Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

The design and characteristics of alginate biomaterial have a significant role in wound dressing and tissue regeneration. The ideal biomaterial for wound dressing must be biodegradable, biocompatible, non-inflammatory, and non-toxic.

Wound dressing should promote the re-epithelization process and protect the wound from further infection by creating a moist environment. The physical and mechanical nature of the alginate biopolymer has the potential to influence the pathophysiological mechanisms in the chronic wound. The application of this biomaterial provides ample advantages than synthetic polymers.

The wound healing process is a critical step involved in different phases. The presence of cross-linkers, various drugs along with alginate leads to a decrease in the mechanical property of dressing. Hence the choice of an effective material for dressing along with alginate is a very critical decision. The therapeutic efficacy of the alginate dressing system (film, hydrogel, wafer, etc.) is influenced by the incorporation of different materials such as bioactive agents, nanoparticles, cross-linkers, nature of the excipients, .

The ion exchange occurring between dressing and exudates results in the formation of a gel, due to the presence of glucuronic acid in alginate. This gel absorbs moisture and maintains an appropriate moist environment and actively influences the pathophysiological mechanisms of the chronic wound.

This review provides detailed knowledge to researchers to work with alginate and also knowledge about the incorporation of an appropriate material and its therapeutic efficacy in wound dressing.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271604999200518085622
2021-04-01
2024-12-25
Loading full text...

Full text loading...

References

  1. Mofazzal JahromiM.A. Sahandi ZangabadP. Moosavi BasriS.M. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing.Adv. Drug Deliv. Rev.20181231336410.1016/j.addr.2017.08.001 28782570
    [Google Scholar]
  2. World Health Organization. Violence and injury prevention, Burns.Available from: https://www.who.int/violence_injury_prevention/other_injury/burns/en/.html [Accessed March 21, 2020]
    [Google Scholar]
  3. PeckM. MolnarJ. SwartD. A global plan for burn prevention and care.Bull. World Health Organ.2009871080280310.2471/BLT.08.059733 19876549
    [Google Scholar]
  4. ChurchD. ElsayedS. ReidO. WinstonB. LindsayR. Burn wound infections.Clin. Microbiol. Rev.200619240343410.1128/CMR.19.2.403‑434.2006 16614255
    [Google Scholar]
  5. BurdA. Research in burns - Present and future.Indian J. Plast. Surg.2010439Suppl.S11S1410.4103/0970‑0358.70717 21321644
    [Google Scholar]
  6. ThomasS.J. KramerG.C. HerndonD.N. Burns: Military options and tactical solutions.J. Trauma2003545Suppl.S207S218 12768127
    [Google Scholar]
  7. HinzB. Formation and function of the myofibroblast during tissue repair.J. Invest. Dermatol.2007127352653710.1038/sj.jid.5700613 17299435
    [Google Scholar]
  8. ClaudinotS. NicolasM. OshimaH. RochatA. BarrandonY. Long-term renewal of hair follicles from clonogenic multipotent stem cells.Proc. Natl. Acad. Sci. USA200510241146771468210.1073/pnas.0507250102 16203973
    [Google Scholar]
  9. ItoM. LiuY. YangZ. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis.Nat. Med.200511121351135410.1038/nm1328 16288281
    [Google Scholar]
  10. RowanM.P. CancioL.C. ElsterE.A. Burn wound healing and treatment: Review and advancements.Crit. Care20151924310.1186/s13054‑015‑0961‑2 26067660
    [Google Scholar]
  11. American burn association. Burn incidence fact sheet. National Burn Repository 2016 [Available from:http://www.ameriburn.org/2014NBRAnnualReport.pdf[Accessed on: October 11, 2019].
