Skip to content
2000
Volume 7, Issue 1
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

The present analysis study emphasizes the polymers that are used to deliver therapeutic agents through pharmaceutical drugs. Among such dosage forms are tablets, patches, cassettes, films, semi-solids, and powders. The use of biodegradable polymers is becoming more and more common. They can degrade into non-toxic monomers, and, more significantly, they can be used to make controlled-release devices that release medications at a steady rate. Natural polymers may facilitate the distribution of medications at predetermined rates. Their readily available nature and advantageous physico-chemical characteristics make them a good candidate for use in drug delivery systems. Due to their well-established biocompatibility and biodegradability, biodegradable polymers possess extensive application within the biomedical field. In the biomedical sector, polymers are typically utilized as implants because of their ability to provide long-term capabilities. These advancements help to lessen adverse effects and other side effects while simultaneously increasing the effectiveness of healthcare. The suffering that the sick endure. Polymers are mainly used to extend the release period of pharmaceuticals and shield them against physiological circumstances. The polymer releases medication to promote swelling, breakdown, and diffusion. The review also presents mucoadhesive functions and characteristics. Systems for delivering medications already make use of plant-based polymers.

Loading

Article metrics loading...

/content/journals/caps/10.2174/0124522716311647240613050008
2024-06-21
2025-07-03
Loading full text...

Full text loading...

References

  1. JosephT. Kar MahapatraD. EsmaeiliA. Nanoparticles: Taking a unique position in medicine.Nanomaterials202313357410.3390/nano13030574 36770535
    [Google Scholar]
  2. MachtakovaM. Thrien-AubinH. LandfesterK. Polymer nano-systems for the encapsulation and delivery of active biomacromolecular therapeutic agents.Chem. Soc. Rev.202251112815210.1039/D1CS00686J 34762084
    [Google Scholar]
  3. TongX. PanW. SuT. ZhangM. DongW. QiX. Recent advances in natural polymer-based drug delivery systems.React. Funct. Polym.202014810450110.1016/j.reactfunctpolym.2020.104501
    [Google Scholar]
  4. AskarizadehM. EsfandiariN. HonarvarB. SajadianS.A. AzdarpourA. Kinetic modeling to explain the release of medicine from drug delivery systems.ChemBioEng Rev.20231061006104910.1002/cben.202300027
    [Google Scholar]
  5. AdepuS. RamakrishnaS. Controlled drug delivery systems: Current status and future directions.Molecules20212619590510.3390/molecules26195905 34641447
    [Google Scholar]
  6. SharmaS. SudhakaraP. SinghJ. IlyasR.A. AsyrafM.R.M. RazmanM.R. A critical review of biodegradable and bioactive polymer composites for bone tissue engineering and drug delivery applications.Polymers20211316262310.3390/polym13162623 34451161
    [Google Scholar]
  7. IdreesH. ZaidiS.Z.J. SabirA. KhanR.U. ZhangX. HassanS. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications.Nanomaterials20201010197010.3390/nano10101970 33027891
    [Google Scholar]
  8. SabbaghF. KimB.S. Recent advances in polymeric transdermal drug delivery systems.J. Control. Release202234113214610.1016/j.jconrel.2021.11.025 34813879
    [Google Scholar]
