Skip to content
2000
Volume 4, Issue 3
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Auxetic materials have high potential due to their exceptional properties resulting from a negative Poisson’s ratio. Recently, several auxetic polymer-based materials have been developed. In fact, several applications are looking for a lightweight material (less material consumed in production and transport) while having high mechanical performances (impact absorption, rigidity, strength, resistance,). So, a balance between density and toughness/strength is highly important, especially for military, sporting, and transport applications. So auxetic materials (especially foams) can provide high impact protection while limiting the material’s weight. This article presents a review of recent advances with a focus on auxetic polymers, with particular emphasis on the auxetic polymer foams in terms of their fabrication methods and processing conditions (depending on the nature of the cellular structure), the effect of the fabrication parameters on their final properties, as well as their models and potential applications.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271604666211130123921
2021-12-01
2025-01-10
Loading full text...

Full text loading...

References

  1. MendheSh.E. KostaY.P. Metamaterial properties and applications.Int J Inform Technol Knowledge Manag2011418589
    [Google Scholar]
  2. ItohT. Prospectus for metamaterials.Electron. Lett.200440
    [Google Scholar]
  3. JelinekL. MachacJ. ZehentnerL. Metamaterials: A challenge for contemporary advanced technology.17th International Conference Radioelektronika2007112
    [Google Scholar]
  4. LakesR.S. Negative-poisson’s-ratio materials: auxetic solids.Annu Rev Mater Res201747638110.1146/annurev‑matsci‑070616‑124118
    [Google Scholar]
  5. CritchleyR. CorniI. WhartonJ.A. WalshF.C. WoodR.J.K. StokesK.R. A review of the manufacture, mechanical properties and potential applications of auxetic foams.Phys. Status Solidi2013250101963198210.1002/pssb.201248550
    [Google Scholar]
  6. EvansK.E. AldersonA. Auxetic materials: functional materials and structures from lateral thinking.Adv. Mater.200012961762810.1002/(SICI)1521‑4095(200005)12:9<617::AID‑ADMA617>3.0.CO;2‑3
    [Google Scholar]
  7. LakesR. Foam structures with a negative Poisson’s ratio.Science198723547921038104010.1126/science.235.4792.103817782252
    [Google Scholar]
  8. BallatoA. Poisson’s ratios of auxetic and other technological materials.IEEE Trans. Ultrason. Ferroelectr. Freq. Control201057171510.1109/TUFFC.2010.137220040420
    [Google Scholar]
  9. ChoH. SeoD. KimD.N. Mechanics of Auxetic Materials.Handbook of Mechanics of Materials. Singapore Springer201973375710.1007/978‑981‑10‑6884‑3_25
    [Google Scholar]
  10. ChanN. EvansK.E. Fabrication methods for auxetic foams.J. Mater. Sci.1997325945595310.1023/A:1018606926094
    [Google Scholar]
  11. ShilkoS. KonyokD. Digital and experimental study of closed cell auxetic foams.Calculation methods Sci Technol2004102197202
    [Google Scholar]
  12. TopolovV.Y. BowenC.R. Characteristics of the type 1-3 ferroelectric ceramic/polymer composite.Model Simul Mater Sci20081611500715012
    [Google Scholar]
  13. EvansK.E. DonoghueJ.P. AldersonK.L. The design, pairing and manufacture of carbon fiber laminates auxetic.J. Compos. Mater.2004389510610.1177/0021998304038645
    [Google Scholar]
  14. CicalaG. ReccaG. OliveriL. GrubeD.J. ScarpaF. PerikleousY. Auxetic hexachiral truss core reinforced with twisted hemp yarns: out of aircraft shear properties. In: Ferreira AJM, editor. Proceeding of 16th International Conference on Composite Structures ICCS 16FEUP, Porto, 2011.
