scholar]
  25. HefianE.A. NasefM.M. YahayaA.H. Chitosan physical forms: A short review.Aust. J. Basic Appl. Sci.201155670677
    [Google Scholar]
  26. SrinathaA. PanditJ.K. SinghS. Ionic cross linked chitosan beads for extended release of ciprofloxacin: In vitro characterization.Indian J. Pharm. Sci.2008701
    [Google Scholar]
  27. KosarajuS.L. D’athL. LawrenceA. Preparation and characterisation of chitosan microspheres for antioxidant delivery.Carbohydr. Polym.200664416316710.1016/j.carbpol.2005.11.027
    [Google Scholar]
  28. ChangL.B. LinJ. Swelling behavior and the release of protein from chitosan pectin composite particles.Carbohydr. Polym.20004324316310.1016/S0144‑8617(00)00145‑4
    [Google Scholar]
  29. ChornetE. DumitriuS. Inclusion and release of proteins from polysaccharide based polyion complexes.Adv. Drug Deliv. Rev.199831322324610.1016/S0169‑409X(97)00120‑810837627
    [Google Scholar]
  30. AlsarraI.A. NeauS.H. HowardM.A. Effects of preparative parameters on the properties of chitosan hydrogel beads containing Candida rugosa lipase.Biomaterials200425132645265510.1016/j.biomaterials.2003.09.05114751751
    [Google Scholar]
  31. ClasenC. WilhelmsT. KulickeW.M. Formation and characterization of chitosan membranes.Biomacromolecules2006732103222
    [Google Scholar]
  32. CuiL. GaoS. SongX. Preparation and characterization of chitosan membranes.RCS Adv J201882843328439
    [Google Scholar]
  33. YudinV.E. DobrovolskayaI.P. NeelovI.M. Wet spinning of fibers made of chitosan and chitin nanofibrils.Carbohydr. Polym.201410817618210.1016/j.carbpol.2014.02.09024751262
    [Google Scholar]
  34. AlbannaM.Z. BouT.H. Walters IIIH.L. MatthewaH.W.T. Improving the mechanical properties of chitosan basedheart valve scaffolds using chitosan fibers.J. Mech. Behav. Biomed. Mater.2012517118010.1016/j.jmbbm.2011.08.02122100092
    [Google Scholar]
  35. IkedaT. IkedaK. YamamotoK. Fabrication and characteristics of chitosan sponge as a tissue engineering scaffold.BioMed Res. Int.201410.1155/2014/786892
    [Google Scholar]
  36. LiuP. MengW. WangS. SunY. AshrafM.A. Quaternary ammonium salt of chitosan: Preparation and antimicrobial property for paper.Open Med.201510147347810.1515/med‑2015‑008128352739
    [Google Scholar]
  37. BrittoD. GoyR.C. FilhoS.P.C. AssisO.B.G. Quaternary salts of chitosan: History, antimicrobial features, and prospects.Int. J. Carbohydr. Chem.2011
    [Google Scholar]
  38. JuárezJ. AlmadaM. IbarraJ. ValdezM.A. Synthesis and characterization of new thiolated chitosan nanoparticles obtained by ionic gelation method.Int. J. Polym. Sci.2015
    [Google Scholar]
  39. MouryaV.K. InamdarN.N. TiwariA. Carboxymethyl chitosan and its applications.Adv. Mater. Lett.201011113310.5185/amlett.2010.3108
    [Google Scholar]
  40. ZhuA. ChanM.B. DaiS. LiL. The aggregation behavior of O-carboxymethylchitosan in dilute aqueous solution.Colloids Surf. B Biointerfaces2005433-414314910.1016/j.colsurfb.2005.04.00915941653
    [Google Scholar]
  41. PhilippovaO.E. KorchaginaE.V. Chitosan and its hydrophobic derivatives: Preparation and aggregation in dilute aqueous solutions.Polym. Sci. Ser. A201254755257210.1134/S0965545X12060107
    [Google Scholar]
  42. RiccardoA.A. Muzzarelli, PierlucaIlari. Chitosan carrying the methoxyphenyl functions typing of lignin.Carbohydrate polymers199423155160
    [Google Scholar]
