Skip to content
2000
Volume 7, Issue 1
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Background

Discontinuation and poor compliance with long-term oral medicine are major therapeutic issues in psychosis treatment. Poorer long-term outcomes may result from non-compliance as well as a higher chance of relapse. In order to sustain therapeutic drug plasma levels, co-administration of oral antipsychotics is necessary for commercially available long-acting injections of second-generation antipsychotics, as they have a lag period of approximately three weeks during the drug release process.

Methods

Poly(lactic-co-glycolic acid) (PLGA) encapsulated microspheres loaded with risperidone were fabricated in the current research for intramuscular administration. The single emulsion solvent evaporation technique was applied for the fabrication of microspheres. Risperidone microspheres were prepared using PLGA grade 75:25. Particle size, drug content and entrapment efficiency with a central composite design were the main optimization parameters for the formulation. The microspheres were characterized by different techniques, namely Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometry (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The drug content, entrapment efficiency, morphology, particle size, and release profiles, along with release kinetics of the risperidone microspheres, were studied.

Results and Discussion

The microspheres produced by the single emulsion solvent evaporation approach show smooth and spherical morphology, with particle size ranging from 3 μm to 6 μm, drug content of 99.7%, and entrapment efficiency of 98.2% with little burst release of 3% to 10%, providing drug release for 45 days and exhibiting zero order release kinetics and Korsmeyer-Peppas model for non-fickian drug release from the polymeric matrix. By applying the Quality by Design (QbD) approach and formulation parameters, microspheres with appropriate particle size, morphology, enhanced drug content, entrapment efficiency and desirable drug release profile for depot formulation can be obtained successfully.

Conclusion

The optimized microspheres, in comparison to the marketed Risperdal Consta™, show enhanced potential for a better depot formulation, which can further improve patient compliance.

Loading

Article metrics loading...

/content/journals/caps/10.2174/0124522716306759240522112102
2024-05-23
2025-06-22
Loading full text...

Full text loading...

