Skip to content
2000
image of Nano Carrier-Mediated Ocular Therapeutic Delivery: A Comprehensive Review

Abstract

Ocular diseases such as glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy are leading causes of vision impairment and blindness globally. Despite advancements in treatment, these conditions remain challenging due to the eye's unique anatomical and physiological barriers. The corneal barrier, tear dynamics, and rapid ocular clearance mechanisms, such as lacrimation and blinking, greatly limit the bioavailability (BA) of therapeutics delivered through conventional methods like eye drops or systemic administration. Additionally, the blood-retinal and blood-aqueous barriers further restrict drug penetration into deeper ocular tissues, making achieving effective therapeutic concentrations at the target site difficult.

This review provides a detailed and comprehensive examination of the innovative nano-carrier-mediated ocular drug delivery systems (NCDDS). It focuses on how these systems, through their advanced mathematical models and drug release mechanisms, overcome the inherent barriers of the eye. This innovation enhances therapeutic outcomes and provides intriguing solutions to unmet needs in ocular disease management.

A systematic literature review was conducted across major databases, focusing on quantitative studies to analyze nano-carrier-based drug delivery for ocular applications. The review considered mathematical models describing drug release kinetics, diffusion mechanisms, and bioavailability enhancement. These models play a crucial role in predicting the performance of NCDDS, allowing researchers to anticipate how these systems will behave in the complex environment of the eye. Special attention was given to studies utilizing advanced pharmacokinetic (PK) modeling to predict performance of NCDDS.

Nanocarriers (NCs), including polymeric nanoparticles (PNPs), liposomes, dendrimers, and micelles, have demonstrated significant potential in ocular drug delivery. These systems provide sustained release profiles, prolonging drug retention and improving solubility. Mathematical models predict that NCs can significantly increase BA by up to 80% compared to conventional drug delivery methods. It reassures us about the effectiveness of these systems, primarily due to their ability to bypass ocular clearance mechanisms and target specific tissues.

Nano carrier-mediated ocular drug delivery systems present a groundbreaking approach to addressing the limitations of conventional ocular therapies. By offering precise control over drug release rates and enhancing bioavailability, NCs effectively treat ocular diseases. The potential of ongoing research to refine these mathematical models and integrate real-time PK data is promising, offering hope for the future of ocular drug delivery systems. The continued development of these advanced delivery systems holds the potential to transform the treatment of ocular diseases and improve patient outcomes globally.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873336214241214043549
2024-12-24
2025-01-13
Loading full text...

Full text loading...

References

  1. Suri R. Beg S. Kohli K. Target strategies for drug delivery bypassing ocular barriers. Curr. Nanomed. 2020 14 2 148 159 10.3389/fchem.2022.850757
