Skip to content
2000
image of Nanocarrier Delivery of Cisplatin and its Patent Studies

Abstract

Cisplatin, also known as cis-(diammine) dichloridoplatinum (II) or CDDP, is frequently used as first-line chemotherapy in head, neck, and lung malignancies. It can be given as a single agent or in conjunction with radiation therapy and/or other anti-cancer chemotherapeutic agents. Now, experiences based on PEGylated liposome-based nano-formulations AroplatinTM, LipoplatinTM, and SPI-077 are undergoing clinical trials. These cisplatin drug delivery systems resolve issues like poor solubility in water, drug resistance, and toxicity by using nanocarrier systems. The above-cited nano-delivery technologies for cisplatin have been extensively described in numerous pieces of literature existing in various databases. Essentially, this evaluation gives a severe focus on newer information, invented news, and up-to-date articles regarding various carrier systems for CDDP and the newer patents of this drug formulation.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873332471241022152313
2024-10-31
2025-06-22
Loading full text...

Full text loading...

References

  1. Chen X.J. Zhang X.Q. Liu Q. Zhang J. Zhou G. Nanotechnology: A promising method for oral cancer detection and diagnosis. J. Nanobiotechnology 2018 16 1 52 10.1186/s12951‑018‑0378‑6 29890977
    [Google Scholar]
  2. Karkan SF Davaran S Akbarzadeh S Cisplatin-loaded superparamagnetic nanoparticles modified with PCL-PEG copolymers as a treatment of A549 lung cancer cells. NanoMed. Res. J. 4 4 209 219 2019 10.22034/nmrj.2019.04.002
    [Google Scholar]
  3. Dancey J.E. Chen H.X. Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat. Rev. Drug Discov. 2006 5 8 649 659 10.1038/nrd2089 16883303
    [Google Scholar]
  4. Han Y. An Y. Jia G. Wang X. He C. Ding Y. Tang Q. Theranostic micelles based on upconversion nanoparticles for dual-modality imaging and photodynamic therapy in hepatocellular carcinoma. Nanoscale 2018 10 14 6511 6523 10.1039/C7NR09717D 29569668
    [Google Scholar]
  5. Sajid M. Ilyas M. Basheer C. Tariq M. Daud M. Baig N. Shehzad F. Impact of nanoparticles on human and environment: Review of toxicity factors, exposures, control strategies, and future prospects. Environ. Sci. Pollut. Res. Int. 2015 22 6 4122 4143 10.1007/s11356‑014‑3994‑1 25548015
    [Google Scholar]
  6. Pabla N. Dong Z. Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney Int. 2008 73 9 994 1007 10.1038/sj.ki.5002786 18272962
    [Google Scholar]
  7. Biersack B. Relations between approved platinum drugs and non-coding RNAs in mesothelioma. Noncoding RNA Res. 2018 3 4 161 173 10.1016/j.ncrna.2018.08.001 30809599
    [Google Scholar]
  8. Oberoi H.S. Nukolova N.V. Kabanov A.V. Bronich T.K. Nanocarriers for delivery of platinum anticancer drugs. Adv. Drug Deliv. Rev. 2013 65 13-14 1667 1685 10.1016/j.addr.2013.09.014 24113520
    [Google Scholar]
  9. Schaake-Koning C. van den Bogaert W. Dalesio O. Festen J. Hoogenhout J. van Houtte P. Kirkpatrick A. Koolen M. Maat B. Nijs A. Renaud A. Rodrigus P. Schuster-Uitterhoeve L. Sculier J-P. van Zandwijk N. Bartelink H. Effects of concomitant cisplatin and radiotherapy on inoperable non-small-cell lung cancer. N. Engl. J. Med. 1992 326 8 524 530 10.1056/NEJM199202203260805 1310160
    [Google Scholar]
  10. Hellberg V. Wallin I. Eriksson S. Hernlund E. Jerremalm E. Berndtsson M. Eksborg S. Arnér E.S.J. Shoshan M. Ehrsson H. Laurell G. Cisplatin and oxaliplatin toxicity: Importance of cochlear kinetics as a determinant for ototoxicity. J. Natl. Cancer Inst. 2009 101 1 37 47 10.1093/jnci/djn418 19116379
    [Google Scholar]
