Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

An ocular drug delivery system, or ODDS, is the method for executing a prescription to the peeper in order to treat or manage conditions related to the eyes. The range of ODDS modalities is broad and includes simple aseptic eye drops for the optic surface as well as complex implants for intraocular tissue. The use of ODDS is often necessary for states such as cataracts, progressive retinal illness, inflammation, dry eye syndrome, diabetic retinopathy (DR), and other related diseases or disorders. To sustain the intended drug concentrations at the prescribed place, new drug delivery technologies have been developed, incorporating fibrin-sealing materials and sticky gels. The advancement of long-lasting drug delivery systems that are non-invasive and applied externally to the back portion of the eye possesses the potential to improve drug administration significantly. The progress made in the field of ophthalmic drug delivery has resulted in promising advancements in the treatment of diseases affecting both the front and back portions of the eye. These groundbreaking strategies for administering medication hold immense potential for enhancing drug delivery in the future. Furthermore, these inventive devices and/or formulations are easy to develop, causing minimal or negligible irritation, boasting a prolonged period residing in front of the cornea, sustaining the release of drugs, and increasing the therapeutic availability of medications within the eye. To remain up to date with the current advancements in the field of ocular drug delivery, it is essential to acquire the latest information. This helps drug delivery scientists improve their thought processes and also makes it possible to create fresh, trustworthy drug delivery methods. The objective of this investigation is to provide a thorough investigation while also tracking their advancement. Next, we shall examine the latest breakthroughs in formulation innovations based on nanotechnology. We will also discuss the most recent developments in additional ocular medication administration methods, including gels, implants, contact lenses, and microneedles.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873284203240328102643
2024-04-16
2025-06-23
Loading full text...

Full text loading...

References

  1. KaratiD. MukherjeeS. SinghS. PrajapatiB.G. BasuB. Biopolymer-based nano-formulations for mitigation of ocular infections: a review.Polym. Bull.202310.1007/s00289‑023‑05095‑8
    [Google Scholar]
  2. SilvaM. CaladoR. MartoJ. BettencourtA. AlmeidaA. GonçalvesL. Chitosan nanoparticles as a mucoadhesive drug delivery system for ocular administration.Mar. Drugs2017151237010.3390/md1512037029194378
    [Google Scholar]
  3. NaikJ.B. PardeshiS.R. PatilR.P. PatilP.B. MujumdarA. Mucoadhesive micro-/nano carriers in ophthalmic drug delivery: an overview.Bionanoscience202010356458210.1007/s12668‑020‑00752‑y
    [Google Scholar]
  4. MandalA. BishtR. RupenthalI.D. MitraA.K. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies.J. Control. Release20172489611610.1016/j.jconrel.2017.01.01228087407
    [Google Scholar]
  5. GaralaK. BasuB. PrajapatiB. Role of lipids in ocular drug delivery systems.InLipid-Based Drug Delivery Systems.Jenny Stanford Publishing2024591619
    [Google Scholar]
  6. LakhaniP. PatilA. MajumdarS. Recent advances in topical nano drug-delivery systems for the anterior ocular segment.Ther. Deliv.20189213715310.4155/tde‑2017‑008829325511
    [Google Scholar]
  7. DubashynskayaN. PoshinaD. RaikS. UrttiA. SkorikY.A. Polysaccharides in ocular drug delivery.Pharmaceutics20191212210.3390/pharmaceutics1201002231878298
    [Google Scholar]