  43. MouryaV.K. InamdarN.N. Highly cationic chitosans such as trimethyl chitosan and N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride.J. Mater. Sci: Mater. Med.2008124
    [Google Scholar]
  44. KaiS. BaoqinH. JinningG. FulaiS. YanY.A. WanshunL. Synthesis and characterization of a hydroxyethyl deriva tiveof chitosan and evaluation of its biosafety.J. Ocean Univ. China201514470370910.1007/s11802‑015‑2544‑x
    [Google Scholar]
  45. YangJ. HuangX. LuoF. Preparation and functional studies of hydroxyethyl chitosan nanoparticles loaded with anti-human death receptor 5 single chain antibody.OncoTargets Ther.2014777978710.2147/OTT.S5987224899816
    [Google Scholar]
  46. FangJ. ZhangY. YanS. Poly(L-glutamic a id)chitosan polyelectrolyte complex porous4 microspheres as cell microcarriers for cartilage regeneration.Acta Biomater.2014101276288
    [Google Scholar]
  47. LiZ. DuY. ZhangZ. PangD. Preparation and characterization of CDS quantum dots chitosan Biocomposite.React. Funct. Polym.2003551354310.1016/S1381‑5148(02)00197‑9
    [Google Scholar]
  48. CaoL. WangJ. HouJ. XingW. LiuC. Vascularization and bone regeneration in a critical sized defect using 2-N,6-O-sulfated chitosan nanoparticles incorporating BMP-2.Biomaterials201435268469810.1016/j.biomaterials.2013.10.00524140042
    [Google Scholar]
  49. HallL.D. YalpaniM. Formation of branched chain, soluble polysaccharides from chitosan.J. Chem. Soc. Chem. Commun.198023231153115410.1039/c39800001153
    [Google Scholar]
  50. ChungT.W. YangJ. AkaikeT. Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment.Biomaterials200223142827283410.1016/S0142‑9612(01)00399‑412069321
    [Google Scholar]
  51. MorimotoM. SaimotoH. UsuiH. OkamotoY. MinamiS. ShigemasaY. Biological activities of carbohydrate branched chitosan derivatives.Biomacromolecules2001241133113610.1021/bm010063p11777384
    [Google Scholar]
  52. AipingZ. TianC. LanhuaY. HaoW. PingL. Synthesis and characterization of N-succinyl-chitosan and its self assembly of nanospheres.Carbohydr. Polym.200666227427910.1016/j.carbpol.2006.03.014
    [Google Scholar]
  53. ZhuA.P. YuanL. ChenT. WuH. ZhaoF. Interactions between N succinyl chitosan and bovine serum albumin.Carbohydr. Polym.200769236337010.1016/j.carbpol.2006.11.023
    [Google Scholar]
  54. SinhaVR KumriaR Polysaccharides in colon specific drug delivery.Int J Pharm20012241-21938, 19-3810.1016/S0378‑5173(01)00720‑711472812
    [Google Scholar]
  55. MorinC.N. LichtfouseE. TorriG. CriniG. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry.Environ. Chem. Lett.20191741667169210.1007/s10311‑019‑00904‑x
    [Google Scholar]
  56. DodaneV VilivalamV D Pharmaceutical applications of chitosan.PSTT j1998624625310.1016/S1461‑5347(98)00059‑5
    [Google Scholar]
  57. ThanouM. JungingerH.E. Pharmaceutical applications of chitosan and derivatives. Chemistry.Pub Med Cent200421248710.1201/9781420030822.ch28
    [Google Scholar]
  58. MohammedM.A. SyedaJ.T.M. WasanK.M. WasanE.K. An overview of chitosan nanoparticles and its application in non parenteral drug delivery.Pharmaceutics20179453
    [Google Scholar]
  59. ShariatiniaZ. JalaliA.M. Chitosan based hydrogels: Preparation, properties and applications.Int. J. Biol. Macromol.201811519422010.1016/j.ijbiomac.2018.04.03429660456
    [Google Scholar]
  60. SimõesD. MiguelS.P. RibeiroM.P. CoutinhoP. MendonçaA.G. CorreiaI.J. Recent advances on antimicrobial wound dressing: A review.Eur. J. Pharm. Biopharm.201812713014129462687
    [Google Scholar]
