Skip to content
2000
image of Microcrystalline Cellulose Extracted from Tissue Paper and its Comparison to Commercial Microcrystalline Cellulose

Abstract

Introduction

Tissue paper has been utilized to extract Microcrystalline Cellulose (MCC) using sulphuric acid. The two approaches used for MCC extraction were with NaOH pre-treatment (NaOH-EMC) and without NaOH (EMC).

Method

The extracted MCC was characterized by FTIR, SEM, TGA, XRD, zeta potential, particle size, and degree of polymerization and then subsequently compared with the commercially available MCC(CMC). The particle size of the NaOH-EMC was lesser than the CMC, while the EMC had a larger size. The values recorded were respectively 1.322, 6.750, and 8.521 µm. The SEM images also supported the values reported by the particle size analyzer.

Result

The distribution, however, was staggered for the prepared samples, as against the CMC. The prepared MCC suspensions were found to be more stable than the CMC based on the recorded zeta potential. The crystallinity for NaOH-EMC, EMC, and CMC was recorded to be 69.91, 68.59, and 70.89 percent, respectively, and the observations were not significantly different.

Conclusion

The degree of polymerization of NaOH-EMC and EMC was 129 and 94, which was 189 lower than that of CMC, having the value of 178. The study successfully reports the extraction of MCC from the tissue paper as an alternative source.

Loading

Article metrics loading...

/content/journals/caps/10.2174/0124522716340445241024103932
2024-10-31
2025-02-17
Loading full text...

Full text loading...