  8. GholizadehS. WangZ. ChenX. DanaR. AnnabiN. Advanced nanodelivery platforms for topical ophthalmic drug delivery.Drug Discov. Today20212661437144910.1016/j.drudis.2021.02.02733689858
    [Google Scholar]
  9. BillowriaK. SandhuN.K. SinghB. Topical advances in mucoadhesive ocular drug delivery system.Curr. Drug Deliv.20232081127114010.2174/156720181966622101012241336221885
    [Google Scholar]
  10. WengY. LiuJ. JinS. GuoW. LiangX. HuZ. Nanotechnology-based strategies for treatment of ocular disease.Acta Pharm. Sin. B20177328129110.1016/j.apsb.2016.09.00128540165
    [Google Scholar]
  11. DonnellyR.F. ShaikhR. Raj SinghT.R. GarlandM.J. WoolfsonA.D. Mucoadhesive drug delivery systems.J. Pharm. Bioallied Sci.2011318910010.4103/0975‑7406.7647821430958
    [Google Scholar]
  12. Rodríguez-JiménezS. SongH. LamE. WrightD. PannwitzA. BonkeS.A. BaumbergJ.J. BonnetS. HammarströmL. ReisnerE. Self-assembled liposomes enhance electron transfer for efficient photocatalytic CO2 reduction.J. Am. Chem. Soc.2022144219399941210.1021/jacs.2c0172535594410
    [Google Scholar]
  13. MacwanM. PrajapatiB. Development, optimization and characterization of ocular nanoemulsion of an antifungal agent using design of experiments.Res J Pharm Technol20221552273227810.52711/0974‑360X.2022.00378
    [Google Scholar]
  14. SakellariG.I. ZafeiriI. BatchelorH. SpyropoulosF. Solid lipid nanoparticles and nanostructured lipid carriers of dual functionality at emulsion interfaces. Part I: Pickering stabilisation functionality.Colloids Surf. A Physicochem. Eng. Asp.202265413013510.1016/j.colsurfa.2022.130135
    [Google Scholar]
  15. Varela-FernándezR. García-OteroX. Díaz-ToméV. RegueiroU. López-LópezM. González-BarciaM. Isabel LemaM. Javier Otero-EspinarF. Lactoferrin-loaded nanostructured lipid carriers (NLCs) as a new formulation for optimized ocular drug delivery.Eur. J. Pharm. Biopharm.202217214415610.1016/j.ejpb.2022.02.01035183717
    [Google Scholar]
  16. RadwanI.T. BazM.M. KhaterH. SelimA.M. Nanostructured Lipid Carriers (NLC) for Biologically active green tea and fennel natural oils delivery: larvicidal and adulticidal activities against Culex pipiens.Molecules2022276193910.3390/molecules2706193935335302
    [Google Scholar]
  17. LiZ. ShiM. LiN. XuR. Application of functional biocompatible nanomaterials to improve curcumin bioavailability.Front Chem.2020858995710.3389/fchem.2020.58995733134284
    [Google Scholar]
  18. PeabodyJ.E. SheiR.J. BerminghamB.M. PhillipsS.E. TurnerB. RoweS.M. SolomonG.M. Seeing cilia: imaging modalities for ciliary motion and clinical connections.Am. J. Physiol. Lung Cell. Mol. Physiol.20183146L909L92110.1152/ajplung.00556.201729493257
    [Google Scholar]
  19. ScribnerM.R. Santos-LopezA. MarshallC.W. DeitrickC. CooperV.S. Parallel evolution of tobramycin resistance across species and environments.MBio2020113e00932-2010.1128/mBio.00932‑2032457248
    [Google Scholar]
  20. PogueJ.M. KayeK.S. VeveM.P. PatelT.S. GerlachA.T. DavisS.L. PuzniakL.A. FileT.M. OlsonS. DharS. BonomoR.A. PerezF. Ceftolozane/tazobactam vs polymyxin or aminoglycoside-based regimens for the treatment of drug-resistant Pseudomonas aeruginosa.Clin. Infect. Dis.202071230431010.1093/cid/ciz81631545346
    [Google Scholar]
  21. SchoenwaldR.D. Ocular drug delivery. Pharmacokinetic considerations.Clin. Pharmacokinet.199018425526910.2165/00003088‑199018040‑000012182264
    [Google Scholar]
  22. Kiran VakaS.R. SammetaS.M. DayL.B. MurthyS.N. Transcorneal iontophoresis for delivery of ciprofloxacin hydrochloride.Curr. Eye Res.200833866166710.1080/0271368080227094518696341
    [Google Scholar]
  23. TirucheraiG.S. DiasC. MitraA.K. Corneal permeation of ganciclovir: mechanism of ganciclovir permeation enhancement by acyl ester prodrug design.J. Ocul. Pharmacol. Ther.200218653554810.1089/10807680232102108112537680