  61. ArkounM. DaigleF. HeuzeyM.C. AjjiA. Mechanism of action of electrospun Chitosan based nano fibers against meat spoilage and pathogenic bacteria.Molecules20174585
    [Google Scholar]
  62. KohsariI. ShariatiniaZ. PourmortazaviS.M. Antibacterial electrospun chitosan polyethylene oxide nanocomposite mats containing bioactive silver nanoparticles.Carbohydr. Polym.201614028729810.1016/j.carbpol.2015.12.07526876856
    [Google Scholar]
  63. TangF LvL LuF Preparation and characterization of N chitosan as a wound healing accelerator.Int J Biol Macromol201693Pt A1295130310.1016/j.ijbiomac.2016.09.10127697487
    [Google Scholar]
  64. DeviN DuttaJ Preparation and characterization of chitosan bentonite nanocomposite films for wound healing application.Int J Biol Macromol2017104Pt B1897190410.1016/j.ijbiomac.2017.02.08028242331
    [Google Scholar]
  65. MiguelS.P. MoreiraA.F. CorreiaI.J. Chitosan based asymmetric membranes for wound healing: A review.Int. J. Biol. Macromol.201912746047510.1016/j.ijbiomac.2019.01.07230660567
    [Google Scholar]
  66. AdhikariH.S. Anticancer activity of chitosan, chitosan derivatives, and their mechanism of action.Int. J. Biomater.201820182952085
    [Google Scholar]
  67. ZhongZ. ZhongZ. XingR. LiP. MoG. The preparation and antioxidant activity of 2-[phenylhydrazine (or hydrazine)-thiosemicarbazone] chitosan.Int. J. Biol. Macromol.2010472939710.1016/j.ijbiomac.2010.05.01620553752
    [Google Scholar]
  68. ZhengY. YiY. QiY. WangY. ZhangW. DuM. Preparation of chitosan copper complexes and their anti-tumoractivity.Bioorganic Med. Chem. Lett.20061541274129
    [Google Scholar]
  69. BarbosaH.F.G. AttjiouiM. FerreiraA.P.G. Synthesis, characterization and biological activities of biopolymeric schiff bases prepared with chitosan and salicyl aldehydes and their Pd(II) andPt(II) complexes.Molecules201722119
    [Google Scholar]
  70. KatoY. OnishiH. MachidaY. Evaluation of N-succinylchitosanas a systemic long circulating polymer.Biomaterials200021151579158510.1016/S0142‑9612(00)00044‑210885730
    [Google Scholar]
  71. KamiyamaK. OnishiH. MachidaY. Biodispositioncharacteristics of N-succinyl-chitosan and glycol- chitosan innormal and tumor bearing mice.Biol. Pharm. Bull.199922217918610.1248/bpb.22.17910077438
    [Google Scholar]
  72. YanC. ChenD. GuJ. HuH. ZhaoX. QiaoM. Preparationof N-succinyl chitosan and their physical chemical propertiesas a novel excipien.Yakugaku Zasshi20061269789793
    [Google Scholar]
  73. HosodaJ. UnezakiS. MaruyamaK. TsuchiyaS. IwatsuruM. Antitumor activity of doxorubicin encapsulated in poly(ethylene glycol) coated liposomes.Biol. Pharma. Bull.1995912341237
    [Google Scholar]
  74. CheungR.C. NgT.B. WongJ.H. ChanW.Y. Chitosan: An update on potential biomedical and pharmaceutical applications.Mar. Drugs20151385156518610.3390/md1308515626287217
    [Google Scholar]
  75. ChienH.F. ChenC.P. ChenY.C. ChangP.H. TsaiT. ChenC.T. The use of Chitosan to enhance photodynamic inactivation against Candida albicans and its drug resistant clinical isolates.Int. J. Mol. Sci.20131447445745610.3390/ijms1404744523552829
    [Google Scholar]
  76. HosseinnejadM. JafariS.M. Evaluation of different factors affecting antimicrobial properties of chitosan.Int. J. Biol. Macromol.20168546747510.1016/j.ijbiomac.2016.01.02226780706
    [Google Scholar]
  77. PenaA. SanchezN.S. CalahorraM. Effects of chitosan on Candida albicans: Conditions for its antifungal activity.Biomed Res. Int.20132013527549