  9. BraatzD. CherriM. TullyM. Chemical approaches to synthetic drug delivery systems for systemic applications.Angew. Chem. Int. Ed.20226149e20220394210.1002/anie.202203942 35575255
    [Google Scholar]
  10. What are biomaterials?Available from: https://www.sigmaaldrich.com/PK/en/technical-documents/technical-article/materials-science-and-engineering/drug-delivery/tutorial (accessed on 28-5-2024)
  11. SchmaljohannD. Thermo- and pH-responsive polymers in drug delivery.Adv. Drug Deliv. Rev.200658151655167010.1016/j.addr.2006.09.020 17125884
    [Google Scholar]
  12. WuJ. ZhangZ. GuJ. Mechanism of a long-term controlled drug release system based on simple blended electrospun fibers.J. Control. Release202032033734610.1016/j.jconrel.2020.01.020 31931048
    [Google Scholar]
  13. HerdianaY. WathoniN. ShamsuddinS. MuchtaridiM. Drug release study of the chitosan-based nanoparticles.Heliyon202281e0867410.1016/j.heliyon.2021.e08674 35028457
    [Google Scholar]
  14. GhezziM. PescinaS. PadulaC. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions.J. Control. Release202133231233610.1016/j.jconrel.2021.02.031 33652113
    [Google Scholar]
  15. YangR. MannA.K.P. Van DuongT. Drug release and nanodroplet formation from amorphous solid dispersions: Insight into the roles of drug physicochemical properties and polymer selection.Mol. Pharm.20211852066208110.1021/acs.molpharmaceut.1c00055 33784104
    [Google Scholar]
  16. SongW. ZhangY. VaryambathA. KimI. Guided assembly of well-defined hierarchical nanoporous polymers by lewis acid base interactions.ACS Nano20191310117531176910.1021/acsnano.9b05727 31560521
    [Google Scholar]
  17. YolsalU. HortonT.A.R. WangM. ShaverM.P. Polymer-supported Lewis acids and bases: Synthesis and applications.Prog. Polym. Sci.202011110131310.1016/j.progpolymsci.2020.101313
    [Google Scholar]
  18. PallerlaandS. PrabhakarB. Review on polymers in drug delivery.Am J Pharmtech Res20133901917
    [Google Scholar]
  19. ParkK. ShalabyW. PaarkH. Biodegradable hydrogels for drug delivery.Lancaster, PATechnomic199310.1201/9780429259098
    [Google Scholar]
  20. RaizadaA. Polymers in drug delivery.Int J Pharma Res Devel201028920
    [Google Scholar]
  21. WengJ. TongH.H.Y. ChowS.F. In vitro release study of the polymeric drug nanoparticles: Development and validation of a novel method.Pharmaceutics202012873210.3390/pharmaceutics12080732 32759786
    [Google Scholar]
  22. SpiridonovaT.I. TverdokhlebovS.I. AnissimovY.G. Investigation of the size distribution for diffusion-controlled drug release from drug delivery systems of various geometries.J. Pharm. Sci.201910882690269710.1016/j.xphs.2019.03.036 30980858
    [Google Scholar]
  23. YahyaI. AtifR. AhmedL. EldeenT.S. OmaraA. EltayebM. Mathematical modeling of diffusion controlled drug release profiles from nanoparticles.Int J Res Sci Innov20196287291
    [Google Scholar]
  24. PandeyS.P. ShuklaT. DhoteV.K. MishraD.K. MaheshwariR. TekadeR.K. Use of polymers in controlled release of active agents.In: Basic Fundamentals of Drug Delivery.Academic Press201910.1016/B978‑0‑12‑817909‑3.00004‑2
    [Google Scholar]
  25. VisanA.I. Popescu-PelinG. SocolG. Degradation behavior of polymers used as coating materials for drug delivery: A basic review.Polymers2021138127210.3390/polym13081272 33919820
    [Google Scholar]