  12. KaganR.J. PeckM.D. AhrenholzD.H. Surgical management of the burn wound and use of skin substitutes: An expert panel white paper.J. Burn Care Res.2013342e60e7910.1097/BCR.0b013e31827039a6 23446645
    [Google Scholar]
  13. NisanciM. EskiM. SahinI. IlganS. IsikS. Saving the zone of stasis in burns with activated protein C: An experimental study in rats.Burns201036339740210.1016/j.burns.2009.06.208 19765907
    [Google Scholar]
  14. RobinsE.V. Burn shock.Crit. Care Nurs. Clin. North Am.19902229930710.1016/S0899‑5885(18)30830‑X 2357324
    [Google Scholar]
  15. PhamT.N. CancioL.C. GibranN.S. American burn association. American burn association practice guidelines burn shock resuscitation.J. Burn Care Res.200829125726610.1097/BCR.0b013e31815f3876 18182930
    [Google Scholar]
  16. ShiraniK.Z. VaughanG.M. MasonA.D.Jr PruittB.A.Jr Update on current therapeutic approaches in burns.Shock19965141610.1097/00024382‑199601000‑00004 8821097
    [Google Scholar]
  17. RaeL. FidlerP. GibranN. The physiologic basis of burn shock and the need for Aggressive fluid resuscitation.Crit. Care Clin.201632449150510.1016/j.ccc.2016.06.001 27600122
    [Google Scholar]
  18. DriesD.J. Management of burn injuries--recent developments in resuscitation, infection control and outcomes research.Scand. J. Trauma Resusc. Emerg. Med.20091731410.1186/1757‑7241‑17‑14 19284591
    [Google Scholar]
  19. EdgarD.W. FishJ.S. GomezM. WoodF.M. Local and systemic treatments for acute edema after burn injury: A systematic review of the literature.J. Burn Care Res.201132233434710.1097/BCR.0b013e31820ab019 21252688
    [Google Scholar]
  20. SommerK. SanderA.L. AlbigM. Delayed wound repair in sepsis is associated with reduced local pro-inflammatory cytokine expression.PLoS One201389e7399210.1371/journal.pone.0073992 24086305
    [Google Scholar]
  21. HettiaratchyS. DziewulskiP. ABC of burns: Pathophysiology and types of burns.BMJ200432874531427142910.1136/bmj.328.7453.1427 15191982
    [Google Scholar]
  22. HussainA. DunnK.W. Predicting length of stay in thermal burns: A systematic review of prognostic factors.Burns20133971331134010.1016/j.burns.2013.04.026 23768707
    [Google Scholar]
  23. WilmoreD.W. LongJ.M. MasonA.D.Jr SkreenR.W. PruittB.A.Jr Catecholamines: Mediator of the hypermetabolic response to thermal injury.Ann. Surg.1974180465366910.1097/00000658‑197410000‑00031 4412350
    [Google Scholar]
  24. YangC. HillasP.J. BáezJ.A. The application of recombinant human collagen in tissue engineering.BioDrugs200418210311910.2165/00063030‑200418020‑00004 15046526
    [Google Scholar]
  25. MirM. AliM.N. BarakullahA. Synthetic polymeric biomaterials for wound healing: A review.Prog. Biomater.20187112110.1007/s40204‑018‑0083‑4 29446015
    [Google Scholar]
  26. LeeK.Y. MooneyD.J. Alginate: Properties and biomedical applications.Prog. Polym. Sci.201237110612610.1016/j.progpolymsci.2011.06.003 22125349
    [Google Scholar]
  27. Wound source. ALGICELL®Ag Antimicrobial alginate dressing. [Available from: http://www.woundsource.com/product/algicell-ag-antimicrobial-alginate-dressing.html [Accessed October 25,2019].
  28. SmithNephew. AlgiSiteM™. Available from: http://www.smithnephew.com/professional/products/advancedwoundmanagemnt/algisite-m/.html [Accessed October 25, 2019].
    [Google Scholar]
  29. ThomasS. SMTL dressings data card. Available from:http://www.dressings.org/Dressings/comfeel-plus.html[Accessed October 25, 2019].