  15. NitinR.K. JamesR.C. Negative Poisson ratios in the crystalline SiO2 from the first principle calculations.Nature1992358638322222410.1038/358222a0
    [Google Scholar]
  16. Yeganeh-HaeriA. WeidnerD.J. PariseJ.B. Elasticity of a-cristobalite: silicon dioxide with a negative ratio of Poisson.Science1992257507065065210.1126/science.257.5070.65017740733
    [Google Scholar]
  17. GrimaJ.N. GattR. AldersonA. EvansK.E. An alternative explanation for the negative reports of Poisson in a-cristobalite.Mater. Sci. Eng. A. Struct.20064231-221922410.1016/j.msea.2005.08.230
    [Google Scholar]
  18. AldersonA. EvansK.E. Deformation mechanisms leading to auxetic behaviour in the α-cristobalite and α-quartz structures of both silica and germania.J. Phys. Condens. Matter200921202540110.1088/0953‑8984/21/2/02540121813974
    [Google Scholar]
  19. LoveA. A treatise on the mathematical theory of elasticity.(4th ed ) New York Dover Publications1944
    [Google Scholar]
  20. LedbetterH. LeiM. Monocrystal constant elastic orthotropic Y1Ba2Cu3O7: an estimate.J. Mater. Res.19916112253225510.1557/JMR.1991.2253
    [Google Scholar]
  21. EvansK.E. NkansahM.A. HutchinsonI.J. RogersS.C. Molecular network design.Nature199135312410.1038/353124a0
    [Google Scholar]
  22. MaP. ChangY. BoakyeA. JiangG. Review on the knitted structures with auxetic effect.J. Textil. Inst.20161086115
    [Google Scholar]
  23. CarneiroV.H. MeirelesJ. PugaH. Auxetic materials - A review.Mater. Sci. Pol.20133156157110.2478/s13536‑013‑0140‑6
    [Google Scholar]
  24. YangW. LiZ.M. ShiW. XieB.H. YangM.B. Review on auxetic materials.J. Mater. Sci.2004393269327910.1023/B:JMSC.0000026928.93231.e0
    [Google Scholar]
  25. NaikS. DandagwhalR.D. WaniC.N. GiriS.K. A review on various aspects of auxetic materials.AIP Conf. Proc.20192105102000410.1063/1.5100689
    [Google Scholar]
  26. RenX. DasR. TranPh. NgoT.D. XieX.M. Auxetic metamaterials and structures: a review.Smart Mater. Struct.201827202300110.1088/1361‑665X/aaa61c
    [Google Scholar]
  27. GibsonL.J. AshbyM.F. SchajerG.S. RobertsonC.I. The mechanics of two dimensional cellular materials.Proc Lond Royal Soc178219823822542
    [Google Scholar]
  28. LeeJ. ChoiJ.B. ChoiK. Application of homogenization FEM analysis to regular and re-entrant honeycomb structures.J. Mater. Sci.1996314105411010.1007/BF00352675
    [Google Scholar]
  29. TheocarisP.S. StavroulakisG.E. PanagiotopoulosP.D. Negative Poisson’s ratio in materials with a star-shaped microstructure. A numerical homogenization approach.Arch. Appl. Mech.199767427428610.1007/s004190050117
    [Google Scholar]
  30. LimT.C. Constitutive relationship of a material with unconventional Poisson’s ratio.J. Mater. Sci. Lett.200322241783178610.1023/B:JMSL.0000005420.34383.d8
    [Google Scholar]
  31. GrimaJ.N. GattR. AldersonA. EvansK.E. On the potential of connected stars as auxetic systems.Mol. Simul.2005311392593510.1080/08927020500401139
    [Google Scholar]
  32. PrallD. LakesR.S. Properties of a chiral honeycomb with a Poisson’s ratio of -1.Int. J. Mech. Sci.199739330531410.1016/S0020‑7403(96)00025‑2
    [Google Scholar]
  33. SpadoniA. RuzzeneM. ScarpaF. Global and local linear buckling behavior of a chiral cellular structure.Phys. Status Solidi2005242369570910.1002/pssb.200460387
    [Google Scholar]
  34. BornengoD. ScarpaF. RemillatC. Evaluation of hexagonal chiral structure for morphing airfoil concept.Proc IME GJ Aero Eng2005219318519210.1243/095441005X30216
    [Google Scholar]
  35. IshibashiY. IwataM.J. A microscopic model of a negative poisson’s ratio in some crystals.J Phys Soc Jpn20006982702270310.1143/JPSJ.69.2702