References

  1. RubioM.D. DrummondJ.B. Meador-WoodruffJ.H. Glutamate receptor abnormalities in schizophrenia: implications for innovative treatments.Biomol. Ther.201220111810.4062/biomolther.2012.20.1.00124116269
    [Google Scholar]
  2. RösslerW. Joachim SalizeH. van OsJ. Riecher-RösslerA. Size of burden of schizophrenia and psychotic disorders.Eur. Neuropsychopharmacol.200515439940910.1016/j.euroneuro.2005.04.00915925493
    [Google Scholar]
  3. Practice guideline for the treatment of patients with schizophrenia.Am. J. Psychiatry1997154416310.1176/ajp.154.4.1
    [Google Scholar]
  4. SuZ.X. ShiY.N. TengL.S. Biodegradable poly(D, L-lactide-co-glycolide) (PLGA) microspheres for sustained release of risperidone: Zero-order release formulation.Pharm. Dev. Technol.201116437738410.3109/1083745100373929720370594
    [Google Scholar]
  5. BawejaR. SedkyK. LippmannS. Long-acting antipsychotic medications.Curr. Drug Targets201213455556010.2174/13894501279949978522250654
    [Google Scholar]
  6. KaneJ.M. AgugliaE. AltamuraA.C. Guidelines for depot antipsychotic treatment in schizophrenia.Eur. Neuropsychopharmacol.199881556610.1016/S0924‑977X(97)00045‑X9452941
    [Google Scholar]
  7. BarnesT.R.E. CursonD.A. Long-term depot antipsychotics. A risk-benefit assessment.Drug Saf.199410646447910.2165/00002018‑199410060‑000057917075
    [Google Scholar]
  8. NayakR.K. DooseD.R. NairN.P.V. The bioavailability and pharmacokinetics of oral and depot intramuscular haloperidol in schizophrenic patients.J. Clin. Pharmacol.198727214415010.1002/j.1552‑4604.1987.tb02175.x3680566
    [Google Scholar]
  9. SchwendemanS.P. ShahR.B. BaileyB.A. SchwendemanA.S. Injectable controlled release depots for large molecules.J. Control. Release201419024025310.1016/j.jconrel.2014.05.05724929039
    [Google Scholar]
  10. WanF. YangM. Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying.Int. J. Pharm.20164981-2829510.1016/j.ijpharm.2015.12.02526688034
    [Google Scholar]
  11. FleischhackerW.W. Second-generation antipsychotic long-acting injections: Systematic review.Br. J. Psychiatry2009195S52s29s3610.1192/bjp.195.52.s2919880914
    [Google Scholar]
  12. ChaurasiaS. MounikaK. BakshiV. PrasadV. 3-month parenteral PLGA microsphere formulations of risperidone: Fabrication, characterization and neuropharmacological assessments.Mater. Sci. Eng. C2017751496150510.1016/j.msec.2017.03.06528415443
    [Google Scholar]
  13. DavisJ.M. MetalonL. WatanabeM.D. BlakeL. Depot antipsychotic drugs: Place in therapy.Drugs199447574177310.2165/00003495‑199447050‑000047520856
    [Google Scholar]
  14. KaneJ.M. Pharmacologic treatment of schizophrenia.Biol. Psychiatry199946101396140810.1016/S0006‑3223(99)00059‑110578454
    [Google Scholar]
  15. JohnsonD. Long-term drug treatment of psychosis: Observations on some current issues.Int. Rev. Psychiatry199023-434135310.3109/09540269009026605
    [Google Scholar]
  16. WyattR.J. Neuroleptics and the natural course of schizophrenia.Schizophr. Bull.199117232535110.1093/schbul/17.2.3251679255
    [Google Scholar]
  17. KaneJ.M. EerdekensM. LindenmayerJ.P. KeithS.J. LesemM. KarcherK. Long-acting injectable risperidone: Efficacy and safety of the first long-acting atypical antipsychotic.Am. J. Psychiatry200316061125113210.1176/appi.ajp.160.6.112512777271
    [Google Scholar]
  18. AdamsC.E. FentonM.K.P. QuraishiS. DavidA.S. Systematic meta-review of depot antipsychotic drugs for people with schizophrenia.Br. J. Psychiatry2001179429029910.1192/bjp.179.4.29011581108
    [Google Scholar]
  19. DavisJ.M. JanicakP.G. SinglaA. SharmaR.P. Antipsychotic Drugs and Their Side-Effects Chap Maintenance medication.LondonAcademic Press199318320310.1016/B978‑0‑12‑079035‑7.50019‑1
    [Google Scholar]
  20. RamstackM. GrandolfiG.P. MannaertE. D’HooreP. LasserR.A. Long-acting risperidone: Prolonged-release injectable delivery of risperidone using medisorbò microsphere technology.Schizophr. Res.200360131410.1016/S0920‑9964(03)80260‑8