    [Google Scholar]
  30. KALTOSTAT Calcium sodium alginate dressing.Available from: https://fsastore.com/KALTOSTATCalcium-Sodium-Alginate-Dressing-3-x-4-34-Box-of-10-P23356.aspx.html [Accessed October 25, 2019].
    [Google Scholar]
  31. Sorbsan Flat.Available from: http://www.aspenmedicaleurope. com/specialist_wound_car/sorbsan-flat/.html[Accessed October 25, 2019].
    [Google Scholar]
  32. O’MearaS. Martyn-St JamesM. AdderleyU.J. Alginate dressings for venous leg ulcers. Available from:http://eprints.whiterose.ac.uk/92499/1/O%27Meara_et_al-2015-The_Cochrane_Library.pdf.[Accessed October 03, 2019].
    [Google Scholar]
  33. SzekalskaM. PuciłowskaA. Szyma nska E, Ciosek P, Winnicka K. Alginate: Current use and future perspectives in pharmaceutical and biomedical applications.Int. J. Polym. Sci.201681211710.1155/2016/7697031
    [Google Scholar]
  34. FIBRACOL™ Plus. Collagen wound dressing with alginate. Available from: http://www.woundsource.com/product/fibracol-plus-collagen-wound-dressing-alginate[Accessed October 03,2019].
  35. Trombo guard®. Available from:http://matopat.ro/wpcontent/uploads/sites/2/2013/12/tromboguardleaflet.pdf[Accessed October 03, 2019]
  36. ThomasS. Alginate dressings in surgery and wound management--Part 1.J. Wound Care200092566010.12968/jowc.2000.9.2.26338 11933281
    [Google Scholar]
  37. SahanaT.G. RekhaP.D. Biopolymers: Applications in wound healing and skin tissue engineering.Mol. Biol. Rep.20184562857286710.1007/s11033‑018‑4296‑3 30094529
    [Google Scholar]
  38. GeorgeM. AbrahamT.E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan--a review.J. Control. Release2006114111410.1016/j.jconrel.2006.04.017 16828914
    [Google Scholar]
  39. O’MearaS. Martyn-St JamesM. AdderleyU.J. Alginate dressings for venous leg ulcers.Cochrane Database Syst. Rev.20158CD010182 26286189
    [Google Scholar]
  40. PiacquadioD. NelsonD.B. Alginates. A “new” dressing alternative.J. Dermatol. Surg. Oncol.1992181199299510.1111/j.1524‑4725.1992.tb02773.x 1430558
    [Google Scholar]
  41. SuzukiY. TaniharaM. NishimuraY. In vivo evaluation of a novel alginate dressing.J. Biomed. Mater. Res.199948452252710.1002/(SICI)1097‑4636(1999)48:4<522:AID‑JBM18>3.0.CO;2‑O 10421696
    [Google Scholar]
  42. LalauJ.D. BressonR. CharpentierP. Efficacy and tolerance of calcium alginate versus vaseline gauze dressings in the treatment of diabetic foot lesions.Diabetes Metab.2002283223229 12149603
    [Google Scholar]
  43. YangD. JonesK.S. Effect of alginate on innate immune activation of macrophages.J. Biomed. Mater. Res. A200990241141810.1002/jbm.a.32096 18523947
    [Google Scholar]
  44. AderibigbeB.A. BuyanaB. Alginate in wound dressings.Pharmaceutics20181024210.3390/pharmaceutics10020042 29614804
    [Google Scholar]
  45. WiegandC. HeinzeT. HiplerU.C. Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate.Wound Repair Regen.200917451152110.1111/j.1524‑475X.2009.00503.x 19614916
    [Google Scholar]
  46. QinY. Silver-containing alginate fibres and dressings.Int. Wound J.20052217217610.1111/j.1742‑4801.2005.00101.x 16722867
    [Google Scholar]
  47. OnsøyenE. Alginates. In: Imeson A.P. Eds Thickening and gelling agents for Food. Boston: Springer 1997; pp. 1-24.10.1007/978‑1‑4615‑2197‑6_2
  48. Hoseinpour NajarM. MinaiyanM. TaheriA. Preparation and in vivo evaluation of a novel gel-based wound dressing using arginine-alginate surface-modified chitosan nanofibers.J. Biomater. Appl.201832668970110.1177/0885328217739562 29119880
