Skip to content
2000
Volume 7, Issue 2
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Diseases can result from an excess or deficit of amino acids in the blood. The smallest biomolecules that can self-assemble are amino acids. Fifteen amino acids, phenylalanine, tryptophan, histidine, glycine, alanine, valine, serine, isoleucine, proline, cysteine, glutamic acid, methionine, threonine, tyrosine, and lysine, have been observed to self-assemble out of the twenty amino acid forms. A disorder known as “hyperaminoacidemia” can result from elevated blood levels of amino acids, while there are rare exceptions, such as phenylketonuria (high phenylalanine) and histidinemia (high histidine concentration). Increased level of amino acids in the blood is the source of all these disorders, which can manifest neurological symptoms, such as mental retardation, convulsions, epilepsy, immobility, and developmental delay. The high concentrations of amino acids in the body are caused by decreased activity of enzymes that are responsible for breaking down amino acids, a phenomenon that has been extensively studied in relation to mutations in these enzymes. Phenylketonuria, a neurological disorder caused by phenylalanine self-assembly, is associated with high phenylalanine levels. Neurodegeneration, typified by tryptophan self-assembly, is caused by an abnormal accumulation of tryptophan, which has been connected to hypertryptophanemia. There is uncertainty about the molecular mechanism underlying diseases caused by elevated levels of every other amino acid in our bodies. The self-assembly of various single amino acids and materials rich in a specific amino acid is discussed in this review article, along with the consequences and the variety of structures that are created, as well as the effects of factors like temperature, pH, concentration, and so forth.

Loading

Article metrics loading...

/content/journals/caps/10.2174/0124522716338272241107051010
2024-11-11
2025-01-10
Loading full text...

Full text loading...

References

  1. WhitesidesG.M. BonchevaM. Beyond molecules: Self-assembly of mesoscopic and macroscopic components.Proc. Natl. Acad. Sci. USA20029984769477410.1073/pnas.082065899 11959929
    [Google Scholar]
  2. WhitesidesG.M. MathiasJ.P. SetoC.T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures.Science199125450361312131910.1126/science.1962191 1962191
    [Google Scholar]
  3. DhotelA. ChenZ. DelbreilhL. YoussefB. SaiterJ.M. TanL. Molecular motions in functional self-assembled nanostructures.Int. J. Mol. Sci.20131422303233310.3390/ijms14022303 23348927
    [Google Scholar]
  4. TalukdarD. KumarJ.M. GoleB. Self-assembled Macrocycles: Design Strategies and Emerging Functions.Cryst. Growth Des.202323117582761110.1021/acs.cgd.3c00677
    [Google Scholar]
  5. IyerA.S. PaulK. Self‐assembly: a review of scope and applications.IET Nanobiotechnol.20159312213510.1049/iet‑nbt.2014.0020 26023156
    [Google Scholar]
  6. WangL. GongC. YuanX. WeiG. Controlling the self-assembly of biomolecules into functional nanomaterials through internal interactions and external stimulations: A Review.Nanomaterials (Basel)20199228510.3390/nano9020285 30781679
    [Google Scholar]
  7. LiuR. HudallaG.A. Using Self-Assembling Peptides to Integrate Biomolecules into Functional Supramolecular Biomaterials.Molecules2019248145010.3390/molecules24081450 31013712