    [Google Scholar]
  78. LimS.H. HudsonS.M. Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals.J Macromo Sci Pol RC200343223269
    [Google Scholar]
  79. ChirkovS.N. The antiviral activity of chitosan (review).Prikl. Biokhim. Mikrobiol.200238151311852567
    [Google Scholar]
  80. KravanjaG PrimožiˇcM KnezŽ LeitgebM Chitosan based (nano)materials for novel biomedical applications.Molecules201924: 19601-23
    [Google Scholar]
  81. ShihP.Y. LiaoY.T. TsengY.K. DengF.S. LinC.H. A potential antifungal effect of chitosan against candida albicans is mediated via the inhibition of SAGA complex component expression and the subsequent alteration of cell surface integrity.Front. Microbiol.201926
    [Google Scholar]
  82. RodríguezS. Insights into SAGA function during gene expression.EMBO Rep.200910884385010.1038/embor.2009.16819609321
    [Google Scholar]
  83. GoyR.C. MoraisS.T.B. AssisO.B.G. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth.Rev. Bras. Farmacogn.201626112212710.1016/j.bjp.2015.09.010
    [Google Scholar]
  84. AbdeltwabW.M. AbdelaliemY.F. MetryW.A. EldeghedyM. Antimicrobial effect of chitosan and nano-chitosan against some pathogens and spoilage microorganisms.J Adv Lab Res Bio2019101815
    [Google Scholar]
  85. DonalisioM. LeoneF. CivraA. Acyclovir-loaded chitosan nanospheres from-emulsion templating for the topical treatment of herpesviruses infections.Pharmaceutics20181046112
    [Google Scholar]
  86. MoriY. OnoT. MiyahiraY. NguyenV.Q. MatsuiT. IshiharaM. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus.Nanoscale Res. Lett.2013819310.1186/1556‑276X‑8‑9323421446
    [Google Scholar]
  87. MilewskaA. CiejkaJ. KaminskiK. Novel polymeric inhibitors of HCoV-NL63.Antiviral Res.201397211212110.1016/j.antiviral.2012.11.00623201315
    [Google Scholar]
  88. MilewskaA. KaminskiK. CiejkaJ. HTCC: Broad range inhibitor of coronavirus entry.PLoS One J2016116117
    [Google Scholar]
  89. SunQ. ZhangJ.L. HanD.Q. YangY.B. ZhuL. YuL. Characterization and immunological evaluation of chitosan nanoparticles as adjuvants for bovine coronavirus N protein.Appl. Mech. Mater.201216111312010.4028/www.scientific.net/AMM.161.113
    [Google Scholar]
  90. GuJ. Al-BayatiK. HoE.A. Development of antibody-modified chitosan nanoparticles for the targeted delivery of sRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes.Drug Deliv. Transl. Res.20177449750610.1007/s13346‑017‑0368‑528315051
    [Google Scholar]
  91. GuoX. HuangL. Recent advances in nonviral vectors for gene delivery.Acc. Chem. Res.201245797197910.1021/ar200151m21870813
    [Google Scholar]
  92. ChenY. LiuL. Modern methods for delivery of drugs across the blood brain barrier.Adv. Drug Deliv. Rev.201264764066510.1016/j.addr.2011.11.01022154620
    [Google Scholar]
  93. SaranyaN. MoorthiA. SaravananS. DeviM.P. SelvamuruganN. Chitosan and its derivatives for gene delivery.Int. J. Biol. Macromol.201148223423810.1016/j.ijbiomac.2010.11.01321134396
    [Google Scholar]
  94. KamalzareS. NoormohammadiZ. RahimiP. Carboxymethyl dextran-trimethyl chitosan coated superparamagnetic iron oxide nanoparticles: An effective siRNA delivery system for HIV-1 Nef.J. Cell. Physiol.201923411205542056510.1002/jcp.2865531144311
    [Google Scholar]
  95. Iranpur MobarakehV. ModarressiM.H. RahimiP. Optimization of chitosan nanoparticles as an anti-HIV siRNA delivery vehicle.Int. J. Biol. Macromol.201912930531510.1016/j.ijbiomac.2019.02.03630738164