    [Google Scholar]
  49. HoffmanAS Hydrogels for biomedical applications.Adv DrugDeliv Rev 2012; 64(sup): 18-23.10.1016/j.addr.2012.09.010
    [Google Scholar]
  50. KoehlerJ. BrandlF.P. GoepferichA.M. hydrogel wound dressings for bioactive treatment of acute and chronic wounds.Eur. Polym. J.201710011110.1016/j.eurpolymj.2017.12.046
    [Google Scholar]
  51. QureshiD. NayakS.K. MajiS. AnisA. KimD. Environment sensitive hydrogels for drug delivery applications.Eur. Polym. J.201912010922010.1016/j.eurpolymj.2019.109220
    [Google Scholar]
  52. SchuurmanW. LevettP.A. PotM.W. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs.Macromol. Biosci.201313555156110.1002/mabi.201200471 23420700
    [Google Scholar]
  53. WathoniN. MotoyamaK. HigashiT. OkajimaM. KanekoT. ArimaH. Physically crosslinked-sacran hydrogel films for wound dressing application.Int. J. Biol. Macromol.20168946547010.1016/j.ijbiomac.2016.05.006 27151668
    [Google Scholar]
  54. SaaraiA. SedlacekT. KasparkovaV. KitanoT. SahaP. On the characterization of sodium alginate/gelatine-based hydrogels for wound dressing.J. Mech. Behav. Biomed. Mater.20131815216610.1016/j.jmbbm.2012.11.010 23274732
    [Google Scholar]
  55. SaaraiA. KasparkovaV. SedlacekT. SahaP. A comparative study of crosslinked sodium alginate/gelatin hydrogels for wound dressing.Proceedings of the 4th WSEAS International Conference on Energy and Development 2011 July; Corfu Island. Greece.
    [Google Scholar]
  56. StracciaM.C. d’AyalaG.G. RomanoI. OlivaA. LaurienzoP. Alginate hydrogels coated with chitosan for wound dressing.Mar. Drugs20151352890290810.3390/md13052890 25969981
    [Google Scholar]
  57. RaposioE. LibondiG. BertozziN. GrignaffiniE. GriecoM.P. Effects of topic simvastatin for the treatment of chronic vascular cutaneous ulcers: A pilot study.J. Am. Coll. Clin. Wound Spec.201671-3131810.1016/j.jccw.2016.06.001 28053863
    [Google Scholar]
  58. ZhouZ. ChenJ. PengC. Fabrication and physical properties of gelatin/sodium alginate/hyaluronic acid composite wound dressing hydrogel.J Macromol Sci Part A201451431832510.1080/10601325.2014.882693
    [Google Scholar]
  59. MominM. KurhadeS. KhanekarP. MhatreS. Novel biodegradable hydrogel sponge containing curcumin and honey for wound healing.J. Wound Care201625636437210.12968/jowc.2016.25.6.364 27286671
    [Google Scholar]
  60. DhivyaS. PadmaV.V. SanthiniE. Wound dressings - a review.Biomedicine (Taipei)2015542210.7603/s40681‑015‑0022‑9 26615539
    [Google Scholar]
  61. JiangQ. ChenZ.H. WangS.B. ChenX.D. Comparative effectiveness of different wound dressings for patients with partial-thickness burns: Study protocol of a systematic review and a Bayesian framework network meta-analysis.BMJ Open201773e01328910.1136/bmjopen‑2016‑013289 28336737
    [Google Scholar]
  62. SoodA. GranickM.S. TomaselliN.L. Wound dressings and comparative effectiveness data.Adv. Wound Care (New Rochelle)20143851152910.1089/wound.2012.0401 25126472
    [Google Scholar]
  63. LiakosI. RizzelloL. ScurrD.J. PompaP.P. BayerI.S. AthanassiouA. All-natural composite wound dressing films of essential oils encapsulated in sodium alginate with antimicrobial properties.Int. J. Pharm.2014463213714510.1016/j.ijpharm.2013.10.046 24211443
    [Google Scholar]
  64. PereiraR. CarvalhoA. VazD.C. GilM.H. MendesA. BártoloP. Development of novel alginate based hydrogel films for wound healing applications.Int. J. Biol. Macromol.20135222123010.1016/j.ijbiomac.2012.09.031 23059189