  26. Moradi KashkooliF. SoltaniM. SouriM. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies.J. Control. Release202032731634910.1016/j.jconrel.2020.08.012 32800878
    [Google Scholar]
  27. DeirramN. ZhangC. KermaniyanS.S. JohnstonA.P.R. SuchG.K. pH responsive polymer nanoparticles for drug delivery.Macromol. Rapid Commun.20194010180091710.1002/marc.201800917 30835923
    [Google Scholar]
  28. BamiM.S. Raeisi EstabraghM.A. KhazaeliP. OhadiM. DehghannoudehG. pH-responsive drug delivery systems as intelligent carriers for targeted drug therapy: Brief history, properties, synthesis, mechanism and application.J. Drug Deliv. Sci. Technol.20227010298710.1016/j.jddst.2021.102987
    [Google Scholar]
  29. WerzerO. TumphartS. KeimelR. ChristianP. CocliteA.M. Drug release from thin films encapsulated by a temperature-responsive hydrogel.Soft Matter20191581853185910.1039/C8SM02529K 30698598
    [Google Scholar]
  30. KouZ DouD MoH Preparation and application of a polymer with pH/temperature-responsive targeting.Int J Biol Macromol2020165Pt A995100110.1016/j.ijbiomac.2020.09.24833022350
    [Google Scholar]
  31. ChandelP. Polymers – A boon to controlled drug delivery system.Int Res J Pharm2013442834
    [Google Scholar]
  32. SanghiD.K. BorkarD.S. RakeshT. The use of novel polymers in a drug delivery & its pharmaceutical application.Asian J Biochemical Pharmaceut Res.201323169178
    [Google Scholar]
  33. RajpurohitH. SharmaS. SharmaP. BhandariA. Polymers for colon targeted drug delivery.Indian J. Pharm. Sci.201072668969610.4103/0250‑474X.84576 21969739
    [Google Scholar]
  34. WilsonC.G. MukherjiG. ShaH.K. Modified-release drug delivery technology boca raton.CRC Press2008
    [Google Scholar]
  35. Advantages and disadvantages of polymers.Available from: https://aspiringyouths.com/advantages-disadvantages/polymers/ (accessed on 28-5-2024)
    [Google Scholar]
  36. HaqueR.M. Textbook on Novel Drug Delivery System.2022242
    [Google Scholar]
  37. TeodorescuM. BerceaM. MorariuS. Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges.Biotechnol. Adv.201937110913110.1016/j.biotechadv.2018.11.008 30472307
    [Google Scholar]
  38. KunoN. FujiiS. Biodegradable intraocular therapies for retinal disorders: progress to date.Drugs Aging201027211713410.2165/11530970‑000000000‑00000 20104938
    [Google Scholar]
  39. PaoliniM.S. FentonO.S. BhattacharyaC. AndresenJ.L. Polymers for extended-release administration.Biomed. Microdevi20192124510.1007/s10544‑019‑0386‑9
    [Google Scholar]
  40. HaghjouN. SoheilianM. Sustained release intraocular drug delivery devices for treatment of uveitis.J. Ophthalmic Vis. Res.20116317329 22454753
    [Google Scholar]
  41. FloryP.J. Fundamental principles of condensation polymerization.Chem. Rev.194639113719710.1021/cr60122a003 21000141
    [Google Scholar]
  42. Garca-EstradaP. Garca-BonM.A. Lpez-NaranjoE.J. Basalda-PrezD.N. SantosA. Polymeric implants for the treatment of intraocular eye diseases: Trends in biodegradable and non-biodegradable materials.Pharmaceutics202113570110.3390/pharmaceutics13050701
    [Google Scholar]
  43. SovadinovaI. PalermoE.F. UrbanM. MpigaP. CaputoG.A. KurodaK. Activity and mechanism of antimicrobial peptide-mimetic amphiphilic polymethacrylate derivatives.Polymers2011331512153210.3390/polym3031512
    [Google Scholar]
  44. AliU. KarimK.J.B.A. BuangN.A. Review of the properties and applications of poly (methyl methacrylate) (PMMA).Polym. Rev.201555467870510.1080/15583724.2015.1031377