  11. Burger H. Loos W.J. Eechoute K. Verweij J. Mathijssen R.H.J. Wiemer E.A.C. Drug transporters of platinum-based anticancer agents and their clinical significance. Drug Resist. Updat. 2011 14 1 22 34 10.1016/j.drup.2010.12.002 21251871
    [Google Scholar]
  12. Farasati Far B. Maleki-baladi R. Fathi-karkan S. Babaei M. Sargazi S. Biomedical applications of cerium vanadate nanoparticles: A review. J. Mater. Chem. B Mater. Biol. Med. 2024 12 3 609 636 10.1039/D3TB01786A 38126443
    [Google Scholar]
  13. El-Say K.M. El-Sawy H.S. Polymeric nanoparticles: Promising platform for drug delivery. Int. J. Pharm. 2017 528 1-2 675 691 10.1016/j.ijpharm.2017.06.052 28629982
    [Google Scholar]
  14. Boulikas T. Low toxicity and anticancer activity of a novel liposomal cisplatin (Lipoplatin) in mouse xenografts. Oncol. Rep. 2004 12 1 3 12 10.3892/or.12.1.3 15201951
    [Google Scholar]
  15. Boulikas T. Clinical overview on Lipoplatin ™: A successful liposomal formulation of cisplatin. Expert Opin. Investig. Drugs 2009 18 8 1197 1218 10.1517/13543780903114168 19604121
    [Google Scholar]
  16. Javad Javid-Naderi M. Valizadeh N. Banimohamad-Shotorbani B. Shahgolzari M. Shayegh F. Maleki-baladi R. Sargazi S. Fathi-karkan S. Exploring the biomedical potential of iron vanadate Nanoparticles: A comprehensive review. Inorg. Chem. Commun. 2023 157 111423 10.1016/j.inoche.2023.111423
    [Google Scholar]
  17. Shi C. Yu H. Sun D. Ma L. Tang Z. Xiao Q. Chen X. Cisplatin-loaded polymeric nanoparticles: Characterization and potential exploitation for the treatment of non-small cell lung carcinoma. Acta Biomater. 2015 18 68 76 10.1016/j.actbio.2015.02.009 25707922
    [Google Scholar]
  18. Risnayanti C. Jang Y.S. Lee J. Ahn H.J. PLGA nanoparticles co-delivering MDR1 and BCL2 siRNA for overcoming resistance of paclitaxel and cisplatin in recurrent or advanced ovarian cancer. Sci. Rep. 2018 8 1 7498 10.1038/s41598‑018‑25930‑7 29760419
    [Google Scholar]
  19. Wang Y. Liu P. Qiu L. Sun Y. Zhu M. Gu L. Di W. Duan Y. Toxicity and therapy of cisplatin-loaded EGF modified mPEG-PLGA-PLL nanoparticles for SKOV3 cancer in mice. Biomaterials 2013 34 16 4068 4077 10.1016/j.biomaterials.2012.12.033 23480957
    [Google Scholar]
  20. Reardon P. Parhizkar M. Harker A. Browning R. Vassileva V. Stride E. Pedley B. Edirisinghe M. Knowles J. Electrohydrodynamic fabrication of core–shell PLGA nanoparticles with controlled release of cisplatin for enhanced cancer treatment. Int. J. Nanomedicine 2017 12 3913 3926 10.2147/IJN.S134833 28579777
    [Google Scholar]
  21. Alam N. Koul M. Mintoo M.J. Khare V. Gupta R. Rawat N. Sharma P.R. Singh S.K. Mondhe D.M. Gupta P.N. Development and characterization of hyaluronic acid modified PLGA based nanoparticles for improved efficacy of cisplatin in solid tumor. Biomed. Pharmacother. 2017 95 856 864 10.1016/j.biopha.2017.08.108 28903181
    [Google Scholar]
  22. Tian J. Min Y. Rodgers Z. Wan X. Qiu H. Mi Y. Tian X. Wagner K.T. Caster J.M. Qi Y. Roche K. Zhang T. Cheng J. Wang A.Z. Nanoparticle delivery of chemotherapy combination regimen improves the therapeutic efficacy in mouse models of lung cancer. Nanomedicine 2017 13 3 1301 1307 10.1016/j.nano.2016.11.007 27884641
    [Google Scholar]
  23. Shabani R. Ashjari M. Ashtari K. Izadyar F. Behnam B. Khoei S. Asghari-Jafarabadi M. Koruji M. Elimination of mouse tumor cells from neonate spermatogonial cells utilizing cisplatin-entrapped folic acid-conjugated poly(lactic-co-glycolic acid) nanoparticles in vitro. Int. J. Nanomedicine 2018 13 2943 2954 10.2147/IJN.S155052 29849458
    [Google Scholar]
  24. Peres C. Matos A.I. Conniot J. Sainz V. Zupančič E. Silva J.M. Graça L. Sá Gaspar R. Préat V. Florindo H.F. Poly(lactic acid)-based particulate systems are promising tools for immune modulation. Acta Biomater. 2017 48 41 57 10.1016/j.actbio.2016.11.012 27826003
