Skip to content
2000
Volume 7, Issue 2
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Introduction

Metal-elastomer adhesion becomes increasingly important for elastomer parts comprising metal components, such as packer elements for Blowout Preventers (BOP), completion packers, metal encapsulated seals, and stator/rotors. As the bonding between metal and elastomer deteriorates under cyclic deformation, cracks can appear on the adhesion interface and reduce the function of the parts.

Methods

Thus, the fatigue performance or crack growth rate of the metal-elastomer adhesion affects the service life of the whole elastomer part. In this study, the metal-elastomer bonded parts were fabricated and evaluated under cyclic shear and peel deformation at both room temperature and high temperature.

Results

The crack growth rates (/) on the metal-elastomer interface were measured based on the strain energy release rate () for different elastomers with both excellent and poor adhesion, and the API lifetime of BOP packers were therefore estimated.

Conclusion

The results indicated that the crack growth rates in the adhesion interface can be correlated with the API lifetime of BOP packers, and the elastomer with a low crack growth rate will have a better fatigue life for the BOP application.

Loading

Article metrics loading...

/content/journals/caps/10.2174/0124522716324824240905113526
2024-09-12
2025-01-10
Loading full text...

Full text loading...

References

  1. ChenX. SalemH.A. ZonozR. CO2 solubility and diffusivity and rapid gas decompression resistance of elastomers containing CNT.Rubber Chem. Technol.201790356257410.5254/rct.17.83726
    [Google Scholar]
  2. ChenX. BartosJ. SalemH. ZonozR. Elastomers for high pressure low temperature HPLT sealing.Offshore Technology ConferenceTexas, Houston201610.4043/27227‑MS
    [Google Scholar]
  3. ChenX. ZonozR.H. SalemH.A. LimH.K. Extrusion resistance and high-pressure sealing performance of hydrogenated nitrile-butadiene rubber (HNBR).Polym. Test.20197649950410.1016/j.polymertesting.2019.04.008
    [Google Scholar]
  4. ChenX. ZonozR. SalemH. The challenge of elastomer seals for blowout preventer (BOP) and wellhead/christmas trees under high temperature.Offshore Technology ConferenceHouston, Texas, USA202110.4043/30945‑MS
    [Google Scholar]
  5. ChenX. ChengH.L. HachtM.V. SalemH. ZonozR. Rapid gas decompression RGD and sealing performance of elastomer seals in oil and gas field.Offshore Technology ConferenceHouston, Texas, USA202210.4043/31902‑MS
    [Google Scholar]
  6. CampionR.P. Durability review of elastomers for severe fluid duties.Rubber Chem. Technol.200376371974610.5254/1.3547764
    [Google Scholar]
  7. ModyR. GerrardD. GoodsonJ. Elastomers in the Oil Field.Rubber Chem. Technol.201386344946910.5254/rct.13.86999
    [Google Scholar]
  8. RezaeianI. ZahediP. RezaeianA. Rubber adhesion to different substrates and its importance in industrial applications: A review.J. Adhes. Sci. Technol.201226672174410.1163/016942411X579975
    [Google Scholar]
  9. WindslowR.J. BusfieldJ.J.C. ThomasA. Analysing the frictional behaviour of elastomeric components in a subsea downwell environment.DKT International Rubber ConferenceNuremberg, Germany2015
    [Google Scholar]
  10. WindslowR.J. Computational modelling of fracture processes in elastomeric seals.PhD Thesis, Queen Mary University of London2018
    [Google Scholar]
  11. BaldanA. Adhesion phenomena in bonded joints.Int. J. Adhes. Adhes.2012389511610.1016/j.ijadhadh.2012.04.007
    [Google Scholar]
  12. WakeW.C. Theories of adhesion and uses of adhesives: A review.Polymer (Guildf.)197819329130810.1016/0032‑3861(78)90223‑9