    [Google Scholar]
  24. GundaS. HariharanS. MitraA.K. Corneal absorption and anterior chamber pharmacokinetics of dipeptide monoester prodrugs of ganciclovir (GCV): In vivo comparative evaluation of these prodrugs with Val-GCV and GCV in rabbits.J. Ocul. Pharmacol. Ther.200622646547610.1089/jop.2006.22.46517238815
    [Google Scholar]
  25. GallarateM. ChirioD. BussanoR. PeiraE. BattagliaL. BarattaF. TrottaM. Development of O/W nanoemulsions for ophthalmic administration of timolol.Int. J. Pharm.2013440212613410.1016/j.ijpharm.2012.10.01523078859
    [Google Scholar]
  26. TirucheraiG.S. MitraA.K. Effect of hydroxypropyl beta cyclodextrin complexation on aqueous solubility, stability, and corneal permeation of acyl ester prodrugs of ganciclovir.AAPS PharmSciTech20034312413510.1208/pt04034514621977
    [Google Scholar]
  27. Bakhsheshi-RadH.R. HadisiZ. IsmailA.F. AzizM. AkbariM. BertoF. ChenX.B. In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance.Polym. Test.20208210629810.1016/j.polymertesting.2019.106298
    [Google Scholar]
  28. MannermaaE. VellonenK.S. UrttiA. Drug transport in corneal epithelium and blood–retina barrier: Emerging role of transporters in ocular pharmacokinetics.Adv. Drug Deliv. Rev.200658111136116310.1016/j.addr.2006.07.02417081648
    [Google Scholar]
  29. ShenJ. GanL. ZhuC. ZhangX. DongY. JiangM. ZhuJ. GanY. Novel NSAIDs ophthalmic formulation: Flurbiprofen axetil emulsion with low irritancy and improved anti-inflammation effect.Int. J. Pharm.20114121-211512210.1016/j.ijpharm.2011.03.04121440613
    [Google Scholar]
  30. VandammeT.F. Microemulsions as ocular drug delivery systems: recent developments and future challenges.Prog. Retin. Eye Res.2002211153410.1016/S1350‑9462(01)00017‑911906809
    [Google Scholar]
  31. LiangH. Brignole-BaudouinF. Rabinovich-GuilattL. MaoZ. RianchoL. FaureM.O. WarnetJ.M. LambertG. BaudouinC. Reduction of quaternary ammonium-induced ocular surface toxicity by emulsions: An in vivo study in rabbits.Mol. Vis.20081420421618347566
    [Google Scholar]
  32. TajikaT. IsowakiA. SakakiH. Ocular distribution of difluprednate ophthalmic emulsion 0.05% in rabbits.J. Ocul. Pharmacol. Ther.2011271434910.1089/jop.2010.009321118027
    [Google Scholar]
  33. LiuY. LinX. TangX. Lipid emulsions as a potential delivery system for ocular use of azithromycin.Drug Dev. Ind. Pharm.200935788789610.1080/0363904080268027119466890
    [Google Scholar]
  34. KarasawaF. EhataT. OkudaT. SatohT. Propofol injection pain is not alleviated by pretreatment with flurbiprofen axetil, a prodrug of a nonsteroidal antiinflammatory drug.J. Anesth.200014313513710.1007/s00540007002014564579
    [Google Scholar]
  35. YamaguchiM. UedaK. IsowakiA. OhtoriA. TakeuchiH. OhguroN. TojoK. Mucoadhesive properties of chitosan-coated ophthalmic lipid emulsion containing indomethacin in tear fluid.Biol. Pharm. Bull.20093271266127110.1248/bpb.32.126619571396
    [Google Scholar]
  36. LangJ. RoehrsR. JaniR. Remington: The science and practice of pharmacy.PhiladelphiaLippincott Williams & Wilkins200985
    [Google Scholar]
  37. ScoperS.V. KabatA.G. OwenG.R. StromanD.W. KabraB.P. FaulknerR. KulshreshthaA.K. RuskC. BellB. JamisonT. Bernal-PerezL.F. BrooksA.C. NguyenV.A. Ocular distribution, bactericidal activity and settling characteristics of TobraDex® ST ophthalmic suspension compared with TobraDex® ophthalmic suspension.Adv. Ther.2008252778810.1007/s12325‑008‑0019‑918309465
    [Google Scholar]
  38. SasakiH YamamuraK MukaiT NishidaK NakamuraJ NakashimaM IchikawaM Enhancement of ocular drug penetration.Crit Rev Ther Drug Carrier Syst.1999168514610.1615/CritRevTherDrugCarrierSyst.v16.i1.20