    [Google Scholar]
  45. KiddeeW. TropeG.E. ShengL. Beltran-AgulloL. SmithM. StrungaruM.H. Intraocular pressure monitoring post intravitreal steroids: A systematic review.Surv. Ophthalmol.201358429131010.1016/j.survophthal.2012.08.003
    [Google Scholar]
  46. Ubani-UkomaU. GibsonD. SchultzG. SilvaB.O. ChauhanA. Evaluating the potential of drug eluting contact lenses for treatment of bacterial keratitis using an ex vivo corneal model.Int. J. Pharm.201956549950810.1016/j.ijpharm.2019.05.031 31085257
    [Google Scholar]
  47. Pereira-da-MotaA.F. Vivero-LopezM. TopeteA. SerroA.P. ConcheiroA. Alvarez-LorenzoC. Atorvastatin-eluting contact lenses: Effects of molecular imprinting and sterilization on drug loading and release.Pharmaceutics202113560610.3390/pharmaceutics13050606 33922123
    [Google Scholar]
  48. IezziR. GuruB.R. GlybinaI.V. MishraM.K. KennedyA. KannanR.M. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration.Biomaterials201233397998810.1016/j.biomaterials.2011.10.010 22048009
    [Google Scholar]
  49. WangJ. WilliamsonG.S. LancinaM.G. YangH. Mildly cross-linked dendrimer hydrogel prepared via aza-Michael addition reaction for topical brimonidine delivery.J. Biomed. Nanotechnol.20171391089109610.1166/jbn.2017.2436 29479294
    [Google Scholar]
  50. AravamudhanA. RamosD.M. NadaA.A. KumbarS.G. Natural Polymers.Nat Synth Biomed Polym20142014678910.1016/B978‑0‑12‑396983‑5.00004‑1
    [Google Scholar]
  51. Swindle-ReillyK.E. MaxwellC.J. SoltiszA.M. ChoiA. RichW. Injectable alginate hydrogels for traumatic optic neuropathy.Invest. Ophthalmol. Vis. Sci.2021622682
    [Google Scholar]
  52. ReillyM.A. Swindle-ReillyK.E. Hydrogels for intraocular lenses and other ophthalmic prostheses.In: Biomedical Hydrogels.201111814810.1533/9780857091383.2.118
    [Google Scholar]
  53. RathnamC. ChuengS.T.D. YingY.L.M. LeeK.B. KwanK. Developments in bio-inspired nanomaterials for therapeutic delivery to treat hearing loss.Front. Cell. Neurosci.20191349310.3389/fncel.2019.00493 31780898
    [Google Scholar]
  54. FakhariA. CorcoranM. SchwarzA. Thermogelling properties of purified poloxamer 407.Heliyon201738e0039010.1016/j.heliyon.2017.e00390 28920092
    [Google Scholar]
  55. RussoE. VillaC. Poloxamer hydrogels for biomedical applications.Pharmaceutics2019111267110.3390/pharmaceutics11120671 31835628
    [Google Scholar]
  56. ChaiQ. JiaoY. YuX. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them.Gels201731610.3390/gels3010006 30920503
    [Google Scholar]
  57. GaustererJ.C. SaidovN. AhmadiN. Intratympanic application of poloxamer 407 hydrogels results in sustained N-acetylcysteine delivery to the inner ear.Eur. J. Pharm. Biopharm.202015014315510.1016/j.ejpb.2020.03.005 32173603
    [Google Scholar]
  58. Scioli MontotoS. MuracaG. RuizM.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects.Front. Mol. Biosci.2020758799710.3389/fmolb.2020.587997 33195435
    [Google Scholar]
  59. PyykkI. ZouJ. ZhangY. ZhangW. FengH. KinnunenP. Nanoparticle based inner ear therapy.World J. Otorhinolaryngol.20133411413310.5319/wjo.v3.i4.114
    [Google Scholar]
  60. ZhangL. XuY. CaoW. XieS. WenL. ChenG. Understanding the translocation mechanism of PLGA nanoparticles across round window membrane into the inner ear: A guideline for inner ear drug delivery based on nanomedicine.Int. J. Nanomedicine20181347949210.2147/IJN.S154968 29403277
