Skip to content
2000
Volume 4, Issue 2
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

In the last decades, the prevalence of obesity showed a significant increase in several countries. This fact is very worrying since there is an association between obesity and metabolic alterations, such as type II diabetes, hypertension, cardiovascular diseases, some types of cancer, and glucose intolerance. Knowledge of causes, preventive strategies, and treatment have been objects of studies by researchers in several centers.

The present paper aims to review some studies addressing the increase in the prevalence and incidence of obesity, diseases related to overweight, and procedures to reduce body fat. The primary focus of the presented work is the use of polymer systems as an alternative to the conventional pharmacological treatment of obesity, exploiting the natural and synthetic polymer systems that have excellent efficiency and can promote improvement to the existing therapies.

The use of polymers presents the growing relevance as a new therapy and to the improvement of existing treatments. Among the polymers studied in the treatment of obesity, natural polymers such as chitosan and alginate have gained prominence. Synthetic polymer systems such as poly (ε-caprolactone) and poly (lactide-co-glycolide) were also studied for the treatment of obesity.

This mini-review reflects exclusive strategies that point out to polymers that can be an alternative to conventional pharmacological treatments or even as occupants in the treatment of obesity. Besides, we do believe that the most profound union between Polymers and Medical Science will allow us to mitigate this disease and all associated conditions, improving the quality of life, mainly of the poor populations from emerging countries.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271604999210104222642
2021-08-01
2025-01-10
Loading full text...

Full text loading...

References

  1. AlipoorE. Hosseinzadeh-AttarMJ. RezaeiM. JazayeriS. ChapmanM White adipose tissue browning in critical illness: A review of the evidence, mechanisms and future perspectives.Obes Rev20202112e1308510.1111/obr.1308532608573
    [Google Scholar]
  2. AlsubhiM. GoldthorpeJ. EptonT. KhanomS. PetersS What factors are associated with obesity-related health behaviours among child refugees following resettlement in developed countries? A systematic review and synthesis of qualitative and quantitative evidence.Obes Rev20202111e1305810.1111/obr.1305832608177
    [Google Scholar]
  3. PilitsiE. FarrO.M. PolyzosS.A. PerakakisN. Nolen-DoerrE. PapathanasiouA-E. MantzorosC.S. Pharmacotherapy of obesity: Available medications and drugs under investigation.Metabolism20199217019210.1016/j.metabol.2018.10.01030391259
    [Google Scholar]
  4. UmashankerD. IgelL.I. KumarR.B. AronneL.J. Current and future medical treatment of obesity.Gastrointest. Endosc. Clin. N. Am.201727218119010.1016/j.giec.2016.12.00828292399
    [Google Scholar]
  5. DonninelliG. Del CornòM. PierdominiciM. ScazzocchioB. VarìR. VaranoB. PacellaI. PiconeseS. BarnabaV. D’ArchivioM. MasellaR. ContiL. GessaniS. Distinct blood and visceral adipose tissue regulatory T cell and innate lymphocyte profiles characterize obesity and colorectal cancer.Front. Immunol.2017864310.3389/fimmu.2017.0064328649243
    [Google Scholar]
  6. MuanprasatC. ChatsudthipongV. Chitosan oligosaccharide: Biological activities and potential therapeutic applications.Pharmacol. Ther.2017170809710.1016/j.pharmthera.2016.10.01327773783
    [Google Scholar]