    [Google Scholar]
  39. FukudaM. HanazomeI. SasakiK. The intraocular dynamics of vancomycin hydrochloride ophthalmic ointment (TN-011) in rabbits.J. Infect. Chemother.200391939610.1007/s10156‑002‑0219‑112673416
    [Google Scholar]
  40. OguroS. KasamaT. EguchiH. ShiotaH. The inhibitory effect of vancomycin ointment on the manifestation of MRSA keratitis in rabbits.J. Infect. Chemother.200915527928310.1007/s10156‑009‑0708‑619856064
    [Google Scholar]
  41. SultanaY. JainR. AqilM. AliA. Review of ocular drug delivery.Curr. Drug Deliv.20063220721710.2174/15672010677635918616611007
    [Google Scholar]
  42. ShastriD.H. ShelatP.K. ShuklaA.K. PatelP.B. Ophthalmic drug delivery system: Challenges and approaches.Systematic Reviews in Pharmacy20101211312010.4103/0975‑8453.75042
    [Google Scholar]
  43. RazaviM.S. EbrahimnejadP. FatahiY. D’EmanueleA. DinarvandR. Recent developments of nanostructures for the ocular delivery of natural compounds.Front Chem.20221085075710.3389/fchem.2022.85075735494641
    [Google Scholar]
  44. YiX. WangY. YuF.S. Corneal epithelial tight junctions and their response to lipopolysaccharide challenge.Invest. Ophthalmol. Vis. Sci.200041134093410011095601
    [Google Scholar]
  45. WengY.H. MaX.W. CheJ. LiC. LiuJ. ChenS.Z. WangY.Q. GanY.L. ChenH. HuZ.B. NanK.H. LiangX.J. Nanomicelle-assisted targeted ocular delivery with enhanced antiinflammatory efficacy in vivo .Adv. Sci.201851170045510.1002/advs.20170045529375972
    [Google Scholar]
  46. AkhterS. AnwarM. SiddiquiM.A. AhmadI. AhmadJ. AhmadM.Z. BhatnagarA. AhmadF.J. Improving the topical ocular pharmacokinetics of an immunosuppressant agent with mucoadhesive nanoemulsions: Formulation development, in-vitro and in-vivo studies.Colloids Surf. B Biointerfaces2016148192910.1016/j.colsurfb.2016.08.04827591567
    [Google Scholar]
  47. ShiS. ZhangZ. LuoZ. YuJ. LiangR. LiX. ChenH. Chitosan grafted methoxy poly(ethylene glycol)-poly(ε-caprolactone) nanosuspension for ocular delivery of hydrophobic diclofenac.Sci. Rep.2015511133710.1038/srep1133726067670
    [Google Scholar]
  48. SongD. WangX. YangJ. GeL. WangB. XuH. GongM. LiY. QiaoM. Hydrophobin HGFI improving the nanoparticle formation, stability and solubility of Curcumin.Colloids Surf. A Physicochem. Eng. Asp.202161012592210.1016/j.colsurfa.2020.125922
    [Google Scholar]
  49. GaudanaR. AnanthulaH.K. ParenkyA. MitraA.K. Ocular drug delivery.AAPS J.201012334836010.1208/s12248‑010‑9183‑320437123
    [Google Scholar]
  50. SubriziA. del AmoE.M. Korzhikov-VlakhV. TennikovaT. RuponenM. UrttiA. Design principles of ocular drug delivery systems: importance of drug payload, release rate, and material properties.Drug Discov. Today20192481446145710.1016/j.drudis.2019.02.00130738982
    [Google Scholar]
  51. NayakK. ChoudhariM.V. BagulS. ChavanT.A. MisraM. Ocular drug delivery systems.Developments in biomedical engineering and bioelectronics, drug delivery devices and therapeutic systems. ChappelE. Cambridge, MA, USAAcademic Press2020515566
    [Google Scholar]
  52. Kang-MielerJ.J. RudeenK.M. LiuW. MielerW.F. Advances in ocular drug delivery systems.Eye20203481371137910.1038/s41433‑020‑0809‑032071402
    [Google Scholar]
  53. ThornitD.N. VintenC.M. SanderB. Lund-AndersenH. la CourM. Blood-retinal barrier glycerol permeability in diabetic macular edema and healthy eyes: estimations from macular volume changes after peroral glycerol.Invest. Ophthalmol. Vis. Sci.20105162827283410.1167/iovs.09‑417220042642
    [Google Scholar]
  54. TavakoliS. PeynshaertK. LajunenT. DevoldereJ. del AmoE.M. RuponenM. De SmedtS.C. RemautK. UrttiA. Ocular barriers to retinal delivery of intravitreal liposomes: Impact of vitreoretinal interface.J. Control. Release202032895296110.1016/j.jconrel.2020.10.02833091527
