Skip to content
2000
Volume 4, Issue 3
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Natural polymers are fascinating category of small chain molecules originating from natural resources, and few examples include Sodium Alginate and Xanthan Gum which are water-soluble in nature; used for mainly food packaging, biomedical and pharmaceutical applications. In the proposed research work, an effort was made to overcome the polymer challenges emerging from the development of polymer blends, as the miscibility between polymers is a vital aspect.

This work focuses on the miscibility studies of natural origin polymers. In regards to that, Sodium Alginate/ Xanthan Gum blends were prepared in variable concentrations in aqueous medium and it was utilized for viscosity analysis, FTIR, Ultraviolet spectroscopic studies at variable temperatures.

It was observed that the developed Sodium Alginate / Xanthan Gum blends are miscible with each other at most of the temperatures (at 20°C, 40°C and 60°C) considering their viscosity parameters, FTIR and UV spectral data.

Viscosity studies revealed that the miscibility windows of polymeric ratio increases as the temperature increases whereas FTIR spectral patterns exhibited that the composition having 60:40 ratio of polymers exhibits high intensity stretches and represented to be miscible when compared to other combinations.

The present study has reported the simple and efficient method in exploration of the miscibility windows of Sodium alginate and Xanthan gum blend.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271604666210928120716
2021-12-01
2025-01-10
Loading full text...

Full text loading...