    [Google Scholar]
  25. Muthu M.S. Nanoparticles based on PLGA and its co-polymer: An overview. Asian J. Pharm. 2009 3 4 266 10.4103/0973‑8398.59948
    [Google Scholar]
  26. Karkan S.F. Zeeshan M. Qindeel M. Malekshah R.E. Rahdar A. Ferreira L.F.R. NPs loaded with zoledronic acid as an advanced tool for cancer therapy. J. Drug Deliv. Sci. Technol. 87 104805 2023 10.1016/j.jddst.2023.104805
    [Google Scholar]
  27. Mi Y. Zhao J. Feng S.S. Targeted co-delivery of docetaxel, cisplatin and herceptin by vitamin E TPGS-cisplatin prodrug nanoparticles for multimodality treatment of cancer. J. Control. Release 2013 169 3 185 192 10.1016/j.jconrel.2013.01.035 23403395
    [Google Scholar]
  28. Babu A. Amreddy N. Muralidharan R. Pathuri G. Gali H. Chen A. Zhao Y.D. Munshi A. Ramesh R. Chemodrug delivery using integrin-targeted PLGA-Chitosan nanoparticle for lung cancer therapy. Sci. Rep. 2017 7 1 14674 10.1038/s41598‑017‑15012‑5 29116098
    [Google Scholar]
  29. Kim J.H. Kim Y.S. Park K. Lee S. Nam H.Y. Min K.H. Jo H.G. Park J.H. Choi K. Jeong S.Y. Park R.W. Kim I.S. Kim K. Kwon I.C. Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J. Control. Release 2008 127 1 41 49 10.1016/j.jconrel.2007.12.014 18234388
    [Google Scholar]
  30. Trummer R. Rangsimawong W. Sajomsang W. Kumpugdee-Vollrath M. Opanasopit P. Tonglairoum P. Chitosan-based self-assembled nanocarriers coordinated to cisplatin for cancer treatment. RSC Advances 2018 8 41 22967 22973 10.1039/C8RA03069C 35540171
    [Google Scholar]
  31. Sultan M.H. Moni S.S. Madkhali O.A. Bakkari M.A. Alshahrani S. Alqahtani S.S. Alhakamy N.A. Mohan S. Ghazwani M. Bukhary H.A. Almoshari Y. Salawi A. Alshamrani M. Characterization of cisplatin-loaded chitosan nanoparticles and rituximab-linked surfaces as target-specific injectable nano-formulations for combating cancer. Sci. Rep. 2022 12 1 468 10.1038/s41598‑021‑04427‑w 35013493
    [Google Scholar]
  32. Soodvilai S. Soodvilai S. Sajomsang W. Rojanarata T. Patrojanasophon P. Opanasopit P. Chitosan polymeric micelles for prevention of cisplatin-induced nephrotoxicity and anticancer activity of cisplatin. ICBET '20: Proceedings of the 2020 10th International Conference on Biomedical Engineering and Technology Tokyo, Japan, 15-18 Sept, 2020, pp. 197-201. 2020 10.1145/3397391.3397438
    [Google Scholar]
  33. Hassanen E.I. Korany R.M.S. Bakeer A.M. Cisplatin-conjugated gold nanoparticles-based drug delivery system for targeting hepatic tumors. J. Biochem. Mol. Toxicol. 2021 35 5 e22722 10.1002/jbt.22722 33484050
    [Google Scholar]
  34. Kates M. Date A. Yoshida T. Afzal U. Kanvinde P. Babu T. Sopko N.A. Matsui H. Hahn N.M. McConkey D.J. Baras A. Hanes J. Ensign L. Bivalacqua T.J. Preclinical evaluation of intravesical cisplatin nanoparticles for non-muscle-invasive bladder cancer. Clin. Cancer Res. 2017 23 21 6592 6601 10.1158/1078‑0432.CCR‑17‑1082 28808039
    [Google Scholar]
  35. Ling X. Chen X. Riddell I.A. Tao W. Wang J. Hollett G. Lippard S.J. Farokhzad O.C. Shi J. Wu J. Glutathione-scavenging poly(disulfide amide) nanoparticles for effective delivery of Pt(IV) prodrugs and reversal of cisplatin resistance. Nano Lett. 2018 18 7 4618 4625 10.1021/acs.nanolett.8b01924 29902013
    [Google Scholar]
  36. Tseng C.L. Su W.Y. Yen K.C. Yang K.C. Lin F.H. The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation. Biomaterials 2009 30 20 3476 3485 10.1016/j.biomaterials.2009.03.010 19345990
    [Google Scholar]
  37. Ding D. Zhu Z. Liu Q. Wang J. Hu Y. Jiang X. Liu B. Cisplatin-loaded gelatin-poly(acrylic acid) nanoparticles: Synthesis, antitumor efficiency in vivo and penetration in tumors. Eur. J. Pharm. Biopharm. 2011 79 1 142 149 10.1016/j.ejpb.2011.01.008 21272637
    [Google Scholar]