  7. ValsamakisG. KonstantakouP. MastorakosG. New targets for drug treatment of obesity.Annu. Rev. Pharmacol. Toxicol.20175758560510.1146/annurev‑pharmtox‑010716‑10473528061687
    [Google Scholar]
  8. LavieC.J. MilaniR.V. VenturaH.O. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss.J. Am. Coll. Cardiol.200953211925193210.1016/j.jacc.2008.12.06819460605
    [Google Scholar]
  9. LainasP. De FilippoG. Di GiuroG. MikhaelR. BougneresP. DagherI. Laparoscopic sleeve gastrectomy for adolescents under 18 years old with severe obesity.Obes. Surg.202030126727310.1007/s11695‑019‑04150‑631520302
    [Google Scholar]
  10. RychterA.M. ZawadaA. RatajczakA.E. DobrowolskaA. Krela-KaźmierczakI. Should patients with obesity be more afraid of COVID-19?Obes. Rev.2020219e1308310.1111/obr.1308332583537
    [Google Scholar]
  11. FinerN. GarnettS.P. BruunJ.M. COVID-19 and obesity.Clin. Obes.2020103e1236510.1111/cob.1236532342637
    [Google Scholar]
  12. CaiQ. ChenF. WangT. LuoF. LiuX. WuQ. HeQ. WangZ. LiuY. LiuL Obesity and COVID-19 severity in a designated hospital in Shenzhen, China.Diabetes Care20204371392139810.2337/dc20‑057632409502
    [Google Scholar]
  13. DietzW. Santos-BurgoaC. Obesity and its implications for COVID-19 mortality.Obesity (Silver Spring)20202861005100510.1002/oby.2281832237206
    [Google Scholar]
  14. LighterJ. PhillipsM. HochmanS. SterlingS. JohnsonD. FrancoisF. StachelA. Stachel, A Obesity in patients younger than 60 years is a risk factor for Covid-19 hospital admission.Clin. Infect. Dis.2020711589689710.1093/cid/ciaa41532271368
    [Google Scholar]
  15. PostA. BakkerSJ. DullaartRP Obesity, adipokines and COVID-19.Eur J Clin Invest202050e1331310.1111/eci.1331332531806
    [Google Scholar]
  16. KassirR. Risk of COVID-19 for patients with obesity.Obes. Rev.2020216e1303410.1111/obr.1303432281287
    [Google Scholar]
  17. KimJ.D. DianoS. A sympathetic treatment for obesity.Cell Metab.20203161043104510.1016/j.cmet.2020.05.00932492388
    [Google Scholar]
  18. XiaQ. CampbellJ.A. AhmadH. SiL. de GraaffB. PalmerA.J. Bariatric surgery is a cost-saving treatment for obesity-A comprehensive meta-analysis and updated systematic review of health economic evaluations of bariatric surgery.Obes. Rev.2020211e1293210.1111/obr.1293231733033
    [Google Scholar]
  19. JoyceP. MeolaT.R. SchultzH.B. PrestidgeC.A. Biomaterials that regulate fat digestion for the treatment of obesity.Trends Food Sci Technol202010023524510.1016/j.tifs.2020.04.011
    [Google Scholar]
  20. GasmiA. MujawdiyaP.K. ShanaidaM. OngenaeA. LysiukR. DoşaM.D. TsalO. PiscopoS. ChirumboloS. BjørklundG. Calanus oil in the treatment of obesity-related low-grade inflammation, insulin resistance, and atherosclerosis.Appl. Microbiol. Biotechnol.2020104396797910.1007/s00253‑019‑10293‑431853565
    [Google Scholar]
  21. BhandariM. JainS. MathurW. KostaS. NetoM.G. BrunaldiV.O. FobiM. Endoscopic sleeve gastroplasty is an effective and safe minimally invasive approach for treatment of obesity: First Indian experience.Dig. Endosc.202032454154610.1111/den.1350831394006
    [Google Scholar]
  22. KillionE.A. LuS-C. FortM. YamadaY. VéniantM.M. LloydD.J. Glucose-dependent insulinotropic polypeptide receptor therapies for the treatment of obesity, do agonists= antagonists?Endocr. Rev.202041112110.1210/endrev/bnz00231511854
    [Google Scholar]
  23. WaddenT.A. TronieriJ.S. ButrynM.L. Lifestyle modification approaches for the treatment of obesity in adults.Am. Psychol.202075223525110.1037/amp000051732052997
    [Google Scholar]