    [Google Scholar]
  61. HuynhN.T. PassiraniC. SaulnierP. BenoitJ.P. Lipid nanocapsules: A new platform for nanomedicine.Int. J. Pharm.2009379220120910.1016/j.ijpharm.2009.04.026 19409468
    [Google Scholar]
  62. LiL. ChaoT. BrantJ. OMalleyB Jr TsourkasA LiD. Advances in nano-based inner ear delivery systems for the treatment of sensorineural hearing loss.Adv. Drug Deliv. Rev.201710821210.1016/j.addr.2016.01.004 26796230
    [Google Scholar]
  63. ScheperV. WolfM. SchollM. Potential novel drug carriers for inner ear treatment: hyperbranched polylysine and lipid nanocapsules.Nanomedicine20094662363510.2217/nnm.09.41 19663591
    [Google Scholar]
  64. MittalR. PenaS.A. ZhuA. Nanoparticle-based drug delivery in the inner ear: Current challenges, limitations and opportunities.Artif. Cells Nanomed. Biotechnol.20194711312132010.1080/21691401.2019.1573182 30987439
    [Google Scholar]
  65. OkanoT. NakagawaT. KitaT. EndoT. ItoJ. Cell-gene delivery of brain-derived neurotrophic factor to the mouse inner ear.Mol. Ther.200614686687110.1016/j.ymthe.2006.06.012 16956795
    [Google Scholar]
  66. GeX. JacksonR.L. LiuJ. Distribution of PLGA nanoparticles in chinchilla cochleae.Otolaryngol. Head Neck Surg.2007137461962310.1016/j.otohns.2007.04.013 17903580
    [Google Scholar]
  67. AvasthiA. CaroC. Pozo-TorresE. LealM.P. Garca-MartnM.L. Magnetic nanoparticles as MRI contrast agents.Top. Curr. Chem.202037834010.1007/s41061‑020‑00302‑w 32382832
    [Google Scholar]
  68. KopkeR.D. WasselR.A. MondalekF. Magnetic nanoparticles: Inner ear targeted molecule delivery and middle ear implant.Curr. Drug Metab.201011886897
    [Google Scholar]
  69. MabroukM. DasD.B. SalemZ.A. BehereiH.H. Nanomaterials for biomedical applications: Production, characterisations, recent trends and difficulties.Molecules2021264107710.3390/molecules26041077 33670668
    [Google Scholar]
  70. WangY. YangY. ShiY. SongH. YuC. Antibiotic free antibacterial strategies enabled by nanomaterials: Progress and perspectives.Adv. Mater.20203218190410610.1002/adma.201904106 31799752
    [Google Scholar]
  71. SharmaK. Natural biodegradable polymers as matrices in transdermal drug delivery.Int J Drug Dev Res20113285103
    [Google Scholar]
  72. AikawaK. MitsutakeN. UdaH. Drug release from pH-response polyvinylacetal diethylaminoacetate hydrogel, and application to nasal delivery.Int. J. Pharm.1998168218118810.1016/S0378‑5173(98)00096‑9
    [Google Scholar]
  73. AikawaK. MatsumotoK. UdaH. TanakaS. ShimamuraH. AramakiY. Hydrogel formation of the pH response polymer polyvinyl acetal diethylamino acetate (AEA).Int. J. Pharm.199816797197
    [Google Scholar]
  74. NakamuraK. MaitaniY. LowmanA.M. TakayamaK. PeppasN.A. NagaiT. Uptake and release of budesonide from mucoadhesive, pH-sensitive copolymers and their application to nasal delivery.J. Control. Release199961332933510.1016/S0168‑3659(99)00150‑9 10477805
    [Google Scholar]
  75. JeongB. KimS.W. BaeY.H. Thermosensitive sol gel reversible hydrogels.Adv. Drug Deliv. Rev.2002541375110.1016/S0169‑409X(01)00242‑3 11755705
    [Google Scholar]
  76. RydnL. EdmanP. Effect of polymers and microspheres on the nasal absorption of insulin in rats.Int. J. Pharm.1992831-311010.1016/0378‑5173(82)90002‑3
    [Google Scholar]