    [Google Scholar]
  13. AllenK.W. A review of contemporary views of theories of adhesion.J. Adhes.1987213-426127710.1080/00218468708074974
    [Google Scholar]
  14. ComynJ. Theories of adhesion.In: Handbook of Adhesives and Sealants.200615010.1016/S1874‑5695(06)80012‑6
    [Google Scholar]
  15. AllenK.W. Some reflections on contemporary views of theories of adhesion.Int. J. Adhes. Adhes.1993132677210.1016/0143‑7496(93)90015‑2
    [Google Scholar]
  16. ButtMA ChughtaiA AhmadJ AhmadR MajeedU KhanIH Theory of adhesion and its practical implications.J Faculty Eng Technol2007-20082145
    [Google Scholar]
  17. BukhariMD GoharGA AkhtarA Adhesion theories and effect of surface roughness on energy estimation and wettability of polymeric composites bonded joints: A-review.202021748610.36297/vw.applsci.v2i1.37
    [Google Scholar]
  18. MooreD.F. GeyerW. A review of adhesion theories for elastomers.Wear197222211314110.1016/0043‑1648(72)90271‑2
    [Google Scholar]
  19. CrockerG.J. Elastomers and their Adhesion.Rubber Chem. Technol.1969421307010.5254/1.3539209
    [Google Scholar]
  20. ChenX. ZhongH. JiaL. Effect of the content of EVA on the dispersing status and properties of polyesteramide/EVA blend.Int. J. Adhes. Adhes.200121322122610.1016/S0143‑7496(01)00002‑1
    [Google Scholar]
  21. ChenX. ZhongH. JiaL. Polyamides derived from piperazine and used for hot-melt adhesives: Synthesis and properties.Int. J. Adhes. Adhes.2002221757910.1016/S0143‑7496(01)00039‑2
    [Google Scholar]
  22. AndrewsE.H. KinlochA.J. Mechanics of adhesive failure. I.Proc. R. Soc. Lond. A Math. Phys. Sci.1973332159038539910.1098/rspa.1973.0032
    [Google Scholar]
  23. PohB.T. CheeB.C. Effect of blend ratio and testing rate on the adhesion properties of epoxidized natural rubber (ENR 25)/Styrene–Butadiene Rubber (SBR) blend adhesive.J. Adhes.2015911295096110.1080/00218464.2014.982863
    [Google Scholar]
  24. Van OoijW.J. The role of XPS in the study and understanding of rubber-to-metal bonding.Surf. Sci.1977681910.1016/0039‑6028(77)90184‑4
    [Google Scholar]
  25. BhowmickA.K. Threshold fracture of elastomers.J. Macromol. Sci. Part C Polym. Rev.1988283-433937010.1080/15583728808085379
    [Google Scholar]
  26. CretonC. CiccottiM. Fracture and adhesion of soft materials: A review.Rep. Prog. Phys.201679404660110.1088/0034‑4885/79/4/046601 27007412
    [Google Scholar]
  27. KnaussW.G. A review of fracture in viscoelastic materials.Int. J. Fract.20151961-29914610.1007/s10704‑015‑0058‑6
    [Google Scholar]
  28. ZhuZ. YangZ. XiaY. JiangH. A review of debonding behavior of soft material adhesive systems.Mech Soft Mater202241710.1007/s42558‑022‑00045‑2
    [Google Scholar]
  29. FullerK.N.G. TaborD. The effect of surface roughness on the adhesion of elastic solids.Proc. R. Soc. Lond. A Math. Phys. Sci.1975345164232734210.1098/rspa.1975.0138
    [Google Scholar]
  30. ChenH. FengX. HuangY. HuangY. RogersJ.A. Experiments and viscoelastic analysis of peel test with patterned strips for applications to transfer printing.J. Mech. Phys. Solids20136181737175210.1016/j.jmps.2013.04.001
    [Google Scholar]
  31. GentA.N. PetrichR.P. Adhesion of viscoelastic materials to rigid substrates.Proc. R. Soc. Lond. A Math. Phys. Sci.1969310150243344810.1098/rspa.1969.0085
    [Google Scholar]
  32. DerailC. AllalA. MarinG. TordjemanP. Relationship between viscoelastic and peeling properties of model adhesives Part 2 the interfacial fracture domains.J. Adhes.1998683-420322810.1080/00218469808029255
    [Google Scholar]
  33. VallatM.F. NardinM. A review of adhesion mechanisms using the peel test in air and liquid media.J. Adhes.1996571-411513110.1080/00218469608013647