  38. Li C. Ge X. Wang L. Construction and comparison of different nanocarriers for co-delivery of cisplatin and curcumin: A synergistic combination nanotherapy for cervical cancer. Biomed. Pharmacother. 2017 86 628 636 10.1016/j.biopha.2016.12.042 28027539
    [Google Scholar]
  39. Guo S. Wang Y. Miao L. Xu Z. Lin C.M. Zhang Y. Huang L. Lipid-coated Cisplatin nanoparticles induce neighboring effect and exhibit enhanced anticancer efficacy. ACS Nano 2013 7 11 9896 9904 10.1021/nn403606m 24083505
    [Google Scholar]
  40. Qu C.Y. Zhou M. Chen Y.W. Chen M.M. Shen F. Xu L.M. Engineering of lipid prodrug-based, hyaluronic acid-decorated nanostructured lipid carriers platform for 5-fluorouracil and cisplatin combination gastric cancer therapy. Int. J. Nanomedicine 2015 10 3911 3920 26089667
    [Google Scholar]
  41. Gao Z. You C. Wu H. Wang M. Zhang X. Sun B. FA and cRGD dual modified lipid-polymer nanoparticles encapsulating polyaniline and cisplatin for highly effective chemo-photothermal combination therapy. J. Biomater. Sci. Polym. Ed. 2018 29 4 397 411 10.1080/09205063.2017.1421348 29271285
    [Google Scholar]
  42. Xiong Y. Jiang W. Shen Y. Li H. Sun C. Ouahab A. Tu J. A Poly(γ, l-glutamic acid)-citric acid based nanoconjugate for cisplatin delivery. Biomaterials 2012 33 29 7182 7193 10.1016/j.biomaterials.2012.06.071 22795851
    [Google Scholar]
  43. Chen Q. Yang Y. Lin X. Ma W. Chen G. Li W. Wang X. Yu Z. Platinum(iv) prodrugs with long lipid chains for drug delivery and overcoming cisplatin resistance. Chem. Commun. (Camb.) 2018 54 42 5369 5372 10.1039/C8CC02791A 29744485
    [Google Scholar]
  44. Wang H. Xiong Y. Wang R. Yu Y. Wang J. Hu Z. Sun C. Tu J. He D. Cisplatin-stitched α-poly(glutamatic acid) nanoconjugate for enhanced safety and effective tumor inhibition. Eur. J. Pharm. Sci. 2018 119 189 199 10.1016/j.ejps.2018.04.022 29678612
    [Google Scholar]
  45. Catanzaro G. Curcio M. Cirillo G. Spizzirri U.G. Besharat Z.M. Abballe L. Vacca A. Iemma F. Picci N. Ferretti E. Albumin nanoparticles for glutathione-responsive release of cisplatin: New opportunities for medulloblastoma. Int. J. Pharm. 2017 517 1-2 168 174 10.1016/j.ijpharm.2016.12.017 27956195
    [Google Scholar]
  46. Yong D. Luo Y. Du F. Huang J. Lu W. Dai Z. Yu J. Liu S. CDDP supramolecular micelles fabricated from adamantine terminated mPEG and β-cyclodextrin based seven-armed poly (l-glutamic acid)/CDDP complexes. Colloids Surf. B Biointerfaces 2013 105 31 36 10.1016/j.colsurfb.2012.12.046 23352945
    [Google Scholar]
  47. Shahin M. Safaei-Nikouei N. Lavasanifar A. Polymeric micelles for pH-responsive delivery of cisplatin. J. Drug Target. 2014 22 7 629 637 10.3109/1061186X.2014.921925 24878378
    [Google Scholar]
  48. He Z. Huang J. Xu Y. Zhang X. Teng Y. Huang C. Wu Y. Zhang X. Zhang H. Sun W. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer. Oncotarget 2015 6 39 42150 42168 10.18632/oncotarget.6243 26517524
    [Google Scholar]
  49. Song W. Tang Z. Zhang D. Zhang Y. Yu H. Li M. Lv S. Sun H. Deng M. Chen X. Anti-tumor efficacy of c(RGDfK)-decorated polypeptide-based micelles co-loaded with docetaxel and cisplatin. Biomaterials 2014 35 9 3005 3014 10.1016/j.biomaterials.2013.12.018 24388813
    [Google Scholar]
  50. Saisyo A. Nakamura H. Fang J. Tsukigawa K. Greish K. Furukawa H. Maeda H. pH-sensitive polymeric cisplatin-ion complex with styrene-maleic acid copolymer exhibits tumor-selective drug delivery and antitumor activity as a result of the enhanced permeability and retention effect. Colloids Surf. B Biointerfaces 2016 138 128 137 10.1016/j.colsurfb.2015.11.032 26674841
    [Google Scholar]
  51. Chen Y. Zhang L. Liu Y. Tan S. Qu R. Wu Z. Zhou Y. Huang J. Preparation of PGA–PAE-micelles for enhanced antitumor efficacy of cisplatin. ACS Appl. Mater. Interfaces 2018 10 30 25006 25016 10.1021/acsami.8b04259 29781607