    [Google Scholar]
  55. AdriantoM.F. AnnuryantiF. WilsonC.G. SheshalaR. ThakurR.R.S. in vitro dissolution testing models of ocular implants for posterior segment drug delivery.Drug Deliv. Transl. Res.202112134382178
    [Google Scholar]
  56. ChenP. ChenH. ZangX. ChenM. JiangH. HanS. WuX. Expression of efflux transporters in human ocular tissues.Drug Metab. Dispos.201341111934194810.1124/dmd.113.05270423979916
    [Google Scholar]
  57. ZhangT. XiangC.D. GaleD. CarreiroS. WuE.Y. ZhangE.Y. Drug transporter and cytochrome P450 mRNA expression in human ocular barriers: Implications for ocular drug disposition.Drug Metab. Dispos.20083671300130710.1124/dmd.108.02112118411399
    [Google Scholar]
  58. ZarbinM.A. MontemagnoC. LearyJ.F. RitchR. Nanotechnology in ophthalmology.Can. J. Ophthalmol.201045545747610.3129/i10‑09020871642
    [Google Scholar]
  59. PatelV.M. PrajapatiB.G. PatelH.V. PatelK.M. Mucoadhesive bilayer tablets of propranolol hydrochloride.AAPS PharmSciTech200783E203E20810.1208/pt080307717915827
    [Google Scholar]
  60. UnerB. OzdemirS. YildirimE. YabaA. TasC. UnerM. OzsoyY. Loteprednol loaded nanoformulations for corneal delivery: Ex-vivo permeation study, ocular safety assessment and stability studies.J. Drug Deliv. Sci. Technol.20238110425210.1016/j.jddst.2023.104252
    [Google Scholar]
  61. HuangH. PierstorffE. OsawaE. HoD. Protein-mediated assembly of nanodiamond hydrogels into a biocompatible and biofunctional multilayer nanofilm.ACS Nano20082220321210.1021/nn700086719206620
    [Google Scholar]
  62. SrivastavaV. SinghV. Kumar KhatriD. Kumar MehraN. Recent trends and updates on ultradeformable and elastic vesicles in ocular drug delivery.Drug Discov. Today202328810364710.1016/j.drudis.2023.10364737263389
    [Google Scholar]
  63. SonkaewP. SaneA. SuppakulP. Antioxidant activities of curcumin and ascorbyl dipalmitate nanoparticles and their activities after incorporation into cellulose-based packaging films.J. Agric. Food Chem.201260215388539910.1021/jf301311g22583595
    [Google Scholar]
  64. ZhaoZ.X. GaoS.Y. WangJ.C. ChenC.J. ZhaoE.Y. HouW.J. FengQ. GaoL.Y. LiuX.Y. ZhangL.R. ZhangQ. Self-assembly nanomicelles based on cationic mPEG-PLA-b-Polyarginine(R15) triblock copolymer for siRNA delivery.Biomaterials201233286793680710.1016/j.biomaterials.2012.05.06722721724
    [Google Scholar]
  65. DasB. NayakA.K. MallickS. Lipid-based nanocarriers for ocular drug delivery: An updated review.J. Drug Deliv. Sci. Technol.20227610378010.1016/j.jddst.2022.103780
    [Google Scholar]
  66. Pontes-QueroG.M. Benito-GarzónL. Pérez CanoJ. AguilarM.R. Vázquez-LasaB. Amphiphilic polymeric nanoparticles encapsulating curcumin: Antioxidant, anti-inflammatory and biocompatibility studies.Mater. Sci. Eng. C202112111179310.1016/j.msec.2020.11179333579443
    [Google Scholar]
  67. Zahir-JouzdaniF. WolfJ.D. AtyabiF. Bernkop-SchnürchA. In situ gelling and mucoadhesive polymers: why do they need each other?Expert Opin. Drug Deliv.201815101007101910.1080/17425247.2018.151774130173567
    [Google Scholar]
  68. DaviesN.M. FairS.J. HadgraftJ. KellawayI.W. Evaluation of mucoadhesive polymers in ocular drug delivery. I. Viscous solutions.Pharm. Res.1991881039104310.1023/A:10158132258041924157
    [Google Scholar]
  69. KaurI.P. SmithaR. Penetration enhancers and ocular bioadhesives: Two new avenues for ophthalmic drug delivery.Drug Dev. Ind. Pharm.200228435336910.1081/DDC‑12000299712056529
    [Google Scholar]
  70. SosnikA. das NevesJ. SarmentoB. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review.Prog. Polym. Sci.201439122030207510.1016/j.progpolymsci.2014.07.010
    [Google Scholar]