  24. BielawiecP. Harasim-SymborE. ChabowskiA. Phytocannabinoids: Useful drugs for the treatment of obesity? Special focus on cannabidiol.Front. Endocrinol. (Lausanne)20201111410.3389/fendo.2020.0011432194509
    [Google Scholar]
  25. HeffronS.P. ParhamJ.S. PendseJ. AlemánJ.O. Treatment of obesity in mitigating metabolic risk.Circ. Res.2020126111646166510.1161/CIRCRESAHA.119.31589732437303
    [Google Scholar]
  26. KakazuM.T. SoghierI. AfsharM. BrozekJ.L. WilsonK.C. MasaJ.F. MokhlesiB. Weight loss interventions as treatment of obesity hypoventilation syndrome. A systematic review.Ann. Am. Thorac. Soc.202017449250210.1513/AnnalsATS.201907‑554OC31978317
    [Google Scholar]
  27. SpindolaK.C. SimasN.K. SantosCE dos. SilvaAG da. RomãoW. VaniniG. da SilvaSR. BorgesGR. F.G.Souza Jr. KusterRMr. Dendranthema grandiflorum, a hybrid ornamental plant, is a source of larvicidal compounds against Aedes aegypti larvae.Rev. Bras. Farmacogn.201626334234610.1016/j.bjp.2016.01.003
    [Google Scholar]
  28. de Araújo SeguraT.C. PereiraE.D. IcartL.P. FernandesE. Esperandio de OliveiraG. de Souza JrF.G. Hyperthermic agent prepared by one-pot modification of maghemite using an aliphatic polyester model.Polym. Sci. Ser. B201860680681510.1134/S1560090418060106
    [Google Scholar]
  29. PereiraE.D. SouzaF.G. SantanaC.I. SoaresD.Q. LemosA.S. MenezesL.R. Influence of magnetic field on the dissolution profile of cotrimoxazole inserted into poly(lactic acid-co-glycolic acid) and maghemite nanocomposites.Polym Eng Sci201353112308231710.1002/pen.23606
    [Google Scholar]
  30. PereiraED. CerrutiR. FernandesE. PeñaL. SaezV. PintoJC. RamónJA. OliveiraGE. Influence of PLGA and PLGA-PEG on the dissolution profile of oxaliplatin.Polímeros201626213714310.1590/0104‑1428.2323
    [Google Scholar]
  31. LangeJ. SouzaFG.Jr NeleM. TavaresFW. SegtovichISV. da SilvaGCQ. Molecular dynamic simulation of oxaliplatin diffusion in poly(lactic acid-co-glycolic acid). Part A: Parameterization and validation of the force-field CVFF.Macromol Theory Simul2015251456210.1002/MATS.201500049
    [Google Scholar]
  32. IcartL.P. SantosE.F.D. LuztonóL. Paclitaxel-loaded PLA/PEG/magnetite anticancer and hyperthermic agent prepared from materials obtained by the Ugi’s multicomponent reaction.Macromol. Symp.20183801180009410.1002/masy.201800094
    [Google Scholar]
  33. IcartL. SouzaF.G.Jr. RamónJ. PLA-b-PEG/magnetite hyperthermic agent prepared by ugi four component condensation.Express Polym. Lett.201610318820310.3144/expresspolymlett.2016.18
    [Google Scholar]
  34. BestetiM.D. SouzaF.G.Jr FreireD.M.G. PintoJ.C. Production of core-shell polymer particles-containing cardanol by semibatch combined suspension/emulsion polymerization.Polym. Eng. Sci.20145451222122910.1002/pen.23660
    [Google Scholar]
  35. SaezV. CerrutiR. RamónJ.A. FernandesE. Quantification of oxaliplatin encapsulated into PLGA microspheres by TGA.Macromol. Symp.201636811612110.1002/masy.201500181
    [Google Scholar]
  36. IcartL.P. SouzaF.G. LimaL.M. Sustained release and pharmacologic effects of human glucagon-like peptide-1 and liraglutide from polymeric microparticles.bioRxiv201936874775810.1080/02652048.2019.167779531594428
    [Google Scholar]
  37. MohamedG.A. IbrahimS.R.M. ElkhayatE.S. El DineRS. Natural anti-obesity agents.Bull. Fac. Pharm. Cairo Univ.201452226928410.1016/j.bfopcu.2014.05.001
    [Google Scholar]
  38. GalloM. NaviglioD. Armone CarusoA. FerraraL. 13 - Applications of chitosan as a functional food. In Grumezescu AM, Ed. Novel Approaches of Nanotechnology in Food Nanotechnology in the Agri-Food Industry, Vol 1. US: Elsevier, Academic Press 2016; pp. 425-64.