    [Google Scholar]
  52. Ding D. Li K. Zhu Z. Pu K.Y. Hu Y. Jiang X. Liu B. Conjugated polyelectrolyte–cisplatin complex nanoparticles for simultaneous in vivo imaging and drug tracking. Nanoscale 2011 3 5 1997 2002 10.1039/c0nr00950d 21442097
    [Google Scholar]
  53. Song W. Tang Z. Li M. Lv S. Sun H. Deng M. Liu H. Chen X. Polypeptide-based combination of paclitaxel and cisplatin for enhanced chemotherapy efficacy and reduced side-effects. Acta Biomater. 2014 10 3 1392 1402 10.1016/j.actbio.2013.11.026 24316362
    [Google Scholar]
  54. Banimohamad-Shotorbani B. Karkan S.F. Rahbarghazi R. Mehdipour A. Jarolmasjed S. Saghati S. Shafaei H. Application of mesenchymal stem cell sheet for regeneration of craniomaxillofacial bone defects. Stem Cell Res. Ther. 2023 14 1 68 10.1186/s13287‑023‑03309‑4 37024981
    [Google Scholar]
  55. Song W. Li M. Tang Z. Li Q. Yang Y. Liu H. Duan T. Hong H. Chen X. Methoxypoly(ethylene glycol)-block-poly(L-glutamic acid)-loaded cisplatin and a combination with iRGD for the treatment of non-small-cell lung cancers. Macromol. Biosci. 2012 12 11 1514 1523 10.1002/mabi.201200145 23070837
    [Google Scholar]
  56. Uchino H. Matsumura Y. Negishi T. Koizumi F. Hayashi T. Honda T. Nishiyama N. Kataoka K. Naito S. Kakizoe T. Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br. J. Cancer 2005 93 6 678 687 10.1038/sj.bjc.6602772 16222314
    [Google Scholar]
  57. Nishiyama N. Okazaki S. Cabral H. Miyamoto M. Kato Y. Sugiyama Y. Nishio K. Matsumura Y. Kataoka K. Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res. 2003 63 24 8977 8983 14695216
    [Google Scholar]
  58. Tran N.Q. Nguyen C.K. Nguyen T.P. Dendrimer-based nanocarriers demonstrating a high efficiency for loading and releasing anticancer drugs against cancer cells in vitro and in vivo. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2013 4 4 045013 10.1088/2043‑6262/4/4/045013
    [Google Scholar]
  59. Kuang Y. Liu J. Liu Z. Zhuo R. Cholesterol-based anionic long-circulating cisplatin liposomes with reduced renal toxicity. Biomaterials 2012 33 5 1596 1606 10.1016/j.biomaterials.2011.10.081 22079777
    [Google Scholar]
  60. Fathi-Karkan S. Heidarzadeh M. Narmi M.T. Mardi N. Amini H. Saghati S. Abrbekoh F.N. Saghebasl S. Rahbarghazi R. Khoshfetrat A.B. Exosome-loaded microneedle patches: Promising factor delivery route. Int. J. Biol. Macromol. 2023 243 125232 10.1016/j.ijbiomac.2023.125232 37302628
    [Google Scholar]
  61. Zhang R. Song X. Liang C. Yi X. Song G. Chao Y. Yang Y. Yang K. Feng L. Liu Z. Catalase-loaded cisplatin-prodrug-constructed liposomes to overcome tumor hypoxia for enhanced chemo-radiotherapy of cancer. Biomaterials 2017 138 13 21 10.1016/j.biomaterials.2017.05.025 28550753
    [Google Scholar]
  62. Carvalho Júnior A.D. Vieira F.P. De Melo V.J. Lopes M.T.P. Silveira J.N. Ramaldes G.A. Garnier-Suillerot A. Pereira-Maia E.C. De Oliveira M.C. Preparation and cytotoxicity of cisplatin-containing liposomes. Braz. J. Med. Biol. Res. 2007 40 8 1149 1157 10.1590/S0100‑879X2006005000125 17665053
    [Google Scholar]
  63. Marzban E. Alavizadeh S.H. Ghiadi M. Khoshangosht M. Khashayarmanesh Z. Abbasi A. Jaafari M.R. Optimizing the therapeutic efficacy of cisplatin PEGylated liposomes via incorporation of different DPPG ratios: in vitro and in vivo studies. Colloids Surf. B Biointerfaces 2015 136 885 891 10.1016/j.colsurfb.2015.10.046 26547316
    [Google Scholar]
  64. Kishimoto S. Fujitani N. Ohnishi T. Aoki H. Suzuki R. Fukushima S. Cisplatin-loaded, sialyl Lewis X-modified liposomes: Drug release, biodistribution, and antitumor efficacy. Anticancer Res. 2017 37 11 6055 6061 29061785
    [Google Scholar]