  71. SaraswathiB. BalajiA. UmashankarM.S. Polymers in mucoadhesive drug delivery system-latest updates.Int. J. Pharm. Pharm. Sci.20135423430
    [Google Scholar]
  72. KharenkoE.A. LarionovaN.I. DeminaN.B. Mucoadhesive drug delivery systems (Review).Pharm. Chem. J.200943420020810.1007/s11094‑009‑0271‑6
    [Google Scholar]
  73. ChhonkerY.S. PrasadY.D. ChandasanaH. VishvkarmaA. MitraK. ShuklaP.K. BhattaR.S. Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application.Int. J. Biol. Macromol.2015721451145810.1016/j.ijbiomac.2014.10.01425453292
    [Google Scholar]
  74. AsasutjaritR. TheerachayananT. KewsuwanP. VeeranondhaS. FuongfuchatA. RitthidejG.C. Gamma sterilization of diclofenac sodium loaded-N-trimethyl chitosan nanoparticles for ophthalmic use.Carbohydrate polymers.2017157603612
    [Google Scholar]
  75. WuJ. SuZ.G. MaG.H. A thermo-and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate.Int. J. Pharm.20063151-21116616819
    [Google Scholar]
  76. ZhaoF. LuJ. JinX. WangZ. SunY. GaoD. LiX. LiuR. Comparison of response surface methodology and artificial neural network to optimize novel ophthalmic flexible nano-liposomes: Characterization, evaluation, in vivo pharmacokinetics and molecular dynamics simulation.Colloids Surf. B Biointerfaces201817228829710.1016/j.colsurfb.2018.08.04630173096
    [Google Scholar]
  77. HeW. GuoX. FengM. MaoN. In vitro and in vivo studies on ocular vitamin A palmitate cationic liposomal in situ gels.Int. J. Pharm.2013458230531410.1016/j.ijpharm.2013.10.03324409520
    [Google Scholar]
  78. BranniganR.P. KhutoryanskiyV.V. Synthesis and evaluation of mucoadhesive acryloyl-quaternized PDMAEMA nanogels for ocular drug delivery.Colloids Surf. B Biointerfaces201715553854310.1016/j.colsurfb.2017.04.05028494432
    [Google Scholar]
  79. RaoJ.P. GeckelerK.E. Polymer nanoparticles: Preparation techniques and size-control parameters.Prog. Polym. Sci.201136788791310.1016/j.progpolymsci.2011.01.001
    [Google Scholar]
  80. DaveV. TakK. SohgauraA. GuptaA. SadhuV. ReddyK.R. Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications.J. Microbiol. Methods201916013014210.1016/j.mimet.2019.03.01730898602
    [Google Scholar]
  81. Sánchez-LópezE. EspinaM. DoktorovovaS. SoutoE.B. GarcíaM.L. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye – Part I – Barriers and determining factors in ocular delivery.Eur. J. Pharm. Biopharm.2017110707510.1016/j.ejpb.2016.10.00927789358
    [Google Scholar]
  82. TatkeA. DudhipalaN. JangaK. BalguriS. AvulaB. JablonskiM. MajumdarS. In situ gel of triamcinolone acetonide-loaded solid lipid nanoparticles for improved topical ocular delivery: Tear kinetics and ocular disposition studies.Nanomaterials2018913310.3390/nano901003330591688
    [Google Scholar]
  83. KhalilI.A. AliI.H. El-SherbinyI.M. Noninvasive biodegradable nanoparticles-in-nanofibers single-dose ocular insert: In vitro , ex-vivo and in vivo evaluation.Nanomedicine2019141335510.2217/nnm‑2018‑029730543484
    [Google Scholar]
  84. KalamM.A. IqbalM. AlshememryA. AlkholiefM. AlshamsanA. Fabrication and characterization of tedizolid phosphate nanocrystals for topical ocular application: Improved solubilization and in vitro drug release.Pharmaceutics2022147132810.3390/pharmaceutics1407132835890223
    [Google Scholar]
  85. HuJ. LiH. ZhaoY. KeY. RupenthalI.D. LiuH. YeJ. HanX. YangF. LiW. LinH. HouD. Critical evaluation of multifunctional betaxolol hydrochloride nanoformulations for effective sustained intraocular pressure reduction.Int. J. Nanomedicine2022175915593110.2147/IJN.S38296836506343
    [Google Scholar]
  86. MaulviF.A. PatilR.J. DesaiA.R. ShuklaM.R. VaidyaR.J. RanchK.M. VyasB.A. ShahS.A. ShahD.O. Effect of gold nanoparticles on timolol uptake and its release kinetics from contact lenses: In vitro and in vivo evaluation.Acta Biomater.20198635036210.1016/j.actbio.2019.01.00430625414