    [Google Scholar]
  8. RenH. WuL. TanL. Self-assembly of amino acids toward functional biomaterials.Beilstein J. Nanotechnol.2021121140115010.3762/bjnano.12.85 34760429
    [Google Scholar]
  9. ChakrabortyP. GazitE. Amino acid based self‐assembled nanostructures: Complex structures from remarkably simple building blocks.ChemNanoMat20184873074010.1002/cnma.201800147 30713827
    [Google Scholar]
  10. GermanH.W. UyaverS. HansmannU.H.E. Self-assembly of phenylalanine-based molecules.J. Phys. Chem. A201511991609161510.1021/jp5077388 25347763
    [Google Scholar]
  11. GourN. KanthP.C. KoshtiB. Amyloid-like structures formed by single amino acid self-assemblies of cysteine and methionine.ACS Chem. Neurosci.20191031230123910.1021/acschemneuro.8b00310 30380833
    [Google Scholar]
  12. AjikumarA. PremkumarA.K.N. NarayananS.P. The self-assembly of l-histidine might be the cause of histidinemia.Sci. Rep.20231311746110.1038/s41598‑023‑44749‑5 37838762
    [Google Scholar]
  13. LiT. LuX.M. ZhangM.R. HuK. LiZ. Peptide-based nanomaterials: Self-assembly, properties and applications.Bioact. Mater.20221126828210.1016/j.bioactmat.2021.09.029 34977431
    [Google Scholar]
  14. PaikB. Calero-RubioC. LeeJ.Y. JiaX. KiickK.L. RobertsC.J. Characterizing aggregate growth and morphology of alanine-rich polypeptides as a function of sequence chemistry and solution temperature from scattering, spectroscopy, and microscopy.Biophys. Chem.202026710648110.1016/j.bpc.2020.106481 33035751
    [Google Scholar]
  15. ShinchukL.M. SharmaD. BlondelleS.E. ReixachN. InouyeH. KirschnerD.A. Poly‐(L ‐alanine) expansions form core β‐sheets that nucleate amyloid assembly.Proteins200561357958910.1002/prot.20536 16114037
    [Google Scholar]
  16. SchiattarellaC. DiaferiaC. GalloE. Solid-state optical properties of self-assembling amyloid-like peptides with different charged states at the terminal ends.Sci. Rep.202212175910.1038/s41598‑021‑04394‑2 35031624
    [Google Scholar]
  17. CleggM.L. Morales de la GarzaL. KarakatsaniS. KingD.A. DriverS.M. Chirality in Amino Acid Overlayers on Cu Surfaces.Top. Catal.20115419-201429144410.1007/s11244‑011‑9758‑y
    [Google Scholar]
  18. ShetewyA. Shimada-TakauraK. WarnerD. Mitochondrial defects associated with β-alanine toxicity: relevance to hyper-beta-alaninemia.Mol. Cell. Biochem.20164161-2112210.1007/s11010‑016‑2688‑z 27023909
    [Google Scholar]
  19. AltammarK.A. A review on nanoparticles: characteristics, synthesis, applications, and challenges.Front. Microbiol.202314115562210.3389/fmicb.2023.1155622 37180257
    [Google Scholar]
  20. OluwatobaD.S. ChakrabortyP. Bar-YosefD.L. LimbachM.N. GazitE. DoT.D. Self-assembly of cysteine into nanofibrils precedes cystine crystal formation: Implications for aggregation inhibition.ACS Appl. Mater. Interfaces20231527321773218710.1021/acsami.3c03267 37387421
    [Google Scholar]
  21. MocanuA. CernicaI. TomoaiaG. BobosL-D. HorovitzO. Tomoaia-CotiselM. Self-assembly characteristics of gold nanoparticles in the presence of cysteine.Colloids Surf. A Physicochem. Eng. Asp.20093381-39310110.1016/j.colsurfa.2008.12.041
    [Google Scholar]
  22. PooleL.B. The basics of thiols and cysteines in redox biology and chemistry.Free Radic. Biol. Med.20158014815710.1016/j.freeradbiomed.2014.11.013 25433365