  65. Kieler-Ferguson H.M. Chan D. Sockolosky J. Finney L. Maxey E. Vogt S. Szoka F.C. Encapsulation, controlled release, and antitumor efficacy of cisplatin delivered in liposomes composed of sterol-modified phospholipids. Eur. J. Pharm. Sci. 2017 103 85 93 10.1016/j.ejps.2017.03.003 28263913
    [Google Scholar]
  66. Shein S.A. Kuznetsov I.I. Abakumova T.O. Chelushkin P.S. Melnikov P.A. Korchagina A.A. Bychkov D.A. Seregina I.F. Bolshov M.A. Kabanov A.V. Chekhonin V.P. Nukolova N.V. VEGF- and VEGFR2- targeted liposomes for cisplatin delivery to glioma cells. Mol. Pharm. 2016 13 11 3712 3723 10.1021/acs.molpharmaceut.6b00519 27654150
    [Google Scholar]
  67. Vhora I. Khatri N. Desai J. Thakkar H.P. Caprylate-conjugated cisplatin for the development of novel liposomal formulation. AAPS PharmSciTech 2014 15 4 845 857 10.1208/s12249‑014‑0106‑y 24700295
    [Google Scholar]
  68. Zhou X. Wang J. Wu J. Yang X. Yung B.C. Lee L.J. Lee R.J. Preparation and evaluation of a novel liposomal formulation of cisplatin. Eur. J. Pharm. Sci. 2015 66 90 95 10.1016/j.ejps.2014.10.004 25446511
    [Google Scholar]
  69. Song J. Xu T. Zhang Y. Guo H. Ren W. Zhu S. Yang L. 3-octadecylcarbamoylacrylic acid-cisplatin nanocomplexes for the development of novel liposome formulation. Drug Deliv. 2016 23 9 3285 3293 10.3109/10717544.2016.1172369 27028975
    [Google Scholar]
  70. Pourmadadi M. Ostovar S. Ruiz-Pulido G. Hassan D. Souri M. Manicum A-L.E. Behzadmehr R. Fathi-karkan S. Rahdar A. Medina D.I. Pandey S. Novel epirubicin-loaded nanoformulations: Advancements in polymeric nanocarriers for efficient targeted cellular and subcellular anticancer drug delivery. Inorg. Chem. Commun. 2023 155 110999 10.1016/j.inoche.2023.110999
    [Google Scholar]
  71. Wang Y. Zhou J. Qiu L. Wang X. Chen L. Liu T. Di W. Cisplatin–alginate conjugate liposomes for targeted delivery to EGFR-positive ovarian cancer cells. Biomaterials 2014 35 14 4297 4309 10.1016/j.biomaterials.2014.01.035 24565522
    [Google Scholar]
  72. Giuberti C.S. Boratto F.A. Degobert G. Silveira J.N. Oliveira M.C. Investigation of alternative organic solvents and methods for the preparation of long-circulating and pH-sensitive liposomes containing cisplatin. J. Liposome Res. 2013 23 3 220 227 10.3109/08982104.2013.795590 23659579
    [Google Scholar]
  73. Gupta V. Dhote V. Paul B.N. Trivedi P. Development of novel topical drug delivery system containing cisplatin and imiquimod for dual therapy in cutaneous epithelial malignancy. J. Liposome Res. 2014 24 2 150 162 10.3109/08982104.2013.865216 24328725
    [Google Scholar]
  74. Araújo R.S. Silveira A.L.M. de Sales e Souza É.L. Freire R.H. de Souza C.M. Reis D.C. Costa B.R.C. Sugimoto M.A. Silveira J.N. dos Santos Martins F. Cassali G.D. Leite J.I.A. Sousa L.P. Ferreira A.V.M. Oliveira M.C. Cardoso V.N. Intestinal toxicity evaluation of long-circulating and pH-sensitive liposomes loaded with cisplatin. Eur. J. Pharm. Sci. 2017 106 142 151 10.1016/j.ejps.2017.05.046 28546107
    [Google Scholar]
  75. Carlesso F.N. Araújo R.S. Fuscaldi L.L. Mendes Miranda S.E. Rubello D. Teixeira C.S. dos Reis D.C. Leite E.A. Silveira J.N. Fernandes S.O.A. Cassali G.D. de Oliveira M.C. Colletti P.M. de Barros A.L.B. Cardoso V.N. Preliminary data of the antipancreatic tumor efficacy and toxicity of long-circulating and pH-sensitive liposomes containing cisplatin. Nucl. Med. Commun. 2016 37 7 727 734 10.1097/MNM.0000000000000505 27007915
    [Google Scholar]
  76. Leite E.A. Souza C.M. Carvalho-Júnior A.D. Coelho L.G. Lana A.M. Cassali G.D. Oliveira M.C. Encapsulation of cisplatin in long-circulating and pH-sensitive liposomes improves its antitumor effect and reduces acute toxicity. Int. J. Nanomedicine 2012 7 5259 5269 23091378
    [Google Scholar]