    [Google Scholar]
  21. DavisS.S. HardyJ.G. NewmanS.P. WildingI.R. Gamma scintigraphy in the evaluation of pharmaceutical dosage forms.Eur. J. Nucl. Med.1992191197198610.1007/BF001758651425786
    [Google Scholar]
  22. ChengY.H. IllumL. DavisS.S. A poly(d,l-lactide-co-glycolide) microsphere depot system for delivery of haloperidol.J. Control. Release1998552-320321210.1016/S0168‑3659(98)00056‑X9795060
    [Google Scholar]
  23. KnoxE.D. StimmelG.L. Clinical review of a long-acting, injectable formulation of risperidone.Clin. Ther.200426121994200210.1016/j.clinthera.2004.12.00915823763
    [Google Scholar]
  24. LoveR.C. ConleyR.J. Long-acting risperidone injection.Am. J. Health Syst. Pharm.200461171792180010.1093/ajhp/61.17.179215462250
    [Google Scholar]
  25. LealA. RosillonD. MehnertA. JaremaM. RemingtonG. Healthcare resource utilization during 1‐year treatment with long‐acting, injectable risperidone.Pharmacoepidemiol. Drug Saf.2004131181181610.1002/pds.97815386706
    [Google Scholar]
  26. D’SouzaS. FarajJ.A. GiovagnoliS. DeLucaP.P. Development of risperidone PLGA microspheres.J. Drug Deliv.201462046410.1155/2014/620464
    [Google Scholar]
  27. OrkoulaM.G. KontoyannisC.G. Non-destructive quantitative analysis of risperidone in film-coated tablets.J. Pharm. Biomed. Anal.200847363163510.1016/j.jpba.2008.01.04918359600
    [Google Scholar]
  28. GiovagnoliS. BlasiP. RicciM. RossiC. Biodegradable microspheres as carriers for native superoxide dismutase and catalase delivery.AAPS PharmSciTech2004541910.1208/pt05045115760048
    [Google Scholar]
  29. GrefR. QuellecP. SanchezA. CalvoP. DellacherieE. AlonsoM.J. Development and characterization of CyA-loaded poly(lactic acid)–poly(ethylene glycol)PEG micro- and nanoparticles. Comparison with conventional PLA particulate carriers.Eur. J. Pharm. Biopharm.200151211111810.1016/S0939‑6411(00)00143‑011226817
    [Google Scholar]
  30. KhangG. RheeJ.M. JeongJ.K. Local drug delivery system using biodegradable polymers.Macromol. Res.200311420722310.1007/BF03218355
    [Google Scholar]
  31. HausbergerA.G. DeLucaP.P. Characterization of biodegradable poly(d,l-lactide-co-glycolide) polymers and microspheres.J. Pharm. Biomed. Anal.199513674776010.1016/0731‑7085(95)01276‑Q7669829
    [Google Scholar]
  32. EdlundU AlbertssonAC Degradable polymer microspheres for controlled drug delivery.Degradable aliphatic polyesters20026711210.1007/3‑540‑45734‑8_3
    [Google Scholar]
  33. OkadaH. One- and three-month release injectable microspheres of the LH-RH superagonist leuprorelin acetate.Adv. Drug Deliv. Rev.1997281437010.1016/S0169‑409X(97)00050‑110837564
    [Google Scholar]
  34. D’SouzaS.S. SelminF. MurtyS.B. QiuW. ThanooB.C. DeLucaP.P. Assessment of fertility in male rats after extended chemical castration with a GnRH antagonist.AAPS PharmSci200461949910.1208/ps06011015198511
    [Google Scholar]
  35. OkadaH. DokenY. OgawaY. ToguchiH. Preparation of three-month depot injectable microspheres of leuprorelin acetate using biodegradable polymers.Pharm. Res.19941181143114710.1023/A:10189368156547971715
    [Google Scholar]
  36. WooB.H. KostanskiJ.W. GebrekidanS. DaniB.A. ThanooB.C. DeLucaP.P. Preparation, characterization and in vivo evaluation of 120-day poly(d,l-lactide) leuprolide microspheres.J. Control. Release200175330731510.1016/S0168‑3659(01)00403‑511489318
    [Google Scholar]
  37. WooB.H. NaK.H. DaniB.A. JiangG. ThanooB.C. DeLucaP.P. In vitro characterization and in vivo testosterone suppression of 6-month release poly(D,L-lactide) leuprolide microspheres.Pharm. Res.200219454655010.1023/A:101516830133912033393
    [Google Scholar]
  38. ChueP. EerdekensM. AugustynsI. Comparative efficacy and safety of long-acting risperidone and risperidone oral tablets.Eur. Neuropsychopharmacol.200515111111710.1016/j.euroneuro.2004.07.00315572280
    [Google Scholar]