    [Google Scholar]
  34. van OoijW.J. Mechanism and theories of rubber adhesion to steel tire cords-An overview.Rubber Chem. Technol.198457342145610.5254/1.3536016
    [Google Scholar]
  35. PicardL. PhalipP. FleuryE. GanachaudF. Chemical adhesion of silicone elastomers on primed metal surfaces: A comprehensive survey of open and patent literatures.Prog. Org. Coat.20158012014110.1016/j.porgcoat.2014.11.022
    [Google Scholar]
  36. HalladayJ.R. WarrenP.A. Rubber to metal bonding. CrowtherB. Handbook of Rubber Bonding.Rapra Technology Limited20035780
    [Google Scholar]
  37. SpiesG.J. The peeling test on redux‐bonded joints.Aircr. Eng.1953253647010.1108/eb032268
    [Google Scholar]
  38. RamalhoL.D.C. CampilhoR.D.S.G. BelinhaJ. da SilvaL.F.M. Static strength prediction of adhesive joints: A review.Int. J. Adhes. Adhes.20209610245110.1016/j.ijadhadh.2019.102451
    [Google Scholar]
  39. BengY.K. NoorA. Application of fracture mechanics in peel failure.Thesis, University Malaysia Sabah1999
    [Google Scholar]
  40. MuhrA.H. ThomasA.G. VarkeyJ.K. A fracture mechanics study of natural rubber-to-metal bond failure.J. Adhes. Sci. Technol.199610759361610.1163/156856196X00661
    [Google Scholar]
  41. KutenevaS.V. GladkovskyS.V. VichuzhaninD.I. NedzvetskyP.D. Microstructure and properties of layered metal/rubber composites subjected to cyclic and impact loading.Compos. Struct.202228511507810.1016/j.compstruct.2021.115078
    [Google Scholar]
  42. GentA.N. LindleyP.B. ThomasA.G. Cut growth and fatigue of rubbers. I. The relationship between cut growth and fatigue.J. Appl. Polym. Sci.19648145546610.1002/app.1964.070080129
    [Google Scholar]
  43. RivlinR.S. ThomasA.G. Rupture of rubber. I. Characteristic energy for tearing.J. Polym. Sci.195310329131810.1002/pol.1953.120100303
    [Google Scholar]
  44. MarsW.V. Fatigue life prediction for elastomeric structures.Rubber Chem. Technol.200780348150310.5254/1.3548175
    [Google Scholar]
  45. BusfieldJ.J.C. TsunodaK. DaviesC.K.L. ThomasA.G. Contributions of time dependent and cyclic crack growth to the crack growth behavior of non strain-crystallizing elastomers.Rubber Chem. Technol.200275464365610.5254/1.3544991
    [Google Scholar]
  46. LégerL. CretonC. Adhesion mechanisms at soft polymer interfaces.Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci.200836618691425144210.1098/rsta.2007.2166 18156130
    [Google Scholar]
  47. WeidnerC.L. CrockerG.J. Elastomeric adhesion and adhesives.Rubber Chem. Technol.19603351323137410.5254/1.3542248
    [Google Scholar]
  48. BarquinsM. Adherence, friction and wear of rubber-like materials.Wear19921581-28711710.1016/0043‑1648(92)90033‑5
    [Google Scholar]
  49. ZonozR. ChenX. Packer for annular blowout preventer.US Patent 10287841B22017
  50. Specification for drill-through equipment.2017Available from: https://www.publicationstore.com/publications/api-spec-16a/#:~:text=API%20SPEC%2016A%20defines%20the,drilling%20for%20oil%20and%20gas
  51. MarsW.V. EllulM.D. Fatigue characterization of a thermoplastic elastomer.Rubber Chem. Technol.201790236738010.5254/rct.17.83780
    [Google Scholar]
  52. ChoH. MayerS. PöseltE. Deformation mechanisms of thermoplastic elastomers: Stress-strain behavior and constitutive modeling.Polymer (Guildf.)2017128879910.1016/j.polymer.2017.08.065
    [Google Scholar]
  53. PapadopoulosC.A. The strain energy release approach for modeling cracks in rotors: A state of the art review.Mech. Syst. Signal Process.200822476378910.1016/j.ymssp.2007.11.009
    [Google Scholar]