  77. Li Q. Zhu M. Li Y. Tang H. Wang Z. Zhang Y. Xie Y. Lv Z. Bao H. Li Y. Liu R. Shen Y. Zheng Y. Miao D. Guo X. Pei J. Estrone-targeted PEGylated liposomal nanoparticles for cisplatin (DDP) delivery in cervical cancer. Eur. J. Pharm. Sci. 2022 174 106187 10.1016/j.ejps.2022.106187 35430381
    [Google Scholar]
  78. Xiong C. Lu W. Zhou M. Wen X. Li C. Cisplatin-loaded hollow gold nanoparticles for laser-triggered release. Cancer Nanotechnol. 2018 9 1 6 10.1186/s12645‑018‑0041‑9 30147806
    [Google Scholar]
  79. Davidi E.S. Dreifuss T. Motiei M. Shai E. Bragilovski D. Lubimov L. Kindler M.J.J. Popovtzer A. Don J. Popovtzer R. Cisplatin-conjugated gold nanoparticles as a theranostic agent for head and neck cancer. Head Neck 2018 40 1 70 78 10.1002/hed.24935 29130566
    [Google Scholar]
  80. Yang C. Bromma K. Sung W. Schuemann J. Chithrani D. Determining the radiation enhancement effects of gold nanoparticles in cells in a combined treatment with cisplatin and radiation at therapeutic megavoltage energies. Cancers (Basel) 2018 10 5 150 10.3390/cancers10050150 29786642
    [Google Scholar]
  81. Li H. Yu H. Zhu C. Hu J. Du M. Zhang F. Yang D. Cisplatin and doxorubicin dual-loaded mesoporous silica nanoparticles for controlled drug delivery. RSC Advances 2016 6 96 94160 94169 10.1039/C6RA17213J
    [Google Scholar]
  82. Lv X. Zhao M. Wang Y. Hu X. Wu J. Jiang X. Li S. Cui C. Peng S. Loading cisplatin onto 6-mercaptopurine covalently modified MSNS: A nanomedicine strategy to improve the outcome of cisplatin therapy. Drug Des. Devel. Ther. 2016 10 3933 3946 10.2147/DDDT.S116286 27942204
    [Google Scholar]
  83. Zhang J. Weng L. Su X. Lu G. Liu W. Tang Y. Zhang Y. Wen J. Teng Z. Wang L. Cisplatin and doxorubicin high-loaded nanodrug based on biocompatible thioether- and ethane-bridged hollow mesoporous organosilica nanoparticles. J. Colloid Interface Sci. 2018 513 214 221 10.1016/j.jcis.2017.10.116 29153715
    [Google Scholar]
  84. Ibarra J. Encinas D. Blanco M. Barbosa S. Taboada P. Juárez J. Valdez M.A. Co-encapsulation of magnetic nanoparticles and cisplatin within biocompatible polymers as multifunctional nanoplatforms: Synthesis, characterization, and in vitro assays. Mater. Res. Express 2018 5 1 015023 10.1088/2053‑1591/aaa0a4
    [Google Scholar]
  85. Son K.D. Kim Y.J. Anticancer activity of drug-loaded calcium phosphate nanocomposites against human osteosarcoma. Biomater. Res. 2017 21 1 13 10.1186/s40824‑017‑0099‑1 28652927
    [Google Scholar]
  86. Ferreira N.H. Furtado R.A. Ribeiro A.B. de Oliveira P.F. Ozelin S.D. de Souza L.D.R. Neto F.R. Miura B.A. Magalhães G.M. Nassar E.J. Tavares D.C. Europium(III)-doped yttrium vanadate nanoparticles reduce the toxicity of cisplatin. J. Inorg. Biochem. 2018 182 9 17 10.1016/j.jinorgbio.2018.01.014 29407869
    [Google Scholar]
  87. You C. Wu H. Wang M. Gao Z. Zhang X. Sun B. Co-delivery of cisplatin and CJM-126 via photothermal conversion nanoparticles for enhanced synergistic antitumor efficacy. Nanotechnology 2018 29 1 015601 10.1088/1361‑6528/aa9a19 29130888
    [Google Scholar]
  88. Guven A. Villares G.J. Hilsenbeck S.G. Lewis A. Landua J.D. Dobrolecki L.E. Wilson L.J. Lewis M.T. Carbon nanotube capsules enhance the in vivo efficacy of cisplatin. Acta Biomater. 2017 58 466 478 10.1016/j.actbio.2017.04.035 28465075
    [Google Scholar]
  89. Yuan Y.G. Gurunathan S. Combination of graphene oxide–silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells. Int. J. Nanomedicine 2017 12 6537 6558 10.2147/IJN.S125281 28919753
    [Google Scholar]
  90. Chiang C.S. Tseng Y.H. Liao B.J. Chen S.Y. Magnetically targeted nanocapsules for PAA-cisplatin-conjugated cores in PVA/SPIO shells via surfactant-free emulsion for reduced nephrotoxicity and enhanced lung cancer therapy. Adv. Healthc. Mater. 2015 4 7 1066 1075 10.1002/adhm.201400794 25656800