    [Google Scholar]
  96. MehrnoushS.A. SaharS.B. MahdiehA.C. RastegariM.A. RaminP.D. Mostafa HajiM.H. Chitin and chitosan as tools to combat COVID-19: A triple approach.Int. J. Biol. Macromol.202118323524410.1016/j.ijbiomac.2021.04.157
    [Google Scholar]
  97. IrimiaT. DinuC.E. GhicaM.V. Chitosan-based in situ gels for ocular delivery of therapeutics: A state of the art review.Mar. Drugs20181637310.3390/md16100373
    [Google Scholar]
  98. AgnihotriS.A. MallikarjunaN.N. AminabhaviT.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery.J. Control. Release2004100152810.1016/j.jconrel.2004.08.01015491807
    [Google Scholar]
  99. NagarwalR.C. KantS. SinghP.N. MaitiP. PanditJ.K. Polymericnanoparticulate system: A potential approach for ocular drug delivery.J. Control. Release200913621310.1016/j.jconrel.2008.12.01819331856
    [Google Scholar]
  100. LudwigA. The use of mucoadhesive polymers in ocular drug delivery.Adv. Drug Deliv. Rev.200557111595163910.1016/j.addr.2005.07.00516198021
    [Google Scholar]
  101. FeltO. FurrerP. MayerJ.M. PlazonnetB. BuriP. GurnyR. Topical use of chitosan in ophthalmology: Tolerance assessment and evaluation of precorneal retention.Int. J. Pharm.1999180218519310.1016/S0378‑5173(99)00003‑410370189
    [Google Scholar]
  102. GratieriT. GelfusoG.M. de FreitasO. RochaE.M. LopezR.F. Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel.Eur. J. Pharm. Biopharm.201179232032710.1016/j.ejpb.2011.05.00621641994
    [Google Scholar]
  103. GuptaH. JainS. MathurR. MishraP. MishraA.K. VelpandianT. Sustained ocular drug delivery from atemperature and pH triggered novel in situ gel system.Drug Deliv.20071450751510.1080/1071754070160642618027180
    [Google Scholar]
  104. VarshosazJ. TabbakhianM. SalmaniZ. Designing of a thermosensitive chitosan/poloxamer in situ gel for ocular delivery of ciprofloxacin.Open Drug Deliv J200826170
    [Google Scholar]
  105. FabianoA. BizzarriR. ZambitoY. Thermosensitive hydrogel based on chitosan and its derivatives containing medicated nanoparticles for transcorneal administration of 5-fluorouracil.Int. J. Nanomedicine20171263364310.2147/IJN.S12164228144144
    [Google Scholar]
  106. de CamposA.M. DieboldY. CarvalhoE.L. SánchezA. AlonsoM.J. Chitosan nanoparticles as new ocular drug delivery systems: In vitro stability, in vivo fate, and cellular toxicity.Pharm. Res.200421580381010.1023/B:PHAM.0000026432.75781.cb15180338
    [Google Scholar]
  107. XingL. Chemical modification of chitosan for efficient vaccine delivery.Molecules20182229
    [Google Scholar]
  108. SahdevP. OchylL.J. MoonJ.J. Biomaterials for nanoparticle vaccine delivery systems.Pharm. Res.201431102563258210.1007/s11095‑014‑1419‑y24848341
    [Google Scholar]
  109. IllumL. Chitosan and its use as a pharmaceutical excipient.Pharm. Res.19981591326133110.1023/A:10119290166019755881
    [Google Scholar]
  110. JiangH.L. ParkI.K. KangM.L. Immune stimulating activity of an atrophic rhinitis vaccine associated to pegylated chitosan microspheres in vitro.Polym. Adv. Technol.200718322022510.1002/pat.861
    [Google Scholar]
  111. MontiM. DianoD. AllegriniF. Bordetella bronchiseptica pneumonia in a patient with lung cancer; a case report of a rare infection.BMC Infect. Dis.201717164464810.1186/s12879‑017‑2736‑728946850
    [Google Scholar]
  112. MalikA. GuptaM. GuptaV. GogoiH. BhatnagarR. Novel application of trimethyl chitosan as an adjuvant in vaccine delivery.Int. J. Nanomedicine2018137959797010.2147/IJN.S16587630538470