    [Google Scholar]
  65. DantasM.D. CavalcanteD.R. AraújoF.E. Improvement of dermal burn healing by combining sodium alginate/chitosan-based films and low level laser therapy.J. Photochem. Photobiol. B20111051515910.1016/j.jphotobiol.2011.06.009 21803596
    [Google Scholar]
  66. PereiraR. TojeiraA. VazD.C. MendesA. BártoloP. Preparation and characterization of films based on alginate and Aloe vera.Int J Polym Anal Charact201116744946410.1080/1023666X.2011.599923
    [Google Scholar]
  67. XieH ChenX Preparation of chitosan-collagen-alginate composite dressing and its promoting effects on wound healing. Int J Biol Macromol 2018; 107(A): 93-104.
    [Google Scholar]
  68. RezvanianM. AminM.C.I.M. NgS.F. Development and physicochemical characterization of alginate composite film loaded with simvastatin as a potential wound dressing.Carbohydr. Polym.201613729530410.1016/j.carbpol.2015.10.091 26686133
    [Google Scholar]
  69. LeeS.M. ParkI.K. KimY.S. Physical, morphological, and wound healing properties of a polyurethane foam-film dressing.Biomater. Res.2016201510.1186/s40824‑016‑0063‑5 27274861
    [Google Scholar]
  70. WoundEducators.com Foam dressings. [Available from:https://woundeducators.com/foam-dressings [Accessed October 23, 2019]
  71. WangY. FengY. YaoJ. Construction of hydrophobic alginate-based foams induced by zirconium ions for oil and organic solvent cleanup.J. Colloid Interface Sci.201953318218910.1016/j.jcis.2018.08.073 30153595
    [Google Scholar]
  72. HeggeA.B. AndersenT. MelvikJ.E. BruzellE. KristensenS. TønnesenH.H. Formulation and bacterial phototoxicity of curcumin loaded alginate foams for wound treatment applications: Studies on curcumin and curcuminoides XLII.J. Pharm. Sci.2011100117418510.1002/jps.22263 20575064
    [Google Scholar]
  73. Valerón BerghV.J. JohannessenE. AndersenT. TønnesenH.H. Evaluation of porphyrin loaded dry alginate foams containing poloxamer 407 and β-cyclodextrin-derivatives intended for wound treatment.Pharm. Dev. Technol.201823876177010.1080/10837450.2017.1314492 28359224
    [Google Scholar]
  74. CostaJ.S.R. de Oliveira CruvinelK. Oliveira-NascimentoL. A mini-review on drug delivery through wafer technology: Formulation and manufacturing of buccal and oral lyophilizates.J. Adv. Res.20192011334110.1016/j.jare.2019.04.010 31193385
    [Google Scholar]
  75. LipskyB.A. HoeyC. Topical antimicrobial therapy for treating chronic wounds.Clin. Infect. Dis.200949101541154910.1086/644732 19842981
    [Google Scholar]
  76. AkiyodeO. BoatengJ. Composite biopolymer-based wafer dressings loaded with microbial biosurfactants for potential application in chronic wounds.Polymers (Basel)201810891810.3390/polym10080918 30960843
    [Google Scholar]
  77. AhmedA. GettiG. BoatengJ. Ciprofloxacin-loaded calcium alginate wafers prepared by freeze-drying technique for potential healing of chronic diabetic foot ulcers.Drug Deliv. Transl. Res.2018861751176810.1007/s13346‑017‑0445‑9 29134555
    [Google Scholar]
  78. LabovitiadiO. LambA.J. MatthewsK.H. Lyophilised wafers as vehicles for the topical release of chlorhexidine digluconate--release kinetics and efficacy against Pseudomonas aeruginosa.Int. J. Pharm.20124391-215716410.1016/j.ijpharm.2012.10.017 23085374
    [Google Scholar]
  79. MatthewsK.H. StevensH.N. AuffretA.D. HumphreyM.J. EcclestonG.M. Gamma-irradiation of lyophilised wound healing wafers.Int. J. Pharm.20063131-2788610.1016/j.ijpharm.2006.01.023 16503387