    [Google Scholar]
  91. Zhai Q. Li H. Song Y. Wu R. Tang C. Ma X. Liu Z. Peng J. Zhang J. Tang Z. Preparation and optimization lipid nanocapsules to enhance the antitumor efficacy of cisplatin in hepatocellular carcinoma HepG2 cells. AAPS PharmSciTech 2018 19 5 2048 2057 10.1208/s12249‑018‑1011‑6 29679292
    [Google Scholar]
  92. Yu S. Zhang D. He C. Sun W. Cao R. Cui S. Deng M. Gu Z. Chen X. Injectable thermosensitive polypeptide-based CDDP-complexed hydrogel for improving localized antitumor efficacy. Biomacromolecules 2017 18 12 4341 4348 10.1021/acs.biomac.7b01374 29141405
    [Google Scholar]
  93. Shen W. Chen X. Luan J. Wang D. Yu L. Ding J. Sustained codelivery of cisplatin and paclitaxel via an injectable prodrug hydrogel for ovarian cancer treatment. ACS Appl. Mater. Interfaces 2017 9 46 40031 40046 10.1021/acsami.7b11998 29131563
    [Google Scholar]
  94. Zhu W. Li Y. Liu L. Chen Y. Xi F. Supramolecular hydrogels as a universal scaffold for stepwise delivering Dox and Dox/cisplatin loaded block copolymer micelles. Int. J. Pharm. 2012 437 1-2 11 19 10.1016/j.ijpharm.2012.08.007 22902390
    [Google Scholar]
  95. Zhu W. Li Y. Liu L. Chen Y. Wang C. Xi F. Supramolecular hydrogels from cisplatin-loaded block copolymer nanoparticles and α-cyclodextrins with a stepwise delivery property. Biomacromolecules 2010 11 11 3086 3092 10.1021/bm100889j 20958000
    [Google Scholar]
  96. Abdelhamid A.M. Mahmoud S.S. Abdelrahman A.E. Said N.M. Toam M. Samy W. Amer M.A.M. Protective effect of cerium oxide nanoparticles on cisplatin and oxaliplatin primary toxicities in male albino rats. Naunyn Schmiedebergs Arch. Pharmacol. 2020 393 12 2411 2425 10.1007/s00210‑020‑01946‑7 32710137
    [Google Scholar]
  97. Roostaee M. Derakhshani A. Mirhosseini H. Mofakham E.B. Karkan S.F. Composition, preparation methods, and applications of nanoniosomes as codelivery systems: A review of emerging therapies with emphasis on cancer. Nanoscale 16 2713 2746 2024 10.1039/D3NR03495J
    [Google Scholar]
  98. Shiladitya S. Abhimanyu P. Shivani S. Poulomi S. Sudipta B. Nanoscale platinum compounds and methods of use thereof. US Patent 9393227B2 2019
  99. Sarasija S. Shishir R. Narasimha M.S. Shivakumar H.N. Cisplatin nanoparticle composition, method for the preparation thereof. US Patent 20230092662A1 2019
  100. Sandip A. Bandgar Rajendra C. Codelivery of verapamil with cisplatin and paclitaxel nanopalrticulate drug delivery system for ovarian cancer. AU Patent 2021101145A4 2021
  101. Sengupta S. Roy M. Sarkar A. Lipid-based platinum compounds and nanoparticles. US Patent 10730899B2 2020
  102. Arindam S. Kumar M.S. Aniruddha S. Fluorescent anticancer platinum drugs. US Patent 20180312534A1 2017
  103. Sung L. Hoon K. Heon L. Oxaliplatin nanoparticles and method for preparing same. US Patent 9393201B2 2015
  104. Nimish G. Arindam S. Heeralal B. Pradip D. Process for preparing supramolecular platinum-based compounds. US Patent 11358978B2 2016
  105. Zhang Y. Tian Y. Haibing H. Jingxin G. Xing T. Li X. Polymer-coated cisplatin nanoparticles as well as preparation method and application thereof. CN Patent 110742874A 2020
  106. Asha S. Rajesh S.T. A cisplatin loaded biodegradable nano drug as carriers for enhancing antineoplastic activity and preparation method thereof. IN Patent 202011057478 2020
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873332471241022152313
Loading
/content/journals/cnanom/10.2174/0124681873332471241022152313
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: formulation ; MESH-terms: nano delivery ; cancer ; and drug delivery ; patent ; target
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test