  39. BurgessD. HickeyA. Microspheres.Drugs and the Pharmaceutical Sciences200514930535310.1201/9780849350610.ch9
    [Google Scholar]
  40. HickeyT. KreutzerD. BurgessD.J. MoussyF. Dexamethasone/PLGA microspheres for continuous delivery of an anti-inflammatory drug for implantable medical devices.Biomaterials20022371649165610.1016/S0142‑9612(01)00291‑511922468
    [Google Scholar]
  41. ParkT.G. Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition.Biomaterials199516151123113010.1016/0142‑9612(95)93575‑X8562787
    [Google Scholar]
  42. BegS. RahmanM. PandaS.S. Pharmaceutical QbD: Omnipresence in the product development lifecycle.Eur Pharm Rev20172215864
    [Google Scholar]
  43. SinghB. BegS. Quality by design in product development life cycle.Chronicle Pharmabiz2013227279
    [Google Scholar]
  44. BhoopB.S. RazaK. BegS. Developing “optimized” drug products employing “designed” experiments.Chemical Industry Digest2013237076
    [Google Scholar]
  45. RoseF. WernJ.E. IngvarssonP.T. Engineering of a novel adjuvant based on lipid-polymer hybrid nanoparticles: A quality-by-design approach.J. Control. Release2015210485710.1016/j.jconrel.2015.05.00425957906
    [Google Scholar]
  46. ChuD. TianJ. LiuW. LiZ. LiY. Poly(lactic-co-glycolic acid) microspheres for the controlled release of huperzine A: In vitro and in vivo studies and the application in the treatment of the impaired memory of mice.Chem. Pharm. Bull.200755462562810.1248/cpb.55.62517409558
    [Google Scholar]
  47. SuZ. SunF. ShiY. Effects of formulation parameters on encapsulation efficiency and release behavior of risperidone poly(D,L-lactide-co-glycolide) microsphere.Chem. Pharm. Bull.200957111251125610.1248/cpb.57.125119881277
    [Google Scholar]
  48. Al-KassasR. Design and in vitro evaluation of gentamicin–Eudragit microspheres intended for intra-ocular administration.J. Microencapsul.2004211718110.1080/0265204031000161999214718187
    [Google Scholar]
  49. GaoL. ZhangD. ChenM. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system.J. Nanopart. Res.200810584586210.1007/s11051‑008‑9357‑4
    [Google Scholar]
  50. LiuW.H. SongJ.L. LiuK. ChuD.F. LiY.X. Preparation and in vitro and in vivo release studies of Huperzine A loaded microspheres for the treatment of Alzheimer’s disease.J. Control. Release2005107341742710.1016/j.jconrel.2005.03.02516154224
    [Google Scholar]
  51. BerklandC. KipperM.J. NarasimhanB. KimK.K. PackD.W. Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres.J. Control. Release200494112914110.1016/j.jconrel.2003.09.01114684277
    [Google Scholar]
  52. YildizB.C. KayanA. Ti(IV)-silyliminophenolate catalysts for ϵ-caprolactone and L-Lactide polymerization.Sustain. Chem. Pharm.20212110041610.1016/j.scp.2021.100416
    [Google Scholar]
  53. KayanG.Ö. KayanA. Polycaprolactone composites/blends and their applications especially in water treatment.ChemEngineering20237610410.3390/chemengineering7060104
    [Google Scholar]
  54. DanielJ.S.P. VeronezI.P. RodriguesL.L. TrevisanM.G. GarciaJ.S. Risperidone – Solid-state characterization and pharmaceutical compatibility using thermal and non-thermal techniques.Thermochim. Acta201356814815510.1016/j.tca.2013.06.032
    [Google Scholar]
  55. KaravelidisV. GiliopoulosD. KaravasE. BikiarisD. Nanoencapsulation of a water soluble drug in biocompatible polyesters. Effect of polyesters melting point and glass transition temperature on drug release behavior.Eur. J. Pharm. Sci.201041563664310.1016/j.ejps.2010.09.00420863892
    [Google Scholar]
  56. KaravelidisV. BikiarisD. AvgoustakisK. New thermosensitive nanoparticles prepared by biocompatible pegylated aliphatic polyester block copolymers for local cancer treatment.J. Pharm. Pharmacol.201567221523010.1111/jphp.1233725616209
    [Google Scholar]
  57. BeslikasT. GigisI. GouliosV. ChristoforidesJ. PapageorgiouG.Z. BikiarisD.N. Crystallization study and comparative in vitro-in vivo hydrolysis of PLA reinforcement ligament.Int. J. Mol. Sci.201112106597661810.3390/ijms1210659722072906