    [Google Scholar]
  2. Weisser A. Treatise on hearing: The temporal auditory imaging theory inspired by optics and communication. Curr. Nanomed. 2021 15 4 327 335 10.48550/arXiv.2111.04338
    [Google Scholar]
  3. Onugwu A.L. Nwagwu C.S. Onugwu O.S. Echezona A.C. Agbo C.P. Ihim S.A. Emeh P. Nnamani P.O. Attama A.A. Khutoryanskiy V.V. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J. Control. Release 2023 354 2 465 488 10.1016/j.jconrel.2023.01.018 36642250
    [Google Scholar]
  4. Nozdriukhin D. Lyu S. Bonvin J. Reiss M. Razansky D. Ben D.X.L. Copper phosphate micro-flowers coated with indocyanine green and iron oxide nanoparticles for in vivo localization optoacoustic tomography and magnetic actuation. Curr. Nanomed. 2024 18 1 89 97 10.48550/arXiv.2402.06749
    [Google Scholar]
  5. Mateo C.J. Gelfand A.E. Tabuenca G.Z. Asín J. Cebrián A.C. Spatio-temporal modeling for record-breaking temperature events in Spain. Curr. Nanomed. 2024 18 2 201 210 10.48550/arXiv.2403.00080
    [Google Scholar]
  6. Razavi M.S. Ebrahimnejad P. Fatahi Y. D’Emanuele A. Dinarvand R. Recent developments of nanostructures for the ocular delivery of natural compounds. Front Chem. 2022 10 4 850757 10.3389/fchem.2022.850757 35494641
    [Google Scholar]
  7. Bhandari M. Nguyen S. Yazdani M. Utheim T.P. Hagesaether E. The therapeutic benefits of nanoencapsulation in drug delivery to the anterior segment of the eye: A systematic review. Front. Pharmacol. 2022 13 5 903519 10.3389/fphar.2022.903519 35645827
    [Google Scholar]
  8. Afarid M. Mahmoodi S. Baghban R. Recent achievements in nano-based technologies for ocular disease diagnosis and treatment, review and update. J. Nanobiotechnology 2022 20 1 361 10.1186/s12951‑022‑01567‑7 35918688
    [Google Scholar]
  9. Moreno S.P. Vinuesa O.J.L. Garcia P.J.M. Marchal J.A. Boulaiz H. Smart drug-delivery systems for cancer nanotherapy. Curr. Drug Targets 2018 19 4 339 359 10.2174/1389450117666160527142544 27231107
    [Google Scholar]
  10. Pontrelli G. Toniolo G. McGinty S. Peri D. Succi S. Chatgilialoglu C. Mathematical modelling of drug delivery from pH-responsive nanocontainers. Comput. Biol. Med. 2021 131 4 104238 10.1016/j.compbiomed.2021.104238 33618104
    [Google Scholar]
  11. Kaplan H.J. Anatomy and function of the eye. Chem. Immunol. Allergy 2007 92 4 10 10.1159/000099236 17264478
    [Google Scholar]
  12. Fernández G.F.M. Bianchera A. Gasco P. Nicoli S. Pescina S. Lipid-based nanocarriers for ophthalmic administration: Towards experimental design implementation. Pharmaceutics 2021 13 4 447 10.3390/pharmaceutics13040447 33810399
    [Google Scholar]
  13. Narayana S. Ahmed M.G. Gowda B.H.J. Shetty P.K. Nasrine A. Thriveni M. Noushida N. Sanjana A. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: A comprehensive review. Future J. Pharm. Sci. 2021 7 1 186 10.1186/s43094‑021‑00331‑2
    [Google Scholar]
  14. Bashir S. Awan M.S. Farrukh M.A. Naidu R. Khan S.A. Rafique N. Ali S. Hayat I. Hussain I. Khan M.Z. in-vivo (Albino Mice) and in-vitro assimilation and toxicity of Zinc oxide nanoparticles in food materials. Int. J. Nanomedicine 2022 17 4073 4085 10.2147/IJN.S372343 36111313
    [Google Scholar]
  15. Cavo M. Serio F. Kale N.R. D’Amone E. Gigli G. del Mercato L.L. Electrospun nanofibers in cancer research: From engineering of in vitro 3D cancer models to therapy. Biomater. Sci. 2020 8 18 4887 4905 10.1039/D0BM00390E 32830832