    [Google Scholar]
  23. SaudubrayJ.M. Garcia-CazorlaA. An overview of inborn errors of metabolism affecting the brain: from neurodevelopment to neurodegenerative disorders.Dialogues Clin. Neurosci.201820430132510.31887/DCNS.2018.20.4/jmsaudubray 30936770
    [Google Scholar]
  24. ZhuX. LiuM. Self-assembly and morphology control of new L-glutamic acid-based amphiphilic random copolymers: giant vesicles, vesicles, spheres, and honeycomb film.Langmuir20112721128441285010.1021/la202680j 21942537
    [Google Scholar]
  25. ShenH. DingY. LiD. Self-assembly of glutamic acid and serine on Au(111).Langmuir20233983168317210.1021/acs.langmuir.3c00055
    [Google Scholar]
  26. WanJ. SunL. SunX. Cu 2+ -Dominated Chirality Transfer from Chiral Molecules to Concave Chiral Au Nanoparticles.J. Am. Chem. Soc.202414615106401065410.1021/jacs.4c00322 38568727
    [Google Scholar]
  27. JinQ. ZhangL. CaoH. Self-assembly of copper(II) ion-mediated nanotube and its supramolecular chiral catalytic behavior.Langmuir20112722138471385310.1021/la203110z 21978005
    [Google Scholar]
  28. FularaA. HernikA. NieznańskaH. DzwolakW. Covalent defects restrict supramolecular self-assembly of homopolypeptides: case study of β2-fibrils of poly-L-glutamic acid.PLoS One201498e10566010.1371/journal.pone.0105660 25144464
    [Google Scholar]
  29. Balogun-AgbajeO.A. OdeniyiO.A. OdeniyiM.A. Drug delivery applications of poly-γ-glutamic acid.Future Journal of Pharmaceutical Sciences20217112510.1186/s43094‑021‑00280‑w
    [Google Scholar]
  30. WarrickJ.M. ChanH.Y.E. Gray-BoardG.L. ChaiY. PaulsonH.L. BoniniN.M. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70.Nat. Genet.199923442542810.1038/70532 10581028
    [Google Scholar]
  31. ManekR. ZhangY.V. BertheletteP. Blood phenylalanine reduction reverses gene expression changes observed in a mouse model of phenylketonuria.Sci. Rep.20211112288610.1038/s41598‑021‑02267‑2 34819582
    [Google Scholar]
  32. SinghV. RaiR.K. AroraA. SinhaN. ThakurA.K. Therapeutic implication of L-phenylalanine aggregation mechanism and its modulation by D-phenylalanine in phenylketonuria.Sci. Rep.201441387510.1038/srep03875 24464217
    [Google Scholar]
  33. TomarD. ChaudharyS. JenaK.C. Self-assembly of l -phenylalanine amino acid: electrostatic induced hindrance of fibril formation.RSC Advances2019922125961260510.1039/C9RA00268E 35515878
    [Google Scholar]
  34. SinghP. BrarS.K. BajajM. Self-assembly of aromatic α-amino acids into amyloid inspired nano/micro scaled architects.Mater. Sci. Eng. C20177259060010.1016/j.msec.2016.11.117 28024626
    [Google Scholar]
  35. LeeH. KimH. LeeS.Y. Self-Assembling Peptidic Bolaamphiphiles for Biomimetic Applications.ACS Biomater. Sci. Eng.2021783545357210.1021/acsbiomaterials.1c00576 34309378
    [Google Scholar]
  36. PatríciaF.S. FernandaM. JoséH.C. FabiolaC. EmilioL.S. GustavoC.F. Phenylketonuria Pathophysiology: on the Role of Metabolic Alterations.Aging Dis.20156539039910.14336/AD.2015.0827 26425393
    [Google Scholar]
  37. Aguayo-CerónK.A. Sánchez-MuñozF. Gutierrez-RojasR.A. Glycine: The smallest anti-inflammatory micronutrient.Int. J. Mol. Sci.202324141123610.3390/ijms241411236 37510995
    [Google Scholar]
  38. KangJ.F. ZaccaroJ. UlmanA. MyersonA. Nucleation and growth of glycine crystals on self-assembled monolayers on gold.Langmuir20001683791379610.1021/la9914054