    [Google Scholar]
  113. SubbiahR. RamalingamP. RamasundaramS. N,N,N-Trimethyl chitosan nanoparticles for controlled intranasal delivery of HBV surface antigen.Carbohydr. Polym.20128941289129710.1016/j.carbpol.2012.04.05624750944
    [Google Scholar]
  114. AbdelAllahN.H. GaberY. RashedM.E. AzmyA.F. Abou-TalebH.A. AbdelGhaniS. Alginate-coated chitosan nanoparticles act as effective adjuvant for hepatitis A vaccine in mice.Int. J. Biol. Macromol.202015290491210.1016/j.ijbiomac.2020.02.28732114177
    [Google Scholar]
  115. RenuS. HanY. DhakalS. Chitosan-adjuvanted Salmonella subunit nanoparticle vaccine for poultry delivered through drinking water and feed.Carbohydr. Polym.2020243116434
    [Google Scholar]
  116. BandeF. ArshadS.S. BejoM.H. Development and immunogenic potentials of chitosan-saponin encapsulated DNA vaccine against avian infectious bronchitis coronavirus.Microb. Pathog.202014914910456010.1016/j.micpath.2020.10456033068733
    [Google Scholar]
  117. HejaziR. AmijiM. Chitosan-based gastrointestinal delivery systems.J. Control. Release200389215116510.1016/S0168‑3659(03)00126‑312711440
    [Google Scholar]
  118. ArturssonP. LindmarkT. DavisS.S. IllumL. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2).Pharm. Res.19941191358136110.1023/A:10189671169887816770
    [Google Scholar]
  119. GulbakeA. JainS.K. Chitosan: A potential polymer for colon-specific drug delivery system.Expert Opin. Drug Deliv.20129671372910.1517/17425247.2012.68214822530707
    [Google Scholar]
  120. NigalayeA.G. AdusumiliP. BoltonS. Investigation of prolonged drug release from matrix formulations of chitosan.Drug Dev. Ind. Pharm.199016344946710.3109/03639049009114897
    [Google Scholar]
  121. RitthidejG.C. ChomtoP. PummangguraS. Chitin and chitosan as disintegrants in paracetamol tablets.Drug Dev. Ind. Pharm.1990198915927
    [Google Scholar]
  122. UpadrashtaS.M. KatikaneniP.R. NuessleN.O. Chitosan as a tablet binder.Drug Dev. Ind. Pharm.199218152701270810.3109/03639049209040896
    [Google Scholar]
  123. HuangB.B. LiG.F. LuoJ.H. DuanL. NobuakiK. AkiraY. Permeabilities of rebamipide via rat intestinal membranes and its colon specific delivery using chitosan capsule as a carrier.World J. Gastroenterol.200814314928493710.3748/wjg.14.492818756602
    [Google Scholar]
  124. FetihG. LindbergS. ItohK. Improvement of absorption enhancing effects of n-dodecyl-beta-Dmaltopyranoside by its colon-specific delivery using chitosan capsules.Int. J. Pharm.20052931-2127135
    [Google Scholar]
  125. SrinathaA. PanditJ.K. Alternate polyelectrolyte coating of chitosan beads for extending drug release.Drug Deliv.200815319319918379932
    [Google Scholar]
  126. ElzatahryA.A. EldinM.S.M. Preparation and characterization of metronidazole loaded chitosan nanoparticles for drug delivery application.Polym. Adv. Technol.200819121787179110.1002/pat.1195
    [Google Scholar]
  127. JainA. JainS.K. In vitro and cell uptake studies for targeting of ligand anchored nanoparticles for colon tumors.Eur. J. Pharm. Sci.200835540441610.1016/j.ejps.2008.08.00818824095
    [Google Scholar]
  128. GrahamN.B. Controlled drug delivery systems.Chem. Ind.199015482486
    [Google Scholar]
  129. ZhouX.H. Overcoming enzymatic and absorption barriers to nonparenterally administered protein and peptide drugs.J. Control. Release199429323925210.1016/0168‑3659(94)90071‑X
    [Google Scholar]