  39. BauerE.M. Ben-ArtziA. DuffyE.L. ElashoffD.A. VangalaS.S. FitzgeraldJ. RanganathV.K. Joint-specific assessment of swelling and power doppler in obese rheumatoid arthritis patients.BMC Musculoskelet. Disord.20171819910.1186/s12891‑017‑1406‑728259162
    [Google Scholar]
  40. DaneschvarH.L. AronsonM.D. SmetanaG.W. FDA-approved anti-obesity drugs in the United States.Am. J. Med.20161298879.e1879.e610.1016/j.amjmed.2016.02.00926949003
    [Google Scholar]
  41. LeeK.Y. MooneyD.J. Alginate: properties and biomedical applications.Prog. Polym. Sci.201237110612610.1016/j.progpolymsci.2011.06.00322125349
    [Google Scholar]
  42. NurdiantamiY. WatanabeK. TanakaE. PradonoJ. AnmeT. Association of general and central obesity with hypertension.Clin. Nutr.20183741259126310.1016/j.clnu.2017.05.01228583324
    [Google Scholar]
  43. GomezG. StanfordF.C. US health policy and prescription drug coverage of FDA-approved medications for the treatment of obesity.Int. J. Obes.201842349550010.1038/ijo.2017.28729151591
    [Google Scholar]
  44. ReynésB. SerranoA. PetrovP.D. RibotJ. ChetritC. Martínez-PuigD. BonetM.L. PalouA. Anti-obesity and insulin-sensitising effects of a glycosaminoglycan mix.J. Funct. Foods20162635036210.1016/j.jff.2016.07.022
    [Google Scholar]
  45. KushnerR.F. HerringtonH. Surgery for severe obesity. CoulstonA.M. BousheyC.J. FerruzziM.G. DelahantyL.M. Nutrition in the prevention and treatment of disease3rd ed.USAcademic Press2017499514
    [Google Scholar]
  46. RyanDH. HerringtonH. Guidelines for obesity management.Endocrinol Metab Clin201645350151010.1016/j.ecl.2016.04.003
    [Google Scholar]
  47. MathieuP. BoulangerM-C. DesprésJ.P. Ectopic visceral fat: a clinical and molecular perspective on the cardiometabolic risk.Rev. Endocr. Metab. Disord.201415428929810.1007/s11154‑014‑9299‑325326657
    [Google Scholar]
  48. AlmeidaM.A. NadalJ.M. GrassiolliS. PaludoK.S. ZawadzkiS.F. CruzL. PaulaJ.P. FaragoP.V. Enhanced gastric tolerability and improved anti-obesity effect of capsaicinoids-loaded PCL microparticles.Mater. Sci. Eng. C20144034535610.1016/j.msec.2014.03.04924857502
    [Google Scholar]
  49. OestreichA.K. MoleyK.H. Developmental and transmittable origins of obesity-associated health disorders.Trends Genet.201733639940710.1016/j.tig.2017.03.00828438343
    [Google Scholar]
  50. RevelsS. KumarS.A.P. Ben-AssuliO. Predicting obesity rate and obesity-related healthcare costs using data analytics.Health Policy Technol.20176219820710.1016/j.hlpt.2017.02.002
    [Google Scholar]
  51. AcostaA. CamilleriM. A working paradigm for the treatment of obesity in gastrointestinal practice.Tech. Gastrointest. Endosc.2017191526010.1016/j.tgie.2017.01.00328936110
    [Google Scholar]
  52. YuanD. YiX. ZhaoY. PoonC-D. BullockK.M. HansenK.M. SalamehT.S. FarrS.A. BanksW.A. KabanovA.V. Intranasal delivery of N-terminal modified leptin-pluronic conjugate for treatment of obesity.J. Control. Release201726317218410.1016/j.jconrel.2017.03.02928344017
    [Google Scholar]
  53. KurisuS. IkenagaH. WatanabeN. HigakiT. ShimonagaT. IshibashiK. DohiY. FukudaY. KiharaY. Electrocardiographic characteristics in the underweight and obese in accordance with the World Health Organization classification.IJC Metab. Endocr.20159616510.1016/j.ijcme.2015.10.006
    [Google Scholar]
  54. Gómez-HernándezA. BeneitN. Díaz-CastroverdeS. EscribanoO. Differential role of adipose tissues in obesity and related metabolic and vascular complications.Int J Endocrinol201620161216783 https://www.hindawi.com/journals/ije/2016/1216783/