    [Google Scholar]
  39. KanazawaK. TaninakaA. HuangH. Scanning tunneling microscopy/spectroscopy on self-assembly of a glycine/Cu(111) nanocavity array.Chem. Commun. (Camb.)20114740113121131410.1039/c1cc11829c 21927727
    [Google Scholar]
  40. CostaD. GarrainP.A. DiawaraB. MarcusP. Biomolecule-biomaterial interaction: a DFT-D study of glycine adsorption and self-assembly on hydroxylated Cr2O3 surfaces.Langmuir20112762747276010.1021/la104317j 21338116
    [Google Scholar]
  41. ErsanF. AktürkE. CiraciS. Glycine self-assembled on graphene enhances the solar absorbance performance.Carbon201914332933410.1016/j.carbon.2018.11.018
    [Google Scholar]
  42. ThurschL.J. LimaT.A. O’NeillN. FerreiraF.F. Schweitzer-StennerR. AlvarezN.J. Influence of central sidechain on self-assembly of glycine-x-glycine peptides.Soft Matter202319339440910.1039/D2SM01082H 36454226
    [Google Scholar]
  43. PrasadM. IqbalM. MordekarS. Nonketotic hyperglycinemia case series.J. Pediatr. Neurosci.201510435535810.4103/1817‑1745.174445 26962342
    [Google Scholar]
  44. ChenY. TaoK. JiW. KumarV.B. Rencus-LazarS. GazitE. Histidine as a key modulator of molecular self-assembly: Peptide-based supramolecular materials inspired by biological systems.Mater. Today20226010612710.1016/j.mattod.2022.08.011
    [Google Scholar]
  45. LampteyR.N.L. ChaulagainB. TrivediR. GothwalA. LayekB. SinghJ. A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics.Int. J. Mol. Sci.2022233185110.3390/ijms23031851 35163773
    [Google Scholar]
  46. AzmiN.S. AnuarN. RobertsK.J. Molecular aggregation of L-isoleucine in aqueous solution and its impact on the determination of solubility and nucleation kinetics.J. Cryst. Growth20195199199
    [Google Scholar]
  47. AnuarN. Wan DaudW.R. RobertsK.J. KamarudinS.K. TasirinS.M. Morphology and associated surface chemistry of l-isoleucine crystals modeled under the influence of l-leucine additive molecules.Cryst. Growth Des.20121252195220310.1021/cg200266e
    [Google Scholar]
  48. HassanS.A. GuptaV. Maple Syrup Urine Disease.StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  49. KreiserT. Sogolovsky-BardI. ZaguriD. Shaham-NivS. Laor Bar-YosefD. GazitE. Branched-chain amino acid assembly into amyloid-like fibrils provides a new paradigm for maple syrup urine disease pathology.Int. J. Mol. Sci.202324211599910.3390/ijms242115999 37958982
    [Google Scholar]
  50. GrohmannS. RotheH. LiefeithK. Investigations on the secondary structure of polypeptide chains in polyelectrolyte multilayers and their effect on the adhesion and spreading of osteoblasts.Biointerphases2012716210.1007/s13758‑012‑0062‑6 23065830
    [Google Scholar]
  51. ZhengM. PanM. ZhangW. Poly(α-l-lysine)-based nanomaterials for versatile biomedical applications: Current advances and perspectives.Bioact. Mater.2021671878190910.1016/j.bioactmat.2020.12.001 33364529
    [Google Scholar]
  52. BouchereauJ. SchiffM. Inherited disorders of lysine metabolism: A review.J. Nutr.20201501Suppl. 12556S2560S10.1093/jn/nxaa112 33000154
    [Google Scholar]
  53. ChenetT. MartucciA. CesconM. Supramolecular assembly of l-Lysine on ZSM-5 zeolites with different Si/Al ratio.Microporous Mesoporous Mater.202132311118310.1016/j.micromeso.2021.111183
    [Google Scholar]