    [Google Scholar]
  58. PapageorgiouG.Z. BeslikasT. GigisJ. ChristoforidesJ. BikiarisD.N. Crystallization and enzymatic hydrolysis of PLA grade for orthopedics.Adv. Polym. Technol.201029428029910.1002/adv.20194
    [Google Scholar]
  59. RamanC. BerklandC. KimK.K. PackD.W. Modeling small-molecule release from PLG microspheres: Effects of polymer degradation and nonuniform drug distribution.J. Control. Release2005103114915810.1016/j.jconrel.2004.11.01215773062
    [Google Scholar]
  60. RamstackJ. GrandolfiG. MannaertE. D’HooreP. LasserR.A. Risperdal Consta TM: prolonged-release injectable delivery of risperidone using Medisorb VR microsphere technology.Abstr Am Assoc Pharm Sci20024S1
    [Google Scholar]
  61. SiafakaP.I. BarmpalexisP. LazaridouM. Controlled release formulations of risperidone antipsychotic drug in novel aliphatic polyester carriers: Data analysis and modelling.Eur. J. Pharm. Biopharm.20159447348410.1016/j.ejpb.2015.06.02726159838
    [Google Scholar]
  62. HoffmanA.S. The origins and evolution of “controlled” drug delivery systems.J. Control. Release2008132315316310.1016/j.jconrel.2008.08.01218817820
    [Google Scholar]
  63. WuF. JinT. Polymer-based sustained-release dosage forms for protein drugs, challenges, and recent advances.AAPS PharmSciTech2008941218122910.1208/s12249‑008‑9148‑319085110
    [Google Scholar]
  64. MitragotriS. BurkeP.A. LangerR. Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strategies.Nat. Rev. Drug Discov.201413965567210.1038/nrd436325103255
    [Google Scholar]
  65. FuX. PingQ. GaoY. Effects of formulation factors on encapsulation efficiency and release behaviour in vitro of huperzine A-PLGA microspheres.J. Microencapsul.200522770571410.1080/0265204050016219616421082
    [Google Scholar]
  66. HuangZ. ChenX. FuH. Formation mechanism and in vitro evaluation of risperidone-containing PLGA microspheres fabricated by ultrafine particle processing system.J. Pharm. Sci.2017106113363337110.1016/j.xphs.2017.07.01028736289
    [Google Scholar]
  67. HuZ. LiuY. YuanW. WuF. SuJ. JinT. Effect of bases with different solubility on the release behavior of risperidone loaded PLGA microspheres.Colloids Surf. B Biointerfaces201186120621110.1016/j.colsurfb.2011.03.04321524893
    [Google Scholar]
  68. GeorgiadisM.C. KostoglouM. On the optimization of drug release from multi-laminated polymer matrix devices.J. Control. Release200177327328510.1016/S0168‑3659(01)00510‑711733095
    [Google Scholar]
  69. IordanskiiA.L. ZaikovG.E. BerlinA.A. Diffusion kinetics of hydrolysis of biodegradable polymers. Weight loss and control of the release of low molecular weight substances.Polym. Sci. Ser. D Glues Sealing Mater.20158321121810.1134/S1995421215030053
    [Google Scholar]
  70. NanakiS. BarmpalexisP. IatrouA. ChristodoulouE. KostoglouM. BikiarisD. Risperidone controlled release microspheres based on poly (lactic acid)-poly (propylene adipate) novel polymer blends appropriate for long acting injectable formulations.Pharmaceutics201810313010.3390/pharmaceutics1003013030104505
    [Google Scholar]
  71. KorsmeyerR.W. GurnyR. DoelkerE. BuriP. PeppasN.A. Mechanisms of solute release from porous hydrophilic polymers.Int. J. Pharm.1983151253510.1016/0378‑5173(83)90064‑9
    [Google Scholar]
  72. CrankJ. The mathematics of diffusion.Oxford University Press1979
    [Google Scholar]
  73. BarmpalexisP. KachrimanisK. MalamatarisS. Statistical moments in modelling of swelling, erosion and drug release of hydrophilic matrix-tablets.Int. J. Pharm.20185401-211010.1016/j.ijpharm.2018.01.05229407874
    [Google Scholar]
/content/journals/caps/10.2174/0124522716306759240522112102
Loading
/content/journals/caps/10.2174/0124522716306759240522112102
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): antipsychotic; PLGA; quality by design (QbD); Risperidone; SEM; TEM
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test