    [Google Scholar]
  80. BoatengJ. Burgos-AmadorR. OkekeO. PawarH. Composite alginate and gelatin based bio-polymeric wafers containing silver sulfadiazine for wound healing.Int. J. Biol. Macromol.201579637110.1016/j.ijbiomac.2015.04.048 25936500
    [Google Scholar]
  81. YeK. KuangH. YouZ. MorsiY. MoX. Electrospun nanofibers for tissue engineering with drug loading and release.Pharmaceutics201911418210.3390/pharmaceutics11040182 30991742
    [Google Scholar]
  82. VasitaR. KattiD.S. Nanofibers and their applications in tissue engineering.Int. J. Nanomedicine200611153010.2147/nano.2006.1.1.15 17722259
    [Google Scholar]
  83. KhajaviR. AbbasipourM. BahadorA. Electrospun biodegradable nanofibers scaffolds for bone tissue engineering.J. Appl. Polym. Sci.201513334288310.1002/app.42883]
    [Google Scholar]
  84. DoshiJ. RenekerD.H. Electospinning process and application of electrospun fibers.J. Electrost.19953515116010.1016/0304‑3886(95)00041‑8
    [Google Scholar]
  85. ManoukianO.S. MattaR. LetendreJ. CollinsP. MazzoccaA.D. KumbarS.G. Electrospun nanofiber scaffolds and their hydrogel composites for the engineering and regeneration of soft tissues.Methods Mol. Biol.2017157026127810.1007/978‑1‑4939‑6840‑4_18 28238143
    [Google Scholar]
  86. PaduraruA. GhitulicaC. TruscaR. Antimicrobial Wound dressings as potential materials for skin tissue regeneration.Materials (Basel)20191211185910.3390/ma12111859 31181760
    [Google Scholar]
  87. PercivalS.L. SloneW. LintonS. OkelT. CorumL. ThomasJ.G. The antimicrobial efficacy of a silver alginate dressing against a broad spectrum of clinically relevant wound isolates.Int. Wound J.20118323724310.1111/j.1742‑481X.2011.00774.x 21470369
    [Google Scholar]
  88. HuC. GongR.H. ZhouF.L. Electrospun sodium alginate/polyethylene oxide fibers and nanocoated yarns.Int. J. Polym. Sci.2015201511210.1155/2015/126041
    [Google Scholar]
  89. JeongS.I. KrebsM.D. BoninoC.A. KhanS.A. AlsbergE. Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering.Macromol. Biosci.201010893494310.1002/mabi.201000046 20533533
    [Google Scholar]
  90. HajialiH. SummaM. RussoD. Alginate-lavender nanofibers with antibacterial and anti-inflammatory activity to effectively promote burn healing.J. Mater. Chem. B Mater. Biol. Med.2016491686169510.1039/C5TB02174J 32263019
    [Google Scholar]
  91. SobhanianP. KhorramM. HashemiS.S. MohammadiA. Development of nanofibrous collagen-grafted poly (vinyl alcohol)/gelatin/alginate scaffolds as potential skin substitute.Int. J. Biol. Macromol.201913097798710.1016/j.ijbiomac.2019.03.045 30851329
    [Google Scholar]
  92. CoşkunG. KaracaE. OzyurtluM. OzbekS. YermezlerA. CavuşoğluI. Histological evaluation of wound healing performance of electrospun poly(vinyl alcohol)/sodium alginate as wound dressing in vivo.Biomed. Mater. Eng.20142421527153610.3233/BME‑130956 24642979
    [Google Scholar]
  93. Ustünda˘gG.C. ÖzbekS. KaracaE. Çavu so glu I. In vivo evaluation of electrospun poly (vinyl alcohol)/sodium alginate nanofibrousmat as wound dressing.Tekstil ve Konfeksiyon201020290298
    [Google Scholar]
  94. Drug development and delivery. Topical delivery- The importance of the right formulation in topical drug development. Available from:http://drug-dev.com/topical-delivery-the-importance-of-the-right-formulation-in-topical-drug-development/[Accessed December 22, 2019].