    [Google Scholar]
  55. HerreraR.M.A. Fernández-GarcíaJ.M. AndújarC.R. AltozanoS.C. CarpiU.J.J. Tratamiento farmacológico de la obesidad para médicos de Atención Primaria Pharmacological treatment of obesity for primary care physicians.Med Fam SEMERGEN201945855956510.1016/j.semerg.2019.04.005
    [Google Scholar]
  56. WasinskiF. FrankR.P.B. RufinoG.E. Exercise during pregnancy protects adult mouse offspring from diet-induced obesity.Nutr Metab (Lond)201512566165 https://nutritionandmetabolism.biomedcentral.com/articles/10.1186/s12986-015-0052-z
    [Google Scholar]
  57. WilcoxM.D. BrownleeI.A. RichardsonJ.C. DettmarP.W. PearsonJ.P. The modulation of pancreatic lipase activity by alginates.Food Chem.201414647948410.1016/j.foodchem.2013.09.07524176371
    [Google Scholar]
  58. JiangC. Cano-VegaM.A. YueF. KuangL. NarayananN. UzunalliG. MerkelM.P. KuangS. DengM. Dibenzazepine-loaded nanoparticles induce local browning of white adipose tissue to counteract obesity.Mol. Ther.20172571718172910.1016/j.ymthe.2017.05.02028624262
    [Google Scholar]
  59. HeM. ZengJ. ZhaiL. LiuY. WuH. ZhangR. LiZ. XiaE. Effect of in vitro simulated gastrointestinal digestion on polyphenol and polysaccharide content and their biological activities among 22 fruit juices.Food Res. Int.201710215616210.1016/j.foodres.2017.10.00129195935
    [Google Scholar]
  60. ZhaoX-H. LinY. Resistant starch prepared from high-amylose maize starch with citric acid hydrolysis and its simulated fermentation in vitro.Eur. Food Res. Technol.20092281015102110.1007/s00217‑009‑1012‑5
    [Google Scholar]
  61. QiJ. LiY. YokoyamaW. MajeedH. MasambaK.G. ZhongF. MaJ. Cellulosic fraction of rice bran fibre alters the conformation and inhibits the activity of porcine pancreatic lipase.J. Funct. Foods201519394810.1016/j.jff.2015.09.012
    [Google Scholar]
  62. YiX. KabanovA.V. Brain delivery of proteins via their fatty acid and block copolymer modifications.J. Drug Target.2013211094095510.3109/1061186X.2013.84709824160902
    [Google Scholar]
  63. PaulusA. van Marken LichtenbeltW. MottaghyF.M. BauwensM. Brown adipose tissue and lipid metabolism imaging.Methods201713010511310.1016/j.ymeth.2017.05.00128529065
    [Google Scholar]
  64. ZaiaJ. LiX-Q. ChanS-Y. CostelloC.E. Tandem mass spectrometric strategies for determination of sulfation positions and uronic acid epimerization in chondroitin sulfate oligosaccharides.J. Am. Soc. Mass Spectrom.200314111270128110.1016/S1044‑0305(03)00541‑514597117
    [Google Scholar]
  65. ZhangX-Z. GuanJ. CaiS-L. DuQ. Guo, M-L Polymeric in situ hydrogel implant of epigallocatechin gallate (EGCG) for prolonged and improved antihyperlipidemic and anti-obesity activity: Preparation and characterization.J. Biomater. Tissue Eng.201551081381710.1166/jbt.2015.1381
    [Google Scholar]
  66. HsuW-H. ChangH-M. LeeY-L. PrasannanA. HuC-C. WangJ-S. LaiJ-Y. YangJ.M. JebaranjithamN. TsaiH.C. Biodegradable polymer- nanoclay composites as intestinal sleeve implants installed in digestive tract for obesity and type 2 diabetes treatment.Mater. Sci. Eng. C202011011067610.1016/j.msec.2020.11067632204104
    [Google Scholar]
/content/journals/caps/10.2174/2452271604999210104222642
Loading
/content/journals/caps/10.2174/2452271604999210104222642
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): DDS; natural polymer; Obesity; synthetic polymer; therapies; treatment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test