    [Google Scholar]
  87. HassanH.A.F.M. AliA.I. ElDesawyE.M. ElShafeeyA.H. Pharmacokinetic and pharmacodynamic evaluation of gemifloxacin chitosan nanoparticles as an antibacterial ocular dosage form.J. Pharm. Sci.202211151497150810.1016/j.xphs.2021.12.01634929155
    [Google Scholar]
  88. PearsonP.A. ComstockT.L. IpM. CallananD. MorseL.S. AshtonP. LevyB. MannE.S. EliottD. Fluocinolone acetonide intravitreal implant for diabetic macular edema: a 3-year multicenter, randomized, controlled clinical trial.Ophthalmology201111881580158710.1016/j.ophtha.2011.02.04821813090
    [Google Scholar]
  89. GuptaP.K. VenkateswaranN. The role of KPI-121 0.25% in the treatment of dry eye disease: Penetrating the mucus barrier to treat periodic flares.Ther. Adv. Ophthalmol.20211310.1177/2515841421101279734017938
    [Google Scholar]
  90. BeckmanK.A. KatzJ.A. MajmudarP.A. RipsA.G. VaidyaN.S. RostovA.T. KPI-121 1% for pain and inflammation in ocular surgery.Pain Manag.2022121172310.2217/pmt‑2021‑002334164994
    [Google Scholar]
  91. BruschiML de Souza FerreiraSB da SilvaJB Mucoadhesive and mucus-penetrating polymers for drug delivery.In Nanotechnology for oral drug deliveryAcademic Press20207714110.1016/B978‑0‑12‑818038‑9.00011‑9
    [Google Scholar]
  92. SharmaR. KumarS. MalviyaR. PrajapatiB.G. PuriD. LimmatvapiratS. SriamornsakP. Recent advances in biopolymer-based mucoadhesive drug delivery systems for oral application.J. Drug Deliv. Sci. Technol.2023105227
    [Google Scholar]
  93. BakhrushinaE AnurovaM DeminaN KashperkoA RastopchinaO BardakovA KrasnyukI Comparative study of the mucoadhesive properties of polymers for pharmaceutical use.OA Macedon J Med Sci.20208A63934510.3889/oamjms.2020.4930
    [Google Scholar]
  94. ViganiB. RossiS. SandriG. BonferoniM.C. CaramellaC.M. FerrariF. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes.Pharmaceutics202012985910.3390/pharmaceutics1209085932927595
    [Google Scholar]
  95. Gutierrez CisnerosC. BloemenV. MignonA. Synthetic, natural, and semisynthetic polymer carriers for controlled nitric oxide release in dermal applications: A review.Polymers202113576010.3390/polym1305076033671032
    [Google Scholar]
  96. KumarA. NaikP.K. PradhanD. GhoshG. RathG. Mucoadhesive formulations: Innovations, merits, drawbacks, and future outlook.Pharm. Dev. Technol.202025779781410.1080/10837450.2020.175377132267180
    [Google Scholar]
  97. NaskarS. SharmaS. KuotsuK. Chitosan-based nanoparticles: An overview of biomedical applications and its preparation.J. Drug Deliv. Sci. Technol.201949668110.1016/j.jddst.2018.10.022
    [Google Scholar]
  98. TripathiG.K. SinghS. Formulation and in vitro evaluation of pH sensitive oil entrapped buoyant beads of amoxicillin.Int. J. Drug Deliv.20113112513210.5138/ijdd.2010.0975.0215.03062
    [Google Scholar]
  99. BíróT. AignerZ. Current approaches to use cyclodextrins and mucoadhesive polymers in ocular drug delivery—A mini-review.Sci. Pharm.20198731510.3390/scipharm87030015
    [Google Scholar]
  100. SilvaF.B. NunesA.L. SilvaC.S. SimõesS.P. Inventors; Bluepharma-Industria Farmaceutica Sa, assignee. Mucoadhesive compositions and uses thereof.United States patent application US 17/431,941.2021
  101. DaveR.S. GoostreyT.C. ZiolkowskaM. Czerny-HolowniaS. HoareT. SheardownH. Ocular drug delivery to the anterior segment using nanocarriers: A mucoadhesive/mucopenetrative perspective.J. Control. Release2021336718810.1016/j.jconrel.2021.06.01134119558
    [Google Scholar]
  102. JacobS. NairA.B. ShahJ. GuptaS. BodduS.H.S. SreeharshaN. JosephA. ShinuP. MorsyM.A. Lipid nanoparticles as a promising drug delivery carrier for topical ocular therapy—an overview on recent advances.Pharmaceutics202214353310.3390/pharmaceutics1403053335335909