    [Google Scholar]
  36. VasilievA.A. DimitrievS.V. IshibashiY. ShinegariT. Elastic properties of a two-dimensional model of crystals containing particles with rotational degrees of freedom.Phys. Rev.20026509410110.1103/PhysRevB.65.094101
    [Google Scholar]
  37. GrimaJ.N. AldersonA. EvansK.E. Auxetic behaviour from rotating rigid units.Phys. Status Solidi2005242356157510.1002/pssb.200460376
    [Google Scholar]
  38. GrimaJ.N. ZammitV. GattR. AldersonA. EvansK.E. Auxetic behaviour from rotating semi-rigid units.Phys. Status Solidi2007244386688210.1002/pssb.200572706
    [Google Scholar]
  39. GrimaJ.N. FarrugiaP.S. GattR. AttardD. On the auxetic properties of rotating rhombi and parallelograms: A preliminary investigation.Phys. Status Solidi2008245352152910.1002/pssb.200777705
    [Google Scholar]
  40. MiltonG.W. Composite materials with Poisson’s ratios close to -1.J. Mech. Phys. Solids19924051105113710.1016/0022‑5096(92)90063‑8
    [Google Scholar]
  41. HineP.J. DuckettR. A.; Ward, I.M. Negative Poisson’s ratios in angle-ply laminates.J. Mater. Sci. Lett.19971654154410.1023/A:1018505503088
    [Google Scholar]
  42. WojciechowskiK.W. Constant thermodynamic tension Monte Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers.Mol. Phys.19876151247125810.1080/00268978700101761
    [Google Scholar]
  43. WojciechowskiK.W. Remarks on “Poisson Ratio beyond the limits of the elasticity theory”.J. Phys. Soc. Jpn.20037271819182010.1143/JPSJ.72.1819
    [Google Scholar]
  44. WojciechowskiK.W. Non-chiral, molecular model of negative Poisson ratio in two dimensions.J. Phys. Math. Gen.20033647117651177810.1088/0305‑4470/36/47/005
    [Google Scholar]
  45. WojciechowskiK.W. TretiakovK.V. KowalikM. Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensions.Phys. Rev. E Stat. Nonlin. Soft Matter Phys.2003673 Pt 203612110.1103/PhysRevE.67.03612112689146
    [Google Scholar]
  46. HeC.B. LiuP.W. GriffinA.C. Toward negative poisson ratio polymers through molecular design.Macromolecules19983193145314710.1021/ma970787m
    [Google Scholar]
  47. HeC.B. LiuP.W. McMullanP.J. GriffinA.C. Toward molecular auxetics: Main chain liquid crystalline polymers consisting of laterally attached para-quaterphenyls.Phys. Status Solidi2005242357658410.1002/pssb.200460393
    [Google Scholar]
  48. EvansK.E. Auxetic polymers: a new range of materials.Endeavour199115417017410.1016/0160‑9327(91)90123‑S
    [Google Scholar]
  49. AldersonA. AldersonK.L. Auxetic materials.Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.2007221456557510.1243/09544100JAERO185
    [Google Scholar]
  50. BhullarS.K. Three decades of auxetic polymers: a review.e-Polymers2015154205215
    [Google Scholar]
  51. GibsonL.J. AshbyM.F. Cellular solids: structure and properties. Oxford Pergamon Press1988
    [Google Scholar]
  52. PicklesA.P. WebberR.S. AldersonK.L. NealeP.J. EvansK.E. The effect of the processing parameters on the fabrication of auxetic polyethylene Part I The effect of compaction conditions.J. Mater. Sci.1995304059406810.1007/BF00360709
    [Google Scholar]
  53. AldersonK.L. KettleA.P. NealeP.J. PicklesA.P. EvansK.E. The effect of the processing parameters on the fabrication of auxetic polyethylene Part II The effect of sintering temperature and time.J. Mater. Sci.1995304069407510.1007/BF00360710
    [Google Scholar]
  54. NealeP.J. PicklesA.P. AldersonK.L. EvansK.E. The effects of powder morphology on the processing of auxetic polyethylene part iii the effect of extrusion conditions.J. Mater. Sci.1995304087409410.1007/BF00360712