    [Google Scholar]
  16. Youssef M. Ghanim F. Imad N. Alqasim A. Shubair R. Design of intra-body nano-communication network for future nano-medicine. Curr. Nanomed. 2018 12 9 916 928 10.48550/arXiv.1810.00186
    [Google Scholar]
  17. Raja H. Hassan T. Hassan B. Akram M.U. Raja H. alrazaq A.A.A. Yousefi S. Werghi N. A comprehensive review of artificial intelligence applications in major retinal conditions. Curr. Nanomed. 2023 17 11 1105 1120 10.48550/arXiv.2311.13710
    [Google Scholar]
  18. Akhter M.H. Ahmad I. Alshahrani M.Y. Harbi A.A.I. Khalilullah H. Afzal O. Altamimi A.S.A. Ullah N.S.N.M. Ojha A. Karim S. Drug delivery challenges and current progress in nanocarrier-based ocular therapeutic system. Gels 2022 8 2 82 10.3390/gels8020082 35200463
    [Google Scholar]
  19. Shastri D.H. Silva A.C. Almeida H. Ocular delivery of therapeutic proteins: A review. Pharmaceutics 2023 15 1 205 10.3390/pharmaceutics15010205 36678834
    [Google Scholar]
  20. Chowdhury S. Toth I. Stephenson R.J. Dendrimers in vaccine delivery: Recent progress and advances. Biomaterials 2022 280 1 121303 10.1016/j.biomaterials.2021.121303 34871877
    [Google Scholar]
  21. Mittal P. Saharan A. Verma R. Altalbawy F.M.A. Alfaidi M.A. Batiha G.E.S. Akter W. Gautam R.K. Uddin M.S. Rahman M.S. Dendrimers: A new race of pharmaceutical nanocarriers. BioMed Res. Int. 2021 2021 10 1 11 10.1155/2021/8844030 33644232
    [Google Scholar]
  22. Tewari A.K. Upadhyay S.C. Kumar M. Pathak K. Kaushik D. Verma R. Bhatt S. Massoud E.E.S. Rahman M.H. Cavalu S. Insights on development aspects of polymeric nanocarriers: The translation from bench to clinic. Polymers 2022 14 17 3545 10.3390/polym14173545 36080620
    [Google Scholar]
  23. Wu KY Ashkar S Jain S Marchand M Tran SD Breaking barriers in eye treatment: Polymeric nano-based drug-delivery system for anterior segment diseases and glaucoma. Polymers 2023 15 6 1373 10.3390/polym15061373
    [Google Scholar]
  24. Hindi S.S. Sabir J.S.M. Dawoud U.M. Ismail I.M. Asiry K.A. Mirdad Z.M. Elyousr A.K.A. Shiboob M.H. Gabal M.A. Albureikan M.O.I. Alanazi R.A. Ibrahim O.H.M. Nanocellulose-based passivated-carbon quantum dots (P-CQDs) for antimicrobial applications: A practical review. Polymers 2023 15 12 2660 10.3390/polym15122660 37376306
    [Google Scholar]
  25. Karamali F. Behtaj S. Abraki B.S. Hadady H. Atefi A. Savoj S. Soroushzadeh S. Najafian S. Esfahani N.M.H. Klassen H. Potential therapeutic strategies for photoreceptor degeneration: The path to restore vision. J. Transl. Med. 2022 20 1 572 10.1186/s12967‑022‑03738‑4 36476500
    [Google Scholar]
  26. Kumar N. Chamoli P. Misra M. Manoj M.K. Sharma A. Advanced metal and carbon nanostructures for medical, drug delivery and bio-imaging applications. Nanoscale 2022 14 11 3987 4017 10.1039/D1NR07643D 35244647
    [Google Scholar]
  27. Ordikhani F. Zandi N. Mazaheri M. Luther G.A. Ghovvati M. Akbarzadeh A. Annabi N. Targeted nanomedicines for the treatment of bone disease and regeneration. Med. Res. Rev. 2021 41 3 1221 1254 10.1002/med.21759 33347711
    [Google Scholar]
  28. Huang S. Hong X. Zhao M. Liu N. Liu H. Zhao J. Shao L. Xue W. Zhang H. Zhu P. Guo R. Nanocomposite hydrogels for biomedical applications. Bioeng. Transl. Med. 2022 7 3 e10315 10.1002/btm2.10315 36176618