  54. RichardB. RagueneauF. CremonaC. AdelaideL. Isotropic continuum damage mechanics for concrete under cyclic loading: Stiffness recovery, inelastic strains and frictional sliding.Eng. Fract. Mech.20107781203122310.1016/j.engfracmech.2010.02.010
    [Google Scholar]
  55. HuajianG. Cheng-HsinC. JinL. Elastic contact versus indentation modeling of multi-layered materials.Int. J. Solids Struct.199229202471249210.1016/0020‑7683(92)90004‑D
    [Google Scholar]
  56. YeohO.H. Relation between crack surface displacements and strain energy release rate in thin rubber sheets.Mech. Mater.200234845947410.1016/S0167‑6636(02)00174‑6
    [Google Scholar]
  57. ChakrabortyS. BandyopadhyayS. AmetaR. MukhopadhyayR. DeuriA.S. Application of FTIR in characterization of acrylonitrile-butadiene rubber (nitrile rubber).Polym. Test.2007261384110.1016/j.polymertesting.2006.08.004
    [Google Scholar]
  58. LiuX. ZhaoJ. YangR. IervolinoR. BarberaS. A novel in-situ aging evaluation method by FTIR and the application to thermal oxidized nitrile rubber.Polym. Degrad. Stabil.20161289910610.1016/j.polymdegradstab.2016.03.008
    [Google Scholar]
  59. BokriaJ.G. SchlickS. Spatial effects in the photodegradation of poly(acrylonitrile–butadiene–styrene): A study by ATR-FTIR.Polymer (Guildf.)200243113239324610.1016/S0032‑3861(02)00152‑0
    [Google Scholar]
  60. EklindA. WalanderT. CarlbergerT. StighU. High cycle fatigue crack growth in Mode I of adhesive layers: Modelling, simulation and experiments.Int. J. Fract.20141901-212514610.1007/s10704‑014‑9979‑8
    [Google Scholar]
  61. SchindlerH.J. LeinenbachC. Mechanics of fatigue crack growth in a bonding interface.Eng. Fract. Mech.201289526410.1016/j.engfracmech.2012.04.009
    [Google Scholar]
  62. MughrabiH. Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth.Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci.201537320382014013210.1098/rsta.2014.0132 25713457
    [Google Scholar]
  63. FílterA. OlivaresJ. SantallaA. NakamuraF.Y. LoturcoI. RequenaB. New curve sprint test for soccer players: Reliability and relationship with linear sprint.J. Sports Sci.20203811-121320132510.1080/02640414.2019.1677391 31607228
    [Google Scholar]
  64. ClarkM. CramerR.D.III The probability of chance correlation using Partial Least Squares (PLS).Quant. Struct.-Act. Relationsh.199312213714510.1002/qsar.19930120205
    [Google Scholar]
  65. MarsW.V. MillerK. BaS. KolyshkinA. Constitutive models for rubber.The 10th European Conference on Constitutive Models for Rubber (ECCMR X). Munich, Germany.2017
    [Google Scholar]
  66. SquiresA.M. TajbakhshA.R. TerentjevE.M. Dynamic shear modulus of isotropic elastomers.Macromolecules20043741652165910.1021/ma035060e
    [Google Scholar]
  67. ChenY. KangG. YuanJ. LiT. Experimental study on pure-shear-like cyclic deformation of VHB 4910 dielectric elastomer.J. Polym. Res.201926818610.1007/s10965‑019‑1858‑6
    [Google Scholar]
  68. MarsW.V. FatemiA. Factors that affect the fatigue life of rubber: A literature survey.Rubber Chem. Technol.200477339141210.5254/1.3547831
    [Google Scholar]
  69. BeattyJ.R. Fatigue of rubber.Rubber Chem. Technol.19643751341136410.5254/1.3540402
    [Google Scholar]
  70. TeeY.L. LooM.S. AndriyanaA. Recent advances on fatigue of rubber after the literature survey by Mars and Fatemi in 2002 and 2004.Int. J. Fatigue201811011512910.1016/j.ijfatigue.2018.01.007
    [Google Scholar]
  71. SchieppatiJ. SchrittesserB. WondracekA. RobinS. HolznerA. PinterG. Effect of mechanical loading history on fatigue crack growth of non-crystallizing rubber.Eng. Fract. Mech.202125710801010.1016/j.engfracmech.2021.108010
    [Google Scholar]