    [Google Scholar]
  55. AldersonK.L. EvansK.E. The fabrication of micro-porous polyethylene having a negative poisson’s ratio.Polymer (Guildf.)199233204435443810.1016/0032‑3861(92)90294‑7
    [Google Scholar]
  56. PicklesA.P. AldersonK.L. EvansK.E. The effects of powder morphology on the processing of auxetic polypropylene (PP of negative Poisson’s ratio).Polym. Eng. Sci.199636563664210.1002/pen.10451
    [Google Scholar]
  57. AldersonK.L. AldersonA. WebberR.S. EvansK.E. Evidence for uniaxial drawing in the fibrillated microstructure of auxetic microporous polymers.J. Mater. Sci. Lett.1998171415141910.1023/A:1026409404057
    [Google Scholar]
  58. RaviralaN. AldersonK.L. DaviesP.J. SimkinsD.V.R. AldersonA. Negative poisson’s ratio polyester fibers.Text Res J2006767540546
    [Google Scholar]
  59. EvansK.E. CaddockB.D. Core layers. WO 91/011861991
  60. EvansK.E. Design of doubly-curved sandwich panels with honeycomb cores.Compos. Struct.19901729510.1016/0263‑8223(91)90064‑6
    [Google Scholar]
  61. AliM.N. RehmanI.U. An Auxetic structure configured as oesophageal stent with potential to be used for palliative treatment of oesophageal cancer; development and in vitro mechanical analysis.J. Mater. Sci. Mater. Med.201122112573258110.1007/s10856‑011‑4436‑y21894537
    [Google Scholar]
  62. AldersonK.L. AldersonA. SmartG. SimkinsV.R. DaviesP.J. Auxetic polypropylene fibres: Part 1. Manufacture and characterization.Plast. Rubber Compos.200231834434910.1179/146580102225006495
    [Google Scholar]
  63. RaviralaN. AldersonA. AldersonK.L. DaviesP.J. Expanding the range of auxetic polymeric products using a novel melt-spinning route.Phys. Status Solidi, B Basic Res.2005242365366410.1002/pssb.200460384
    [Google Scholar]
  64. RaviralaN. AldersonK.L. DaviesP.J. SimkinsV.R. AldersonA. Negative Poisson’s ratio polyester fibers.Text. Res. J.200676754054610.1177/0040517506065255
    [Google Scholar]
  65. LiuY.P. HuH. LamJ.K. LiuS. Negative Poisson’s ratio weft-knitted fabrics.Text. Res. J.201080985686310.1177/0040517509349788
    [Google Scholar]
  66. HuH. WangZ.Y. LiuS. Development of auxetic fabrics using flat knitting technology.Text. Res. J.201181141493150210.1177/0040517511404594
    [Google Scholar]
  67. MillerW. HookP.B. SmithC.W. WangX. EvansK.E. The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite.Compos. Sci. Technol.200969565165510.1016/j.compscitech.2008.12.016
    [Google Scholar]
  68. UgbolueS.C. WarnerS.B. KimY.K. FanQ. YangC.L. FengY. The formation and performance of auxetic textiles, NTC Project F06-MD09.2006
    [Google Scholar]
  69. UgbolueS.C. WarnerS.B. KimY.K. FanQ. YangC.L. KyzymchukO. FengY. The formation and performance of auxetic textiles, NTC Project F06-MD09.2007
    [Google Scholar]
  70. UgbolueS.C. KimY.K. WarnerS.B. FanQ. YangC.L. KyzymchukO. FengY. The formation and performance of auxetic textiles. Part I: Theoretical and technical considerations.J. Textil. Inst.2010101766066710.1080/00405000902733790
    [Google Scholar]
  71. DomaschkeS. MorelA. FortunatoG. EhretA.E. Random auxetics from buckling fibre networks.Nat. Commun.2019101486310.1038/s41467‑019‑12757‑731653833
    [Google Scholar]
  72. NotarioB. PintoJ. Rodriguez-PerezM.A. Nanoporous polymeric materials: A new class of materials with enhanced properties.Prog. Mater. Sci.2016789313910.1016/j.pmatsci.2016.02.002
    [Google Scholar]
  73. CoccorulloI. MaioL.D. MontesanoS. IncarnatoL. Theoretical and experimental study of foaming process with chain extended recycled PET.Express Polym. Lett.200832849610.3144/expresspolymlett.2009.12
