Skip to content
2000
Volume 4, Issue 2
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Aiming at regenerative therapy, the tailored design of cytokine-releasing scaffolds is still one of the crucial issues to be studied. A core-shell fibermat is one of the attractive platforms for this purpose. But, very few detail the importance of choosing the right material for the shell units that can endow efficient release properties.

In this study, we characterized the effectiveness of core-shell fibermats that possess cross-linked gelatin (CLG) as the shell layer of constituent nanofibers, as a protein-releasing cell-incubation scaffold.

For the core nanofibers in the core-shell fibermats, we utilized a crosslinked copolymer of poly(acrylamide)-co-poly(diacetone acrylamide) (poly(AM/DAAM)) and adipic acid dihydrazide (ADH), poly(AM/DAAM)/ADH. By coaxial electrospinning and the subsequent crosslinking of the gelatin layer, we successfully constructed core-shell fibermats consisting of double-layered nanofibers of poly(AM/DAAM)/ADH and CLG. Using fluorescein isothiocyanate-labeled lysozyme (FITC-Lys) as a dummy guest protein, we characterized the release behavior of the core-shell fibermats containing a CLG layer. Upon loading basic fibroblast growth factor (bFGF) as cargo in our fibermats, we also characterized impacts of the released bFGF on proliferation of the incubated cells thereon.

Although the single-layered poly(AM/DAAM)/ADH nanofiber fibermats did not adhere to the mammalian cells, the core-shell fibermat with the CLG shell layer exhibited good adherence and subsequent proliferation. A sustained release of the preloaded FITC-Lys over 24 days without any burst release was observed, and the cumulative amount of released protein reached over 65% after 24 days. Upon loading bFGF in our fibermats, we succeeded in promoting cell proliferation, and highlighting its potential for use in therapeutic applications.

We successfully confirmed that core-shell fibermats with a CLG shell layer around the constituent nanofibers, were effective as protein-releasing cell-incubation scaffolds.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271604666210716143235
2021-08-01
2025-01-10
Loading full text...

Full text loading...