References

  1. Jagur-GrodzinskiJ. Biomedical application of functional polymers.React. Funct. Polym.19993929913810.1016/S1381‑5148(98)00054‑6
    [Google Scholar]
  2. FambriL. MigliaresiC. KesenciK. PiskinE. Biodegradable polymers. BarbucciR. Integrated biomaterials scienceBoston, MASpringer200210.1007/0‑306‑47583‑9_4
    [Google Scholar]
  3. CasconeM.G. Dynamic–mechanical properties of bioartificial polymeric materials.Polym. Int.1997431556910.1002/(SICI)1097‑0126(199705)43:1<55::AID‑PI762>3.0.CO;2‑#
    [Google Scholar]
  4. FukaeR. YamamotoT. SangenO. SasoT. KakoT. KamachiM. Dynamic mechanical behaviors of poly (vinyl alcohol) film with high syndiotacticity.Polym. J.199022763663710.1295/polymj.22.636
    [Google Scholar]
  5. ShafeeqVH UnnikrishnanG Experimental and theoretical evaluation of mechanical, thermal and morphological features of EVA-millable polyurethane blends.J Polym Res20202735310.1007/s10965‑020‑2027‑7
    [Google Scholar]
  6. RattoJA ChenCC BlumsteinRB Phase behavior study of chitosan/polyamide blends.J Appl Polym Sci199659914511461
    [Google Scholar]
  7. MuchaM PiekielnaJ WieczorekA Characterisation and morphology of biodegradable chitosan/synthetic polymer blends.Macromol2011144139141210.1002/masy.19991440137
    [Google Scholar]
  8. SanchezI.C. Bulk and interface thermodynamics of polymer alloys.Annu. Rev. Mater. Sci.19831338741210.1146/annurev.ms.13.080183.002131
    [Google Scholar]
  9. UtrackiL.A. Polymer alloys and blends, thermodynamic and rheologyMunichCarl Hanser-Verlag1989
    [Google Scholar]
  10. PaladhiR. SinghR.P. Miscibility and interaction studies on some aqueous polymer blend solution by ultrasonics and rheological techniques.J Appl Polym Sci19945191559156510.1016/0014‑3057(94)90168‑6
    [Google Scholar]
  11. PaladhiR. SinghR.P. Ultrasonic and rheological investigation on interacting blend solutions of poly(acrylic acid) with poly(vinyl pyrrolidone) or poly(vinyl alcohol).Eur. Polym J199430225125710.1002/app.1994.070510905
    [Google Scholar]
  12. KangK.S. CottrellI.W. Microbial technology: microbial processes PepplerH.J. PerlmanD. NewYorkAcademic19791
    [Google Scholar]
  13. LachkeA. Xanthan—a versatile gum.Resonance2004910253310.1007/BF02834866
    [Google Scholar]
  14. SandvickE.I. MerkerJ.M. Application of Xanthan gum for enhanced oil recovery, extra cellular microbial polysaccharides. SandfordP. LaskinA. ACS Symp SeriesWashington DC19774524226410.1021/bk‑1977‑0045.ch019#:~:text=10.1021/bk‑1977‑0045.ch019
    [Google Scholar]
  15. UngeheuerS. BewersdorffH-W. SinghR.P. Turbulent drag effectiveness and shear stability of xanthan-gum-based graft copolymers.J Appl Polym Sci198937102933294810.1002/app.1989.070371012
    [Google Scholar]
  16. BerceaM. DarieR.N. MorariuS. Rheological investigation of xanthan/pluronic F127 hydrogels.Rev Roum Chim2013582-3189196
    [Google Scholar]
  17. KennedyJF BradshawIJ Production, properties and applications of xanthan.Prog Ind Microbiol198419319371
    [Google Scholar]
  18. MargaritisA. ZajicJ.E. Mixing, mass transfer, and scale-up of polysaccharide fermentations.Biotechnol. Bioeng.1978207939100110.1002/bit.260200702
    [Google Scholar]
  19. RinadoM. MilasM. Polyelectroyte behavior of a bacterial polysaccharide from Xanthomonas campestris: Comparison with carboxymethylcellulose.Biopolymers197817266310.1002/bip.1978.360171113
    [Google Scholar]
  20. TakhuleeA TakahashiY Vao-soongnernV Molecular simulation and experimental studies of the miscibility of PLA/PLA x-PEG y-PLA x blends.J Polym Res20172411178
    [Google Scholar]
  21. KumarA. RaoK.M. HanS.S. Synthesis of mechanically stiff and bioactive hybrid hydrogels for bone tissue engineering applications.Chem. Eng. J.2017131711913110.1016/j.cej.2017.02.065
    [Google Scholar]
  22. AugstA.D. KongH.J. MooneyD.J. Alginate hydrogels as biomaterials.Macromol. Biosci.20066862363310.1002/mabi.20060006916881042
    [Google Scholar]
  23. Gerecht-NirS CohenS ZiskindA Itskovitz-EldorJ Three-dimensional porous alginate scaffolds provide a conducive environment for generation of well-vascularized embryoid bodies from human embryonic stem cells.Biotechnol Bioeng200488331332010.1002/bit.2024815486935
    [Google Scholar]
  24. KumarA. LeeY. KimD. RaoK.M. KimJ. ParkS. HaiderA. LeeD.H. HanS.S. Effect of crosslinking functionality on microstructure, mechanical properties, and in vitro cytocompatibility of cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds.Int. J. Biol. Macromol.20179596297310.1016/j.ijbiomac.2016.10.08527793679
    [Google Scholar]
  25. LaiSM LiuYH HuangCT DonTM Miscibility and toughness improvement of poly (lactic acid)/poly (3-Hydroxybutyrate) blends using a melt-induced degradation approach.J Polym Res201724710210.1007/s10965‑017‑1253‑0
    [Google Scholar]
  26. VarnellDF ColemanMM FT ir studies of polymer blends: V. Further observations on polyester-poly (vinyl chloride) blends.Polymer1981221013241328
    [Google Scholar]
  27. VarnellDF RuntJP ColemanMM FT ir and thermal analysis studies of blends of poly (ε-caprolactone) with homo-and copolymers of poly (vinylidene chloride).Polymer1983241374210.1016/0032‑3861(83)90077‑0
    [Google Scholar]
  28. WooEM BarlowJW PaulDR Phase behavior of blends of aliphatic polyesters with a vinylidene chloride/vinyl chloride copolymer.J Appl Polym Sci198632338893897https://ur.booksc.eu/book/516132/7e0d67#:~:text=10.1002/app.1986.070320308
    [Google Scholar]
  29. BasavarajuKC JayarajuJ RaiSK DamappaT Miscibility studies of xanthan gum with gelatin in dilute solution.J Appl Polym Sci200810942491249510.1002/app.27992
    [Google Scholar]
  30. FeizhouL LuZL WangXS XiYT A combined experimental and molecular dynamics simulation study on the miscibility of Eucommia ulmoides gum with butadiene rubber.J Polym Res201724710010.1007/s10965‑017‑1245‑0
    [Google Scholar]
  31. EbrahimpourM SafekordiAA MousaviSM HeydarinasabA A miscibility study on biodegradable poly butylene succinate/polydioxanone blends.J Polym Res201825235
    [Google Scholar]
  32. HollerS. PorcelliC. IeropoulosI.A. HanczycM.M. Transport of live cells under sterile conditions using a chemotactic droplet.Sci. Rep.201881840810.1038/s41598‑018‑26703‑y29849066
    [Google Scholar]
  33. MoonJ.H. LeeJ.B. LeeS.H. Dynamic behavior of non-newtonian droplets impinging on solid surfaces.Mater. Trans.201354226026510.2320/matertrans.M2012215
    [Google Scholar]
/content/journals/caps/10.2174/2452271604666210928120716
Loading
/content/journals/caps/10.2174/2452271604666210928120716
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): bacterium; miscibility; Natural polymers; polymers; sodium alginate; xanthan sodium
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test