  130. WoodleyJ.F. Enzymatic barriers for GI peptide and protein delivery.Crit. Rev. Ther. Drug Carrier Syst.1994112-361957600588
    [Google Scholar]
  131. MumperR.J. WangJ. RollandA. Novel polymeric condensing carriers for gene delivery.Proceedings of the International Symposiom on Controlled Release Bioactive Materials19951789
    [Google Scholar]
  132. AlhakamyA.N. FahmyU.A. AhmedO.A.A. Chitosan coated microparticles enhance simvastatin colon targeting and pro-apoptotic activity.Mar. Drugs202018226
    [Google Scholar]
  133. NalinbenjapunS OvatlarnpornC. Chitosan-5-aminosalicylic acid conjugates for colon-specific drug delivery:Methods of preparation and in vitro evaluations.202057101397
    [Google Scholar]
  134. KerchG. The potential of chitosan and its derivatives in prevention and treatment of age-related diseases.Mar. Drugs20151342158218210.3390/md1304215825871293
    [Google Scholar]
  135. KaradenizF. KimS.K. Antidiabetic activities of chitosan and its derivatives: A mini review. Marine Carbohydrates: Fundamentals and Applications.Oxford, UKElsevier Inc.2014153110.1016/B978‑0‑12‑800268‑1.00003‑2
    [Google Scholar]
  136. ThanouM. VerhoefJ.C. JungingerH.E. Oral drug absorption enhancement by chitosan and its derivatives.Adv. Drug Deliv. Rev.200152211712610.1016/S0169‑409X(01)00231‑911718935
    [Google Scholar]
  137. JameelaS.R. MisraA. JayakrishnanA. Cross linked chitosan microspheres as carriers for prolonged delivery of macromolecular drugs.J. Biomater. Sci. Polym. Ed.19946762163210.1163/156856294X005637873513
    [Google Scholar]
  138. NeyrinckA.M. BindelsL.B. De BackerF. PachikianB.D. CaniP.D. DelzenneN.M. Dietary supplementation with chitosan derived from mushrooms changes adipocytokine profile in diet induced obese mice, a phenomenon linked to its lipid-lowering action.Int. Immunopharmacol.20099676777310.1016/j.intimp.2009.02.01519286482
    [Google Scholar]
  139. HuangM. KhorE. LimL.Y. Uptake and cytotoxicity of chitosan molecules and nanoparticles: Effects of molecular weight and degree of deacetylation.Pharm. Res.200421234435310.1023/B:PHAM.0000016249.52831.a515032318
    [Google Scholar]
  140. NidheeshT. SalimC. RajiniP.S. SureshP.V. Antioxidant and neuroprotective potential of chitooligomers in Caenorhabditis elegans exposed to Monocrotophos.Carbohydr. Polym.201613513814410.1016/j.carbpol.2015.08.05526453861
    [Google Scholar]
  141. OuyangQ.Q. ZhaoS. LiS.D. SongC. Application of chitosan, chitooligosaccharide, and their derivatives in the treatment of Alzheimer’s disease.Mar. Drugs2017151132233710.3390/md1511032229112116
    [Google Scholar]
  142. HaoC. WangW. WangS. ZhangL. GuoY. An overview of the protective effects of chitosan and acetylated chitosan oligosaccharides against neuronal disorders.Mar. Drugs20171548910410.3390/md1504008928333077
    [Google Scholar]
  143. WangX. MiaoJ. YanC. Chitosan attenuates dibutyltin-induced apoptosis in PC12 cells through inhibition of the mitochondria-dependent pathway.Carbohydr. Polym.2016151996100510.1016/j.carbpol.2016.06.05327474647
    [Google Scholar]
  144. XueY. WangN. ZengZ. HuangJ. XiangZ. GuanY.Q. Neuroprotective effect of chitosan nanoparticle gene delivery system grafted with acteoside (ACT) in Parkinson’s disease models.J. Mater. Sci. Technol.20204319720710.1016/j.jmst.2019.10.013
    [Google Scholar]
  145. CepedaC. MurphyK.P. ParentM. LevineM.S. The role of dopamine in Huntington’s disease.Prog Brain Res201421123525410.1016/B978‑0‑444‑63425‑2.00010‑624968783