  72. ChabocheJ.L. KanoutéP. AzzouzF. Cyclic inelastic constitutive equations and their impact on the fatigue life predictions.Int. J. Plast.201235446610.1016/j.ijplas.2012.01.010
    [Google Scholar]
  73. Le CamJ.B. HuneauB. VerronE. GornetL. Structural–mechanical AFM study of surface defects in natural rubber vulcanizates.Macromolecules2004375011501710.1021/ma0495386
    [Google Scholar]
  74. AsareS. ThomasA.G. BusfieldJ.J.C. Cyclic Stress Relaxation (CSR) of filled rubber and rubber components.Rubber Chem. Technol.200982110411210.5254/1.3557000
    [Google Scholar]
  75. KaangS. JinY.W. HuhY. LeeW.J. ImW.B. A test method to measure fatigue crack growth rate of rubbery materials.Polym. Test.200625334735210.1016/j.polymertesting.2005.12.005
    [Google Scholar]
  76. LakeG.J. ThomasA.G. The strength of highly elastic materials. proceedings of the royal society of london A: Mathematical.Physical and Engineering Sciences. London.1967108119
    [Google Scholar]
  77. VossenB.G. van der SluisO. SchreursP.J.G. GeersM.G.D. High toughness fibrillating metal-elastomer interfaces: On the role of discrete fibrils within the fracture process zone.Eng. Fract. Mech.20161649310510.1016/j.engfracmech.2016.05.019
    [Google Scholar]
  78. van OoijW.J. KleinhesselinkA. Application of XPS to the study of polymer-metal interface phenomena.Appl. Surf. Sci.198043-432433910.1016/0378‑5963(80)90082‑3
    [Google Scholar]
  79. WeiY. WuH. WengG. Effect of interface on bulk polymer: Control of glass transition temperature of rubber.J. Polym. Res.201825817310.1007/s10965‑018‑1566‑7
    [Google Scholar]
  80. KhongtongS. FergusonG.S. Integration of bulk and interfacial properties in a polymeric system: Rubber elasticity at a polybutadiene/water interface.J. Am. Chem. Soc.2001123153588359410.1021/ja003224q 11472131
    [Google Scholar]
  81. LiuS.H. NaumanE.B. Effect of cross-linking density on the toughening mechanisms of rubber-modified thermosets.J. Mater. Sci.199126246581659010.1007/BF02402649
    [Google Scholar]
  82. ShanahanM.E.R. MichelF. Physical adhesion of rubber to glass: Cross-link density effects near equilibrium.Int. J. Adhes. Adhes.199111317017610.1016/0143‑7496(91)90019‑E
    [Google Scholar]
  83. PerssonB.N.J. AlbohrO. HeinrichG. UebaH. Crack propagation in rubber-like materials.J. Phys. Condens. Matter20051744R1071R114210.1088/0953‑8984/17/44/R01
    [Google Scholar]
  84. WundeM. Crack propagation in rubber blends: Impact of blend morphology and energy dissipation mechanisms around the crack tip.Thesis, Leibniz University Hannover202010.15488/10135
    [Google Scholar]
  85. MorishitaY. TsunodaK. UrayamaK. Crack-tip shape in the crack-growth rate transition of filled elastomers.Polymer (Guildf.)201710823024110.1016/j.polymer.2016.11.041
    [Google Scholar]
  86. LoewP.J. PetersB. BeexL.A.A. Fatigue phase-field damage modeling of rubber using viscous dissipation: Crack nucleation and propagation.Mech. Mater.202014210328210.1016/j.mechmat.2019.103282
    [Google Scholar]
  87. KaangS. NahC. Fatigue crack growth of double-networked natural rubber.Polymer (Guildf.)199839112209221410.1016/S0032‑3861(97)00347‑9
    [Google Scholar]
  88. AhagonA. GentA.N. Effect of interfacial bonding on the strength of adhesion.J. Polym. Sci., Polym. Phys. Ed.19751371285130010.1002/pol.1975.180130703
    [Google Scholar]
/content/journals/caps/10.2174/0124522716324824240905113526
Loading
/content/journals/caps/10.2174/0124522716324824240905113526
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): adhesion; crack growth; elastomer; fatigue life; interface; Metal elastomer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test