  54. NarangN. SatoT. Liquid-liquid phase separation and self-assembly of a lysine derivative Fmoc-L-lysine in water-DMSO mixtures.Polym. J.202153121413142410.1038/s41428‑021‑00538‑3
    [Google Scholar]
  55. EspeM. AdamA.C. SaitoT. SkjærvenK.H. Methionine: An indispensable amino acid in cellular metabolism and health of atlantic salmon.Aquacult. Nutr.2023202311010.1155/2023/5706177 37927379
    [Google Scholar]
  56. HumblotV. TielensF. LuqueN.B. HampartsoumianH. MéthivierC. PradierC.M. Characterization of two-dimensional chiral self-assemblies L- and D-methionine on Au(111).Langmuir201430120321210.1021/la404262m 24325337
    [Google Scholar]
  57. WuG. BazerF.W. BurghardtR.C. Proline and hydroxyproline metabolism: implications for animal and human nutrition.Amino Acids20114041053106310.1007/s00726‑010‑0715‑z 20697752
    [Google Scholar]
  58. KoshtiB. KshtriyaV. SinghR. Unusual aggregates formed by the self-assembly of proline, hydroxyproline, and lysine.ACS Chem. Neurosci.202112173237324910.1021/acschemneuro.1c00427 34406754
    [Google Scholar]
  59. ShaoM. JinQ. ZhangL. LiuM. Asymmetric aldol reaction catalyzed by the self-assembled nanostructures of l -proline containing amphiphilic dipeptide: A morphological dependence.Chem. Lett.201241101349135010.1246/cl.2012.1349
    [Google Scholar]
  60. WuQ. ChenX. LiJ. SunS. Serine and metabolism regulation: A novel mechanism in antitumor immunity and senescence.Aging Dis.20201161640165310.14336/AD.2020.0314 33269112
    [Google Scholar]
  61. EralpT. ShavorskiyA. ZhelevaZ.V. Global and local expression of chirality in serine on the Cu110 surface.Langmuir20102624188411885110.1021/la1036772 21090821
    [Google Scholar]
  62. KshtriyaV. KoshtiB. GourN. Controlled morphological changes in self-assembled structures formed by FMOC variants of threonine and serine.ChemRxiv14255477202110.26434/chemrxiv.14255477.v1
    [Google Scholar]
  63. La MannaS. Di NataleC. OnestoV. MarascoD. Self-Assembling Peptides: From Design to Biomedical Applications.Int. J. Mol. Sci.202122231266210.3390/ijms222312662 34884467
    [Google Scholar]
  64. TangQ. TanP. MaN. MaX. Physiological functions of threonine in animals: Beyond nutrition metabolism.Nutrients2021138259210.3390/nu13082592 34444752
    [Google Scholar]
  65. SinghP. PandeyS.K. GroverA. SharmaR.K. WangooN. Understanding the self-ordering of amino acids into supramolecular architectures: co-assembly-based modulation of phenylalanine nanofibrils.Mater. Chem. Front.2021541971198110.1039/D0QM00784F
    [Google Scholar]
  66. ZhangH. XinX. SunJ. Self-assembled chiral helical nanofibers by amphiphilic dipeptide derived from d - or l -threonine and application as a template for the synthesis of Au and Ag nanoparticles.J. Colloid Interface Sci.20164849710610.1016/j.jcis.2016.08.052 27592190
    [Google Scholar]
  67. KrawiecC. AnastasopoulouC. Nonketotic Hyperglycinemia.StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  68. FriedmanM. Analysis, nutrition, and health benefits of tryptophan.Int. J. Tryptophan Res.201811117864691880228210.1177/1178646918802282 30275700
    [Google Scholar]
  69. BagheriM. AmininasabM. DatheM. Arginine/tryptophan‐rich cyclic α/β‐antimicrobial peptides: The roles of hydrogen bonding and hydrophobic/hydrophilic solvent‐accessible surface areas upon activity and membrane selectivity.Chemistry20182453142421425310.1002/chem.201802881 29969522