    [Google Scholar]
  74. HamdiO. MighriF. RodrigueD. Piezoelectric cellular polymer films: Fabrication, properties and applications.AIMS Mater. Sci.20185584586910.3934/matersci.2018.5.845
    [Google Scholar]
  75. HamdiO. MighriF. RodrigueD. Optimization of the cellular morphology of biaxially stretched thin polyethylene foams produced by extrusion film blowing.Cell. Polym.2018374-615316810.1177/0262489318797517
    [Google Scholar]
  76. NofarM. MajithiyaK. KubokiT. ParkC.B. The foamability of low-melt strength linear polypropylene with nanoclay and coupling agent.J. Cell. Plast.201248327128710.1177/0021955X12440271
    [Google Scholar]
  77. SuhK.W. ParkC.P. MaurerM. TusimM.H. GenovaR.D. BroosR. SophieaD.P. Lightweight cellular plastics.Adv. Mater.200012231779178910.1002/1521‑4095(200012)12:23<1779::AID‑ADMA1779>3.0.CO;2‑3
    [Google Scholar]
  78. MohebbiA. MighriF. AjjiA. RodrigueD. Cellular polymer ferroelectret: A review on their development and their piezoelectric properties.Adv. Polym. Technol.201837246848310.1002/adv.21686
    [Google Scholar]
  79. HamdiO. MighriF. RodrigueD. Piezoelectric properties improvement of polyethylene ferroelectrets using post-processing treatments.Polym. Adv. Technol.2018301219
    [Google Scholar]
  80. HamdiO. MighriF. Rodrigue, Piezoelectric polymer films: synthesis, applications, and modeling.Woodhead Publishing Series in Composites Science and Engineering, Polymer Nanocomposite-Based Smart Materials.Woodhead Publishing2020791010.1016/B978‑0‑08‑103013‑4.00005‑4
    [Google Scholar]
  81. AldersonA. AldersonK. DaviesP. SmartG. Process for the preparation of auxetic foams.Patent 82777192012
  82. BianchiM. ScarpaF. BanseM. SmithC.W. Novel generation of auxetic open cell foams for curved and arbitrary shapes.Acta Mater.201159268669110.1016/j.actamat.2010.10.006
    [Google Scholar]
  83. AldersonK. AldersonA. RaviralaN. SimkinsV. DaviesP. Manufacture and characterisation of thin flat and curved auxetic foam sheets.Phys. Status Solidi, B Basic Res.201224971315132110.1002/pssb.201084215
    [Google Scholar]
  84. MartzE.O. LeeT. LakesR.S. GoelV.K. ParkJ.B. Re-entrant transformation of methods in closed cell foams, adapted from cellular polymers.1996154229249
    [Google Scholar]
  85. FanD. LiM. QiuJ. XingH. JiangZ. TangT. Novel method for preparing auxetic foam from closed-cell polymer foam based on the steam penetration and condensation process.ACS Appl. Mater. Interfaces20181026226692267710.1021/acsami.8b0233229847911
    [Google Scholar]
  86. ChoiJ.B. LakesR.S. Design of a fastener based on negative Poisson moss.Cell. Polym.1991103205212
    [Google Scholar]
  87. EgliE. Indentation of foamed plastic.J. Cell. Plast.19728524510.1177/0021955X7200800504
    [Google Scholar]
  88. GibsonL.J. AshbyM.F. Structure and properties: Cellular solids (second edition.)2014
    [Google Scholar]
  89. IstrateO.M. ChenB. Relative modulus-relative density relationships in low density polymer-clay nanocomposite foams.Soft Matter2011751840184810.1039/C0SM01052A
    [Google Scholar]
  90. TuncerE. Numerical calculations of effective elastic properties of two cellular structures.J. Phys. D Appl. Phys.200538349750310.1088/0022‑3727/38/3/023
    [Google Scholar]
  91. TuncerE. WegenerM. Elastic properties of highly anisotropic thin poly(propylene) foams.Mater. Lett.20045822-232815281810.1016/j.matlet.2004.05.002
    [Google Scholar]
  92. TitaV. CaliriM.F. Numerical simulation of anisotropic polymeric foams.Lat. Am. J. Solids Struct.20129225927910.1590/S1679‑78252012000200005
    [Google Scholar]