    [Google Scholar]
  146. GaetaA. HiderR.C. The crucial role of metal ions in neurodegeneration: The basis for a promising therapeutic strategy.Br. J. Pharmacol.200514681041105910.1038/sj.bjp.070641616205720
    [Google Scholar]
  147. GaoH.M. LiuB. ZhangW. HongJ.S. Novel anti-inflammatory therapy for Parkinson’s disease.Trends Pharmacol. Sci.20032439540110.1016/S0165‑6147(03)00176‑7
    [Google Scholar]
  148. PellicciariR. CostantinoG. MarinozziM. NataliniB. Modulation of glutamate receptor pathways in the search for new neuroprotective agents.Farmaco199853425526110.1016/S0014‑827X(98)00018‑49658582
    [Google Scholar]
  149. SchwartzG. FehlingsM.G. Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: Improved behavioral and neuroanatomical recovery with riluzole.J. Neurosurg.2001942Suppl.24525611302627
    [Google Scholar]
  150. WooM.S. ParkJ.S. ChoiI.Y. KimW.K. KimH.S. Inhibition of MMP-3 or -9 suppresses lipopolysaccharide-induced expression of proinflammatory cytokines and iNOS in microglia.J. Neurochem.2008106770780
    [Google Scholar]
  151. MoalemG. GdalyahuA. ShaniY. Production of neurotrophins by activated T cells: Implications for neuroprotective autoimmunity.J. Autoimmun.200015333134510.1006/jaut.2000.044111040074
    [Google Scholar]
  152. KietzmannT. KnabeW. Schmidt-KastnerR. Hypoxia and hypoxia-inducible factor modulated gene expression in brain: Involvement in neuroprotection and cell death.Eur. Arch. Psychiatry Clin. Neurosci.2001251417017810.1007/s00406017003711697581
    [Google Scholar]
  153. VolbrachtC. van BeekJ. ZhuC. BlomgrenK. LeistM. Neuroprotective properties of memantine in different in vitro and in vivo models of excitotoxicity.Eur. J. Neurosci.200623102611262210.1111/j.1460‑9568.2006.04787.x16817864
    [Google Scholar]
  154. YuX. AnL. WangY. ZhaoH. GaoC. Neuroprotective effect of Alpinia oxyphylla Miq. fruits against glutamate-induced apoptosis in cortical neurons.Toxicol. Lett.2003144220521210.1016/S0378‑4274(03)00219‑412927364
    [Google Scholar]
  155. RuizG.A.M. CorralesH.F.Z. Chitosan, chitosan derivatives and their biomedical applications. Biological Activities and Applications pf Marine Polysauharides.LondonIntechOpen201787106
    [Google Scholar]
  156. SivanesanI. HasanN. MuthuM. Exploring the impact of chitosan composites as artificial organs.Polymers2022148158710.3390/polym1408158735458335
    [Google Scholar]
  157. OjedaD.D. CanalesA.A. MatiasJ. GomezU. MateosJ.C. Applications in the central nervous system.Front. Bioeng. Biotechnol.2020811510.3389/fbioe.2020.0000132039188
    [Google Scholar]
  158. Ebrahimi-BaroughS HoveiziE Norouzi JavidanA AiJ. Investigating the neuroglial differentiation effect of neuro-blastoma conditionedmedium in human endometrial stem cells cultured on 3D nanofibrousscaffold.J Biomed Mater Res2015A 10326212627
    [Google Scholar]
  159. AbasiS. AggasJ.R. Guiseppi-ElieA. Physiochemical and morphological dependent growth of NIH/3T3 and PC-12 on polyaniline-chloride/chitosan bionanocomposites.Mater. Sci. Eng. C2019991304131210.1016/j.msec.2019.02.01830889665
    [Google Scholar]
  160. ShariatiniaZ. Pharmaceutical applications of chitosan.Adv. Colloid Interface Sci.201926313119430530176
    [Google Scholar]
/content/journals/caps/10.2174/2452271606666221117163317
Loading
/content/journals/caps/10.2174/2452271606666221117163317
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test