    [Google Scholar]
  29. Zhang J. Jiao J. Niu M. Gao X. Zhang G. Yu H. Yang X. Liu L. Ten years of knowledge of nano-carrier based drug delivery systems in ophthalmology: Current evidence, challenges, and future prospective. Int. J. Nanomedicine 2021 16 9 6497 6530 10.2147/IJN.S329831 34588777
    [Google Scholar]
  30. Amrutkar C.S. Patil S.B. Nanocarriers for ocular drug delivery: Recent advances and future opportunities. Indian J. Ophthalmol. 2023 71 6 2355 2366 10.4103/ijo.IJO_1893_22 37322644
    [Google Scholar]
  31. Gholamali I. Yadollahi M. Bio-nanocomposite polymer hydrogels containing nanoparticles for drug delivery: A review. Regen. Eng. Transl. Med. 2021 7 2 129 146 10.1007/s40883‑021‑00207‑0
    [Google Scholar]
  32. Kashapov R. Ibragimova A. Pavlov R. Gabdrakhmanov D. Kashapova N. Burilova E. Zakharova L. Sinyashin O. Nanocarriers for biomedicine: From lipid formulations to inorganic and hybrid nanoparticles. Int. J. Mol. Sci. 2021 22 13 7055 10.3390/ijms22137055 34209023
    [Google Scholar]
  33. Dludla S.B.K. Mashabela L.T. Ng’andwe B. Makoni P.A. Witika B.A. Current advances in nano-based and polymeric stimuli-responsive drug delivery targeting the ocular microenvironment: A review and envisaged future perspectives. Polymers 2022 14 17 3580 10.3390/polym14173580 36080651
    [Google Scholar]
  34. Alam M.A. Khatun M. Alam M.A. Recent trend of nanotechnology applications to improve bio-accessibility of lycopene by nanocarrier: A review. J. Food Chem. Nanotechnol. 2022 8 4 102 115 10.17756/jfcn.2022‑138
    [Google Scholar]
  35. Das B. Nayak A.K. Mallick S. Lipid-based nanocarriers for ocular drug delivery: An updated review. J. Drug Deliv. Sci. Technol. 2022 76 10 103780 10.1016/j.jddst.2022.103780
    [Google Scholar]
  36. Bashir S.M. Rather A.G. Patrício A. Haq Z. Sheikh A.A. Shah M.Z.H. Singh H. Khan A.A. Imtiyaz S. Ahmad S.B. Nabi S. Rakhshan R. Hassan S. Fonte P. Chitosan nanoparticles: A versatile platform for biomedical applications. Materials 2022 15 19 6521 10.3390/ma15196521 36233864
    [Google Scholar]
  37. Bhalani D.V. Nutan B. Kumar A. Chandel S.A.K. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines 2022 10 9 2055 10.3390/biomedicines10092055 36140156
    [Google Scholar]
  38. Singh B. Day C.M. Abdella S. Garg S. Alzheimer’s disease current therapies, novel drug delivery systems and future directions for better disease management. J. Control. Release 2024 367 1 402 424 10.1016/j.jconrel.2024.01.047 38286338
    [Google Scholar]
  39. Anderson D.M. Luke R.A. Mathematical models of drug delivery via a contact lens during wear. Curr. Nanomed. 2024 18 1 89 100 10.48550/arXiv.2403.00008
    [Google Scholar]
  40. Ana R. Fonseca J. Karczewski J. Silva A.M. Zielińska A. Souto E.B. Lipid-based nanoparticulate systems for the ocular delivery of bioactives with anti-inflammatory properties. Int. J. Mol. Sci. 2022 23 20 12102 10.3390/ijms232012102 36292951
    [Google Scholar]
  41. Ramos M.F. Attar M. Seals J.R. Luhrs K.A. Chapter 32 - Safety evaluation of ocular drugs. A comprehensive guide to toxicology in nonclinical drug development 3rd Ed. ACADEMIC PRESS 2024 879 944 10.1016/B978‑0‑323‑85704‑8.00031‑1
    [Google Scholar]