References

  1. SchuldinerM. YanukaO. Itskovitz-EldorJ. MeltonD.A. BenvenistyN. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells.Proc. Natl. Acad. Sci. USA20009721113071131210.1073/pnas.97.21.1130711027332
    [Google Scholar]
  2. SmithJ.C. PriceB.M.J. Van NimmenK. HuylebroeckD. Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A.Nature1990345627772973110.1038/345729a02113615
    [Google Scholar]
  3. TakebeT. SekineK. EnomuraM. KoikeH. KimuraM. OgaeriT. ZhangR.R. UenoY. ZhengY.W. KoikeN. AoyamaS. AdachiY. TaniguchiH. Vascularized and functional human liver from an iPSC-derived organ bud transplant.Nature2013499745948148410.1038/nature1227123823721
    [Google Scholar]
  4. ZhangS. WanZ. KammR.D. Vascularized organoids on a chip: Strategies for engineering organoids with functional vasculature.Lab Chip202121347348810.1039/D0LC01186J33480945
    [Google Scholar]
  5. DashT.K. KonkimallaV.B. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review.J. Control. Release20121581153310.1016/j.jconrel.2011.09.06421963774
    [Google Scholar]
  6. HolzwarthJ.M. MaP.X. 3D nanofibrous scaffolds for tissue engineering.J. Mater. Chem.201121102431025110.1039/c1jm10522a
    [Google Scholar]
  7. DeshmukhK. KováříkT. KřenekT. DochevaD. StichT. PolaJ. Recent advances and future perspectives of sol–gel derived porous bioactive glasses: A review.RSC Advances202010337823383510.1039/D0RA04287K
    [Google Scholar]
  8. Vallet-RegíM. ColillaM. GonzálezB. Medical applications of organic-inorganic hybrid materials within the field of silica-based bioceramics.Chem. Soc. Rev.201140259660710.1039/C0CS00025F21049136
    [Google Scholar]
  9. SchnettlerR. AltV. DingeldeinE. PfefferleH.J. KilianO. MeyerC. HeissC. WenischS. Bone ingrowth in bFGF- coated hydroxyapatite ceramic implants.Biomaterials200324254603460810.1016/S0142‑9612(03)00354‑512951003
    [Google Scholar]
  10. TaoB. DengY. SongL. MaW. QianY. LinC. YuanZ. LuL. ChenM. YangX. CaiK. BMP2-loaded titania nanotubes coating with pH-responsive multilayers for bacterial infections inhibition and osteogenic activity improvement.Colloids Surf. B Biointerfaces201917724225210.1016/j.colsurfb.2019.02.01430763789
    [Google Scholar]
  11. BangS. DasD. YuJ. NohI. Evaluation of mc3t3 cells proliferation and drug release study from sodium hyaluronate-1,4-butanediol diglycidyl ether patterned gel.Nanomaterials201771032810.3390/nano710032829036920
    [Google Scholar]
  12. YuasaM. YamadaT. TaniyamaT. MasaokaT. XuetaoW. YoshiiT. HorieM. YasudaH. UemuraT. OkawaA. SotomeS. Dexamethasone enhances osteogenic differentiation of bone marrow- and muscle-derived stromal cells and augments ectopic bone formation induced by bone morphogenetic protein-2.PLoS One2015102e011646210.1371/journal.pone.011646225659106
    [Google Scholar]
  13. YamamotoK. KishidaT. NakaiK. SatoY. KotaniS.I. NishizawaY. YamamotoT. KanamuraN. MazdaO. Direct phenotypic conversion of human fibroblasts into functional osteoblasts triggered by a blockade of the transforming growth factor-β signal.Sci. Rep.201881846310.1038/s41598‑018‑26745‑229855543
    [Google Scholar]
  14. GolchinA. NouraniM.R. Effects of bilayer nanofibrillar scaffolds containing epidermal growth factor on full thickness wound healing.Polym. Adv. Technol.2020312443245210.1002/pat.4960
    [Google Scholar]
  15. CarreiraA.C.O. ZambuzziW.F. RossiM.C. Astorino FilhoR. SogayarM.C. GranjeiroJ.M. Bone morphogenetic proteins: Promising molecules for bone healing, bioengineering, and regenerative medicine.Vitam. Horm.20159929332210.1016/bs.vh.2015.06.00226279381
    [Google Scholar]
  16. MadryH. Rey-RicoA. VenkatesanJ.K. JohnstoneB. CucchiariniM. Transforming growth factor Beta-releasing scaffolds for cartilage tissue engineering.Tissue Eng. Part B Rev.201420210612510.1089/ten.teb.2013.027123815376
    [Google Scholar]
  17. JiW. SunY. YangF. van den BeuckenJ.J. FanM. ChenZ. JansenJ.A. Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications.Pharm. Res.20112861259127210.1007/s11095‑010‑0320‑621088985
    [Google Scholar]