  95. MirzaeiB. EtemadianS. GoliH.R. Construction and analysis of alginate-based honey hydrogel as an ointment to heal of rat burn wound related infections.Int. J. Burns Trauma2018848897 30245913
    [Google Scholar]
  96. AhmedM.M. JahangirM.A. SaleemM.A. KazmiI. BhavaniP.D. MuheemA. Formulation and evaluation of fucidin topical gel containing wound healing modifiers.Am J Pharm Tech Res 2015; 5(10): 232-42. Available From:http://www.ajptr.com/
    [Google Scholar]
  97. DhaliwalK LopezN Hydrogel dressings and their application in burn wound care.Br J Community Nurs 2018; 23(Sup9): S24-7.10.12968/bjcn.2018.23.Sup9.S24
    [Google Scholar]
  98. CatanzanoO. D’EspositoV. FormisanoP. BoatengJ.S. QuagliaF. composite alginate-hyaluronan sponges for the delivery of tranexamic acid in postextractive alveolar wounds.J. Pharm. Sci.2018107265466110.1016/j.xphs.2017.09.026 28987501
    [Google Scholar]
  99. SmithA.M. MoxonS. MorrisG.A. Biopolymers as wound healing materials.In: Agren MS, Ed. Wound Healing Biomaterials. Woodhead Publishing2016Vol. 2261287
    [Google Scholar]
  100. HamediH. MoradiS. HudsonS.M. TonelliA.E. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review.Carbohydr. Polym.201819944546010.1016/j.carbpol.2018.06.114 30143150
    [Google Scholar]
  101. OryanA SahviehS Effectiveness of chitosan scaffold in skin, bone and cartilage healing. Int J Biol Macromol 2017; 104(Pt A):1003-11.10.1016/j.ijbiomac.2017.06.124
    [Google Scholar]
  102. Naseri-NosarM. ZioraZ.M. Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based composites.Carbohydr. Polym.201818937939810.1016/j.carbpol.2018.02.003 29580422
    [Google Scholar]
  103. BoatengJ.S. MatthewsK.H. StevensH.N. EcclestonG.M. Wound healing dressings and drug delivery systems: A review.J. Pharm. Sci.20089782892292310.1002/jps.21210 17963217
    [Google Scholar]
  104. Lara-EspinozaC. Elizabeth Carvajal-MillánI.D. Balandrán-QuintanaR. Yolanda López-FrancoI.D. Agustín rascón-chu. Pectin and pectin-based composite materials: Beyond food texture.Molecules20182394210.3390/molecules23040942
    [Google Scholar]
  105. HussainZ. ThuH.E. ShuidA.N. KatasH. HussainF. Recent advances in polymer-based wound dressings for the treatment of diabetic foot ulcer: An overview of state-of-the-art.Curr. Drug Targets201819552755010.2174/1389450118666170704132523 28676002
    [Google Scholar]
  106. TracyL.E. MinasianR.A. CatersonE.J. Extracellular Matrix and dermal fibroblast function in the healing wound.Adv. Wound Care (New Rochelle)20165311913610.1089/wound.2014.0561 26989578
    [Google Scholar]
/content/journals/caps/10.2174/2452271604999200518085622
Loading
/content/journals/caps/10.2174/2452271604999200518085622
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test