  42. Das K.P. J C. Nanoparticles and convergence of artificial intelligence for targeted drug delivery for cancer therapy: Current progress and challenges. Front. Med. Technol. 2023 4 1067144 10.3389/fmedt.2022.1067144 36688144
    [Google Scholar]
  43. Lanier O.L. Christopher K.G. Macoon R.M. Yu Y. Sekar P. Chauhan A. Commercialization challenges for drug eluting contact lenses. Expert Opin. Drug Deliv. 2020 17 8 1133 1149 10.1080/17425247.2020.1787983 32602822
    [Google Scholar]
  44. Chaudhari P. Ghate V.M. Lewis S.A. Next-generation contact lenses: Towards bioresponsive drug delivery and smart technologies in ocular therapeutics. Eur. J. Pharm. Biopharm. 2021 161 4 80 99 10.1016/j.ejpb.2021.02.007 33607239
    [Google Scholar]
  45. Peral A. Aguila M.A. Pastrana C. Toral H.F. Torres C.C. Carracedo G. Contact lenses as drug delivery system for glaucoma: A review. Appl. Sci. 2020 10 15 5151 10.3390/app10155151
    [Google Scholar]
  46. Givarian M. Moztarzadeh F. Ghaffari M. Bahmanpour A. Bajestani M.M. Dizaji M.M. Mehradnia F. Dual-trigger release of berberine chloride from the Gelatin/Perfluorohexane core-shell structure. Curr. Nanomed. 2024 18 1 101 113 10.1186/1477‑3155‑11‑1
    [Google Scholar]
  47. Omerović N. Vranić E. Application of nanoparticles in ocular drug delivery systems. Health Technol. 2020 10 1 61 78 10.1007/s12553‑019‑00381‑w
    [Google Scholar]
  48. Jacob S. Nair A.B. Shah J. Gupta S. Boddu S.H.S. Sreeharsha N. Joseph A. Shinu P. Morsy M.A. Lipid nanoparticles as a promising drug delivery carrier for topical ocular therapy an overview on recent advances. Pharmaceutics 2022 14 3 533 10.3390/pharmaceutics14030533 35335909
    [Google Scholar]
  49. Öztürk B.A. Bülbül Ö.E. Gültekin H.E. Cecen B. Demir E. Zarepour A. Cetinel S. Zarrabi A. Application of convergent science and technology toward ocular disease treatment. Pharmaceuticals 2023 16 3 445 10.3390/ph16030445 36986546
    [Google Scholar]
  50. Zhang L. Huang B. Jin J. Li Y. Gu N. Advances in nanoprobes-based immunoassays. BMEMat 2024 2 1 e12057 10.1002/bmm2.12057
    [Google Scholar]
  51. Loe G.J. Souza B.E. Missyul A. Giraldo G. Tan J.C. Albero S.J. MOF-based polymeric nanocomposite films as potential materials for drug delivery devices in ocular therapeutics. ACS Appl. Mater. Interfaces 2020 12 27 30189 30197 10.1021/acsami.0c07517 32530261
    [Google Scholar]
  52. Rivankar S. An overview of doxorubicin formulations in cancer therapy. J. Cancer Res. Ther. 2014 10 4 853 858 10.4103/0973‑1482.139267 25579518
    [Google Scholar]
  53. Zhu D. Zhang L. Dong X. Sun H. Song C. Wang C. Kong D. Folate-modified lipid–polymer hybrid nanoparticles for targeted paclitaxel delivery. Int. J. Nanomedicine 2015 10 2101 2114 10.2147/IJN.S77667 25844039
    [Google Scholar]
  54. Mir M. Ishtiaq S. Rabia S. Khatoon M. Zeb A. Khan G.M. ur Rehman A. ud Din F. Nanotechnology: From in vivo imaging system to controlled drug delivery. Nanoscale Res. Lett. 2017 12 1 500 10.1186/s11671‑017‑2249‑8 28819800
    [Google Scholar]
  55. Patri A. Kukowskalatallo J. Baker J. Jr Targeted drug delivery with dendrimers: Comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv. Drug Deliv. Rev. 2005 57 15 2203 2214 10.1016/j.addr.2005.09.014 16290254
    [Google Scholar]
  56. Li R. Bao Z. Wang P. Deng Y. Fan J. Zhu X. Xia X. Song Y. Yao H. Li D. Gelatin-functionalized carbon nanotubes loaded with cisplatin for anti-cancer therapy. Polymers 2023 15 16 3333 10.3390/polym15163333 37631391