    [Google Scholar]
  70. XueQ. ZhangY. LiR. Self-assembly of l-tryptophan on Cu(111) studied by low-temperature scanning tunneling microscopy.Chin. Chem. Lett.201930122355235810.1016/j.cclet.2019.09.027
    [Google Scholar]
  71. PignataroM.F. HerreraM.G. DoderoV.I. Evaluation of peptide/protein self-assembly and aggregation by spectroscopic methods.Molecules20202520485410.3390/molecules25204854 33096797
    [Google Scholar]
  72. PrajapatiK.P. AnandB.G. AnsariM. TikuA.B. KarK. Tryptophan self-assembly yields cytotoxic nanofibers containing amyloid-mimicking and cross-seeding competent conformers.Nanoscale20221443162701628510.1039/D2NR03544H 36300424
    [Google Scholar]
  73. de Souza FreitasH.A. Chaves NetoA.M.J. de SousaF.F. Hydration-dependent band gap tunability of self-assembled phenylalanyl tryptophan nanotubes. Phys. E.Low-Dimens2021134114910
    [Google Scholar]
  74. PalegoL. BettiL. RossiA. GiannacciniG. Tryptophan biochemistry: Structural, nutritional, metabolic, and medical aspects in humans.J. Amino Acids2016201611310.1155/2016/8952520 26881063
    [Google Scholar]
  75. SchenckC.A. MaedaH.A. Tyrosine biosynthesis, metabolism, and catabolism in plants.Phytochemistry20181498210210.1016/j.phytochem.2018.02.003 29477627
    [Google Scholar]
  76. Ménard-MoyonC. VenkateshV. KrishnaK.V. BonacheraF. VermaS. BiancoA. Self‐assembly of tyrosine into controlled supramolecular nanostructures.Chemistry20152133116811168610.1002/chem.201502076 26179867
    [Google Scholar]
  77. BraccoG. SmerieriM. SavioL. Self-assembly of organic molecules at metal surfaces.Curr. Opin. Coll. Interface Sci.202014215716810.1007/978‑3‑030‑46906‑1_29
    [Google Scholar]
  78. ReichertJ. SchiffrinA. AuwärterW. L-tyrosine on Ag(111): universality of the amino acid 2D zwitterionic bonding scheme?ACS Nano2010421218122610.1021/nn901669p 20092357
    [Google Scholar]
  79. SinghP. SharmaR.K. KatareO.P. WangooN. Understanding tyrosine self-assembly: from dimer assembly to magnetized fluorescent nanotubes embedded into PVA films.Materials Advances20223166518652810.1039/D2MA00546H
    [Google Scholar]
  80. FigueroaJ.D. ZárateA.M. Fuentes-LemusE. DaviesM.J. López-AlarcónC. Formation and characterization of crosslinks, including Tyr–Trp species, on one electron oxidation of free Tyr and Trp residues by carbonate radical anion.RSC Advances20201043257862580010.1039/D0RA04051G 35518626
    [Google Scholar]
  81. SnidermanK.L. TrahmsC. ScottC.R. Tyrosinemia Type I. AdamM.P. FeldmanJ. MirzaaG.M. GeneReviews.SeattleUniversity of Washington200619932024
    [Google Scholar]
  82. GhoshA. DeyJ. Physicochemical characterization and tube-like structure formation of a novel amino acid-based zwitterionic amphiphile N-(2-hydroxydodecyl)-L-valine in water.J. Phys. Chem. B2008112216629663510.1021/jp712111d 18447372
    [Google Scholar]
  83. SongH. YangG. HuangP. KongD. WangW. Self-assembled PEG–poly(l -valine) hydrogels as promising 3D cell culture scaffolds.J. Mater. Chem. B Mater. Biol. Med.2017591724173310.1039/C6TB02969H 32263913
    [Google Scholar]
/content/journals/caps/10.2174/0124522716338272241107051010
Loading
/content/journals/caps/10.2174/0124522716338272241107051010
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test