    [Google Scholar]
  103. SilvaB. São BrazB. DelgadoE. GonçalvesL. Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery.Int. J. Pharm.202160612087310.1016/j.ijpharm.2021.12087334246741
    [Google Scholar]
  104. KoutsovitiM. SiamidiA. PavlouP. VlachouM. Recent advances in the excipients used for modified ocular drug delivery.Materials20211415429010.3390/ma1415429034361483
    [Google Scholar]
  105. VaneevA. TikhomirovaV. ChesnokovaN. PopovaE. BeznosO. KostO. KlyachkoN. Nanotechnology for topical drug delivery to the anterior segment of the eye.Int. J. Mol. Sci.202122221236810.3390/ijms22221236834830247
    [Google Scholar]
  106. jahanF. ZamanS. ArshadR. TabishT.A. NaseemA.A. ShahnazG. Mapping the potential of thiolated pluronic based nanomicelles for the safe and targeted delivery of vancomycin against staphylococcal blepharitis.J. Drug Deliv. Sci. Technol.20216110222010.1016/j.jddst.2020.102220
    [Google Scholar]
  107. SchlachetI. SosnikA. Mixed mucoadhesive amphiphilic polymeric nanoparticles cross a model of nasal septum epithelium in vitro .ACS Appl. Mater. Interfaces20191124213602137110.1021/acsami.9b0476631124655
    [Google Scholar]
  108. KimJ. ParkJ. ParkY.G. ChaE. KuM. AnH.S. LeeK.P. HuhM.I. KimJ. KimT.S. KimD.W. KimH.K. ParkJ.U. A soft and transparent contact lens for the wireless quantitative monitoring of intraocular pressure.Nat. Biomed. Eng.20215777278210.1038/s41551‑021‑00719‑833941897
    [Google Scholar]
  109. DoloffJ.C. VeisehO. de MezervilleR. SforzaM. PerryT.A. HauptJ. JamielM. ChambersC. NashA. Aghlara-FotovatS. StelzelJ.L. BauerS.J. NeshatS.Y. HancockJ. RomeroN.A. HidalgoY.E. LeivaI.M. MunhozA.M. BayatA. KinneyB.M. HodgesH.C. MirandaR.N. ClemensM.W. LangerR. The surface topography of silicone breast implants mediates the foreign body response in mice, rabbits and humans.Nat. Biomed. Eng.20215101115113010.1038/s41551‑021‑00739‑434155355
    [Google Scholar]
  110. KligmanS. RenZ. ChungC.H. PerilloM.A. ChangY.C. KooH. ZhengZ. LiC. The impact of dental implant surface modifications on osseointegration and biofilm formation.J. Clin. Med.2021108164110.3390/jcm1008164133921531
    [Google Scholar]
  111. MansourS.E. KiernanD.F. RothD.B. EichenbaumD. HolekampN.M. KabaS. WertsE. Two-year interim safety results of the 0.2 µg/day fluocinolone acetonide intravitreal implant for the treatment of diabetic macular oedema: the observational PALADIN study.Br. J. Ophthalmol.2021105341441910.1136/bjophthalmol‑2020‑31598432461262
    [Google Scholar]
  112. Ruiz-MedranoJ. Rodríguez-LeorR. AlmazánE. LugoF. Casado-LopezE. AriasL. Ruiz-MorenoJ.M. Results of dexamethasone intravitreal implant (Ozurdex) in diabetic macular edema patients: Early versus late switch.Eur. J. Ophthalmol.20213131135114510.1177/112067212092996032493065
    [Google Scholar]
  113. MusgraveC.S.A. FangF. Contact lens materials: A materials science perspective.Materials201912226110.3390/ma1202026130646633
    [Google Scholar]
  114. LambiaseA AbdolrahimzadehS RecuperoSM An update on intravitreal implants in use for eye disorders.Drugs of today201450323924910.1358/dot.2014.050.03.2103755
    [Google Scholar]
  115. KashanianS. HardingF. IraniY. KlebeS. MarshallK. LoniA. CanhamL. FanD. WilliamsK.A. VoelckerN.H. CofferJ.L. Evaluation of mesoporous silicon/polycaprolactone composites as ophthalmic implants.Acta Biomater.2010693566357210.1016/j.actbio.2010.03.03120350620
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873284203240328102643
Loading
/content/journals/cnanom/10.2174/0124681873284203240328102643
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test