  93. HamdiO. MighriF. RodrigueD. Tensile properties of anisotropic foamed polyethylene films with ellipsoidal closed cells.Mech. Mater.2021163104099
    [Google Scholar]
  94. LiT. LiuF. WangL. Enhancing indentation and impact resistance in auxetic composite materials.Compos. B. Eng.202019810822910.1016/j.compositesb.2020.108229
    [Google Scholar]
  95. LakesR.S. ElmsK. Indentability of conventional and negative Poisson’s Ratio foams.J. Compos. Mater.199327121193-120210.1177/002199839302701203
    [Google Scholar]
  96. ChoiJ.B. LakesR. Non-linear properties of polymer cellular materials with a negative Poisson’s ratio.J. Mater. Sci.1992274678468410.1007/BF01166005
    [Google Scholar]
  97. ChoiJ.B. LakesR. Non-linear properties of metallic cellular materials with a negative Poisson’s ratio.J. Mater. Sci.199227537510.1007/BF02403846
    [Google Scholar]
  98. DuncanO. BaillyN. AllenT. PetitY. WagnacE. AldersonA. Effect of Compressive Strain Rate on Auxetic Foam.Appl. Sci. (Basel)2021113120710.3390/app11031207
    [Google Scholar]
  99. BezaziA. ScarpaF. Tensile fatigue of conventional and negative Poisson’s ratio open cell PU foams.Int. J. Fatigue2009313488494010.1016/j.ijfatigue.2008.05.005
    [Google Scholar]
  100. MoyersR.E. Echo cancellation method and echo canceller implementing such a process.US-61084131992
  101. CaddockB.D. EvansK.E. Negative Poisson ratios and strain-dependent mechanical properties in arterial prostheses.Biomaterials199516141109111510.1016/0142‑9612(95)98908‑W8519933
    [Google Scholar]
  102. YangW. LiZ.M. ShiW. XieB.H. YangM.B. On auxetic materials.J. Mater. Sci.200439103269327910.1023/B:JMSC.0000026928.93231.e0
    [Google Scholar]
  103. EvansK.E. AldersonK.L. Auxetic materials: the positive side of being negative.Eng. Sci. Educ. J.20009414815410.1049/esej:20000402
    [Google Scholar]
  104. HowellB. PrendergastP. HansenL. Examination of acoustic behavior of negative Poisson’s ratio materials.Appl. Acoust.199443214114810.1016/0003‑682X(94)90057‑4
    [Google Scholar]
  105. ScarpaF. CiffoL.G. YatesJ.R. Dynamic properties of high structural integrity auxetic open cell foam.Smart Mater. Struct.2004131495610.1088/0964‑1726/13/1/006
    [Google Scholar]
  106. ChekkalI. BianchiM. Remillat, C.; Bécot, F.X.; Jaouen, L.; Scarpa, F. Vibro-acoustic properties of auxetic open cell foam: model and experimental results.Acta Acust. United Acust.201096226627410.3813/AAA.918276
    [Google Scholar]
  107. AldersonA. RasburnJ. EvansK.E. GrimaJ.N. Auxetic polymeric filters display enhanced de-fouling and pressure compensation properties.Membr. Technol.200120011376810.1016/S0958‑2118(01)80299‑8
    [Google Scholar]
  108. AldersonA. RasburnJ. EvansK.E. Mass transport properties of auxetic (negative Poisson’s ratio) foams.Phys. Status Solidi, B Basic Res.2007244381782710.1002/pssb.200572701
    [Google Scholar]
  109. JiangY. LiuZ. MatsuhisaN. QiD. LeowW.R. YangH. YuJ. ChenG. LiuY. WanC. LiuZ. ChenX. Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors.Adv. Mater.20183012e170658910.1002/adma.20170658929380896
    [Google Scholar]
  110. KelkarP.U. KimH.S. ChoK-H. KwakJ.Y. KangC.Y. SongH.C. Cellular Auxetic Structures for Mechanical Metamaterials: A Review.Sensors (Basel)20202011313210.3390/s2011313232492946
    [Google Scholar]
/content/journals/caps/10.2174/2452271604666211130123921
Loading
/content/journals/caps/10.2174/2452271604666211130123921
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): auxetic; characterization; foams; modeling; Polymers; production
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test