  18. YangF. MuruganR. WangS. RamakrishnaS. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering.Biomaterials200526152603261010.1016/j.biomaterials.2004.06.05115585263
    [Google Scholar]
  19. LeeS.J. OhS.H. LiuJ. SokerS. AtalaA. YooJ.J. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.Biomaterials200829101422143010.1016/j.biomaterials.2007.11.02418096219
    [Google Scholar]
  20. KenawyE.I.R. Abdel-HayF.I. EI-NewehyMH. WnekGE. Processing of polymer nanofibers through electrospinning as drug delivery systems.Mater. Chem. Phys.200911329630210.1016/j.matchemphys.2008.07.081
    [Google Scholar]
  21. WuR. GaoG. XuY. Electrospun fibers immobilized with bmp-2 mediated by polydopamine combined with autogenous tendon to repair developmental dysplasia of the hip in a porcine model.Int. J. Nanomedicine2020156563657710.2147/IJN.S25902832982218
    [Google Scholar]
  22. QiH. HuP. XuJ. WangA. Encapsulation of drug reservoirs in fibers by emulsion electrospinning: Morphology characterization and preliminary release assessment.Biomacromolecules2006782327233010.1021/bm060264z16903678
    [Google Scholar]
  23. LiuC. WangC. ZhaoQ. LiX. XuF. YaoX. WangM. Incorporation and release of dual growth factors for nerve tissue engineering using nanofibrous bicomponent scaffolds.Biomed. Mater.201813404410710.1088/1748‑605X/aab69329537390
    [Google Scholar]
  24. KoedaS. IchikiK. IwanagaN. MizunoK. ShibataM. ObataA. KasugaT. MizunoT. Construction and characterization of protein-encapsulated electrospun fibermats prepared from a silica/poly(γ-glutamate) hybrid.Langmuir201632122122910.1021/acs.langmuir.5b0286226681447
    [Google Scholar]
  25. IdoY. MaçonA.L.B. IguchiM. OzekiY. KoedaS. ObataA. KasugaT. MizunoT. Construction of enzyme-encapsulated fibermats from the cross-linkable copolymers poly(acrylamide)-co-poly(diacetone acrylamide) with the bi-functional cross-linker, adipic acid dihydrazide.Polymer (Guildf.)201713234235210.1016/j.polymer.2017.10.057
    [Google Scholar]
  26. TanikawaY. IdoY. AndoR. ObataA. NagataK. KasugaT. MizunoT. Coaxial electrospun fibermat of poly(am/daam)/adh and PCL: Versatile platform for encapsulating functionally active enzymes.Bull. Chem. Soc. Jpn.2020931155116310.1246/bcsj.20200131
    [Google Scholar]
  27. ChouS.F. LuoL.J. LaiJ.Y. MaD.H. Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials.Mater. Sci. Eng. C2017711145115510.1016/j.msec.2016.11.10527987671
    [Google Scholar]
  28. ZhaoY-Z. TianX-Q. ZhangM. CaiL. RuA. ShenX-T. JiangX. JinR-R. ZhengL. HawkinsK. CharkrabartiS. LiX-K. LinQ. YuW-Z. GeS. LuC-T. WongH.L. Functional and pathological improvements of the hearts in diabetes model by the combined therapy of bFGF-loaded nanoparticles with ultrasound-targeted microbubble destruction.J. Control. Release2014186223110.1016/j.jconrel.2014.04.05424815422
    [Google Scholar]
  29. ChaoS.C. WangM.J. PaiN.S. YenS.K. Preparation and characterization of gelatin-hydroxyapatite composite microspheres for hard tissue repair.Mater. Sci. Eng. C20155711312210.1016/j.msec.2015.07.04726354246
    [Google Scholar]
  30. CaliariS.R. BurdickJ.A. A practical guide to hydrogels for cell culture.Nat. Methods201613540541410.1038/nmeth.383927123816
    [Google Scholar]
  31. WetterL.R. DeutschH.F. Immunological studies on egg white proteins. IV. Immunochemical and physical studies of lysozyme.J. Biol. Chem.1951192123724210.1016/S0021‑9258(18)55926‑314917670
    [Google Scholar]
  32. WhalenG.F. ShingY. FolkmanJ. The fate of intravenously administered bFGF and the effect of heparin.Growth Factors19891215716410.3109/089771989090291252624780
    [Google Scholar]
  33. ZhangJ.D. CousensL.S. BarrP.J. SprangS.R. Three-dimensional structure of human basic fibroblast growth factor, a structural homolog of interleukin 1 beta.Proc. Natl. Acad. Sci. USA19918883446345010.1073/pnas.88.8.34461849658
    [Google Scholar]
/content/journals/caps/10.2174/2452271604666210716143235
Loading
/content/journals/caps/10.2174/2452271604666210716143235
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test