  77. Gonzlez-ChomnC. SilvaM. ConcheiroA. Alvarez-LorenzoC. Biomimetic contact lenses eluting olopatadine for allergic conjunctivitis.Acta Biomater.20164130231110.1016/j.actbio.2016.05.032 27221794
    [Google Scholar]
  78. BranniganRP Synthesis and evaluation of mucoadhesive acryloyl-quaternized PDMAEMA nanogels for ocular drug delivery.Colloids Surf B Biointer1555384310.1016/j.colsurfb.2017.04.05028494432
    [Google Scholar]
  79. SoniV. PandeyV. TiwariR. AsatiS. TekadeR.K. Design and evaluation of ophthalmic delivery formulations.Basic Fundamentals of Drug Delivery.New YorkAcademic Press201910.1016/B978‑0‑12‑817909‑3.00013‑3
    [Google Scholar]
  80. ChenS. HuangX. XueY. Nanotechnology-based mRNA vaccines.Nat Rev Meth Primers2023316310.1038/s43586‑023‑00246‑7
    [Google Scholar]
  81. VermaC. EbensoE.E. QuraishiM.A. Transition metal nanoparticles in ionic liquids: Synthesis and stabilization.J. Mol. Liq.201927682684910.1016/j.molliq.2018.12.063
    [Google Scholar]
  82. WadhwaA. AljabbariA. LokrasA. FogedC. ThakurA. Opportunities and challenges in the delivery of mRNA-based vaccines.Pharmaceutics202012210210.3390/pharmaceutics12020102 32013049
    [Google Scholar]
  83. Gmez-AguadoI. Rodrguez-CastejnJ. Vicente-PascualM. Rodr;guez-Gascn A, Solins M, del Pozo-Rodrguez A. Nanomedicines to deliver mRNA: State of the art and future perspectives.Nanomaterials202010236410.3390/nano10020364 32093140
    [Google Scholar]
  84. LeeY. JeongM. ParkJ. JungH. LeeH. Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics.Exp. Mol. Med.202355102085209610.1038/s12276‑023‑01086‑x 37779140
    [Google Scholar]
  85. ShiD. BeasockD. FesslerA. To PEGylate or not to PEGylate: Immunological properties of nanomedicines most popular component, polyethylene glycol and its alternatives.Adv. Drug Deliv. Rev.202218011407910.1016/j.addr.2021.114079 34902516
    [Google Scholar]
  86. TenchovR. SassoJ.M. ZhouQ.A. PEGylated lipid nanoparticle formulations: Immunological safety and efficiency perspective.Bioconjug. Chem.202334694196010.1021/acs.bioconjchem.3c00174 37162501
    [Google Scholar]
  87. NguyenD.D. LaiJ.Y. Advancing the stimuli response of polymer-based drug delivery systems for ocular disease treatment.Polym. Chem.202011446988700810.1039/D0PY00919A
    [Google Scholar]
  88. PrasannanA. TsaiH.C. ChenY.S. HsiueG.H. A thermally triggered in situ hydrogel from poly(acrylic acid-co-N-isopropylacrylamide) for controlled release of anti-glaucoma drugs.J. Mater. Chem. B Mater. Biol. Med.20142141988199710.1039/c3tb21360a 32261635
    [Google Scholar]
  89. PrasannanA. TsaiH.C. HsiueG-H. Formulation and evaluation of epinephrine-loaded poly(acrylic acid-co-N-isopropylacrylamide) gel for sustained ophthalmic drug delivery.React. Funct. Polym.2018124404710.1016/j.reactfunctpolym.2018.01.001
    [Google Scholar]
  90. MahF. MilnerM. YiuS. DonnenfeldE. ConwayT.M. PERSIST: Physician's Evaluation of Restasis(®) Satisfaction in Second Trial of topical cyclosporine ophthalmic emulsion 0.05% for dry eye: A retrospective review.Clin. Ophthalmol.61971197610.2147/OPTH.S30261
    [Google Scholar]
  91. LancinaM.G. YangH. Dendrimers for ocular drug delivery.Can. J. Chem.201795989790210.1139/cjc‑2017‑0193 29147035
    [Google Scholar]
/content/journals/caps/10.2174/0124522716311647240613050008
Loading
/content/journals/caps/10.2174/0124522716311647240613050008
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test