References

  1. Tarchoun A.F. Trache D. Klapötke T.M. Microcrystalline cellulose from Posidonia oceanica brown algae: Extraction and characterization. Int. J. Biol. Macromol. 2019 138 837 845 10.1016/j.ijbiomac.2019.07.176 31356946
    [Google Scholar]
  2. Katakojwala R. Mohan S. V. Journal Pre-proof. 2019
    [Google Scholar]
  3. Abdullah N. Sainorudin M. Asim N. Mohammad M. Kadir N. Yaakob Z. Extraction of microcrystalline cellulose from two different agriculture waste via chemical treatment. IOP Conf. Ser. Mater. Sci. Eng. 2020 739 012017 10.1088/1757‑899X/739/1/012017
    [Google Scholar]
  4. Merr L. Characterization of microcrystalline from pineapple leaf (Ananas comosus L . Merr). IOP Conf. Ser.: Mater. Sci. Eng. 2017 180 012267 10.1088/1742‑6596/755/1/011001
    [Google Scholar]
  5. Merci A. Urbano A. Tischer A. Properties of microcrystalline cellulose extracted from soybean hulls by reactive extrusion. Food Res. Int. 2015 73 38 43 10.1016/j.foodres.2015.03.020
    [Google Scholar]
  6. Yakubu K. Characterization and physico-chemical studies of microcrystalline cellulose extracted from cornstalks. NJT 2016 2 2 84 95
    [Google Scholar]
  7. Kian L. K. Saba N. Jawaid M. Fouad H. Characterization of microcrystalline cellulose extracted from olive fiber. Int. J. Biolog. Macromol. 2020 156 347 353 10.1016/j.ijbiomac.2020.04.015
    [Google Scholar]
  8. Shi S. Zhang M. Ling C. Hou W. Yan Z. Extraction and characterization of microcrystalline cellulose from waste cotton fabrics via hydrothermal method. Waste Manag. 2018 82 139 146 10.1016/j.wasman.2018.10.023 30509575
    [Google Scholar]
  9. Fahmy T.Y.A. El-Meligy M.G. Mobarak F. Introducing deinked old newsprint as a new resource of electrical purposes paper. Carbohydr. Polym. 2008 74 3 442 444 10.1016/j.carbpol.2008.03.016
    [Google Scholar]
  10. Fahmy Y. Mobarak F. El-Sakhawy M. Agricultural residues (wastes) for manufacture of paper, board, and miscellaneous products: Background overview and future prospects Int. J. ChemTech. Res. 2017 10 2 424 448 10.5281/zenodo.546735
    [Google Scholar]
  11. Fahmy Y.A. Mobarak F. Sustainability of paper & sugar industries via molasses: Novel green nanocomposites from upgraded recycled cellulose fibers. J. Am. Sci. 2014 10 9 1 7 10.7537/marsjas100914.01
    [Google Scholar]
  12. Monschein M. Reisinger C. Nidetzky B. Enzymatic hydrolysis of microcrystalline cellulose and pretreated wheat straw: A detailed comparison using convenient kinetic analysis. Bioresour. Technol. 2013 128 679 687 10.1016/j.biortech.2012.10.129 23220402
    [Google Scholar]
  13. Mohamad Haafiz M.K. Eichhorn S.J. Hassan A. Jawaid M. Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr. Polym. 2013 93 2 628 634 10.1016/j.carbpol.2013.01.035 23499105
    [Google Scholar]
  14. Trache D. Donnot A. Khimeche K. Benelmir R. Brosse N. Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohydr. Polym. 2014 104 1 223 230 10.1016/j.carbpol.2014.01.058 24607181
    [Google Scholar]
  15. Jacquet N. Influence of steam explosion on physicochemical properties and hydrolysis rate of pure cellulose fibers. Bioresource Technol. 2012 121 221 227
    [Google Scholar]
  16. Mathew B. Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers 2010 81 720 725 10.1016/j.carbpol.2010.03.046
    [Google Scholar]
  17. Sahin H.T. Arslan M.B. A study on physical and chemical properties of cellulose paper immersed in various solvent mixtures. Int. J. Mol. Sci. 2008 9 1 78 88 10.3390/ijms9010078 19325721
    [Google Scholar]
  18. Kale R.D. Shobha P. Vikrant B. Extraction of microcrystalline cellulose from cotton sliver and its comparison with commercial microcrystalline cellulose. J. Polym. Environ. 2017 26 355 364 10.1007/s10924‑017‑0936‑2
    [Google Scholar]
  19. TAPPI T 230 Technical Association of the Pulp & Paper Industry 2013 Available from: https://shop.standards.ie/en-ie/standards/tappi-t-230-2013-1062610_saig_tappi_tappi_2471601/(accessed on 8-10-2024)
    [Google Scholar]
  20. Morais J.P.S. Rosa M.F. de Souza Filho M.M. Nascimento L.D. do Nascimento D.M. Cassales A.R. Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr. Polym. 2013 91 1 229 235 10.1016/j.carbpol.2012.08.010 23044127
    [Google Scholar]
  21. Chen W. Yu H. Liu Y. Chen P. Zhang M. Hai Y. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr. Polym. 2011 83 4 1804 1811 10.1016/j.carbpol.2010.10.040
    [Google Scholar]
  22. Das K. Ray D. Bandyopadhyay N.R. Sengupta S. Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, Nanoindentation, TGA and SEM. J. Polym. Environ. 2010 18 3 355 363 10.1007/s10924‑010‑0167‑2
    [Google Scholar]
  23. Trache M.M. Hussin M.H. Chuin C.T.H. Sabar S. Fazita M.N. Taiwo O.F. Hassan T. Microcrystalline cellulose: Isolation, characterization and bio -composites application —A review Int. J. Biolog. Macromol. 2016 93 789 804 10.1016/j.ijbiomac.2016.09.056
    [Google Scholar]
  24. Kargarzadeh H. Ioelovich M. Ahmad I. Thomas S. Dufresne A. Methods for extraction of nanocellulose from various sources. Handbook of Nanocellulose and Cellulose Nanocomposites Wiley‐VCH Verlag GmbH & Co. KGaA 2017 10.1002/9783527689972.ch1
    [Google Scholar]
  25. Zhao T. Chen Z. Lin X. Ren Z. Li B. Zhang Y. Preparation and characterization of microcrystalline cellulose (MCC) from tea waste. Carbohydr. Polym. 2018 184 164 170 10.1016/j.carbpol.2017.12.024 29352907
    [Google Scholar]
  26. Nuruddin M. Extraction and characterization of cellulose microfibrils from agricultural wastes in an integrated biorefinery initiative. Cellul. Chem. Technol. 2011 45 5–6 347 354
    [Google Scholar]
  27. Abraham E. Deepa B. Pothan L.A. Jacob M. Thomas S. Cvelbar U. Anandjiwala R. Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydr. Polym. 2011 86 4 1468 1475 10.1016/j.carbpol.2011.06.034
    [Google Scholar]
  28. Kale R.D. Taye M. Chaudhary B. Extraction and characterization of cellulose single fiber from native Ethiopian Serte ( Dracaena steudneri Egler ) plant leaf. J. Macromol. Sci. Part A Pure Appl. Chem. 2019 56 9 837 844 10.1080/10601325.2019.1612252
    [Google Scholar]
  29. Boschetti W.T.N. Carvalho A.M.M.L. Carneiro A.C.O. Vidaurre G.B. Gomes F.J.B. Soratto D.N. Effect of mechanical treatment of eucalyptus pulp on the production of nanocrystalline and microcrystalline cellulose. Sustainability (Basel) 2021 13 11 5888 10.3390/su13115888
    [Google Scholar]
  30. Azubuike C.P. Okhamafe A.O. Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. J. Recycl. Org. Waste in Agricult. 2012 1 9 1 7
    [Google Scholar]
/content/journals/caps/10.2174/0124522716340445241024103932
Loading
/content/journals/caps/10.2174/0124522716340445241024103932
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test