    [Google Scholar]
  57. Badman R.P. Moore S.L. Killian J.L. Feng T. Cleland T.A. Hu F. Wang M.D. Dextran-coated iron oxide nanoparticle-induced nanotoxicity in neuron cultures. Sci. Rep. 2020 10 1 11239 10.1038/s41598‑020‑67724‑w 32641693
    [Google Scholar]
  58. Pramanik N. De T. Sharma P. Alakesh A. Jagirdar S.K. Rangarajan A. Jhunjhunwala S. Surface-coated cerium nanoparticles to improve chemotherapeutic delivery to tumor cells. ACS Omega 2022 7 36 31651 31657 10.1021/acsomega.2c00062 36120021
    [Google Scholar]
  59. Zhuang H. Xu Y.N. Zheng H.H. Huan Y.R. Zheng N.X. Lin L. Zhang W.Z. Xu W. Carboplatin-loaded surface modified-PLGA nanoparticles confer sustained inhibitory effect against retinoblastoma cell in vitro. Arq. Bras. Oftalmol. 2021 85 4 450 458 10.5935/0004‑2749.20220075 35170632
    [Google Scholar]
  60. Kagkelaris K. Panayiotakopoulos G. Georgakopoulos C.D. Nanotechnology-based formulations to amplify intraocular bioavailability. Ther. Adv. Ophthalmol. 2022 14 7 25158414221112356 10.1177/25158414221112356 35873277
    [Google Scholar]
  61. Youssef A.A.A. Dudhipala N. Majumdar S. Dual drug loaded lipid nanocarrier formulations for topical ocular applications. Int. J. Nanomedicine 2022 17 2283 2299 10.2147/IJN.S360740 35611213
    [Google Scholar]
  62. Tsai C.H. Wang P.Y. Lin I.C. Huang H. Liu G.S. Tseng C.L. Ocular drug delivery: Role of degradable polymeric nanocarriers for ophthalmic application. Int. J. Mol. Sci. 2018 19 9 2830 10.3390/ijms19092830 30235809
    [Google Scholar]
  63. Sridhar V. Yildiz E. Camargo R.A. Lyu X. Yao L. Wrede P. Aghakhani A. Akolpoglu B.M. Podjaski F. Lotsch B.V. Sitti M. Designing covalent organic framework-based light-driven microswimmers toward therapeutic applications. Adv. Mater. 2023 35 25 2301126 10.1002/adma.202301126 37003701
    [Google Scholar]
  64. Bagasariya D. Charankumar K. Shah S. Famta P. Khatri D.K. Raghuvanshi S.R. Singh B.S. Srivastava S. Biomimetic nanotherapeutics: Employing nanoghosts to fight melanoma. Eur. J. Pharm. Biopharm. 2022 177 8 157 174 10.1016/j.ejpb.2022.06.014 35787429
    [Google Scholar]
  65. Chen X. Yang R. Shen J. Huang Q. Wu Z. Research progress of bioinspired nanostructured systems for the treatment of ocular disorders. Pharmaceuticals 2023 16 1 96 10.3390/ph16010096 36678597
    [Google Scholar]
  66. Lynch C. Kondiah P.P.D. Choonara Y.E. du Toit L.C. Ally N. Pillay V. Advances in biodegradable nano-sized polymer-based ocular drug delivery. Polymers 2019 11 8 1371 10.3390/polym11081371 31434273
    [Google Scholar]
  67. Patel S.N. Gangaputra S. Sternberg P. Jr Kim S.J. Prophylaxis measures for postinjection endophthalmitis. Surv. Ophthalmol. 2020 65 4 408 420 10.1016/j.survophthal.2019.12.005 31923477
    [Google Scholar]
  68. Qamar Z. Qizilbash F.F. Iqubal M.K. Ali A. Narang J.K. Ali J. Baboota S. Nano-based drug delivery system: Recent strategies for the treatment of ocular disease and future perspective. Recent Pat. Drug Deliv. Formul. 2020 13 4 246 254 10.2174/1872211314666191224115211 31884933
    [Google Scholar]
  69. Gote V. Sikder S. Sicotte J. Pal D. Ocular drug delivery: Present innovations and future challenges. J. Pharmacol. Exp. Ther. 2019 370 3 602 624 10.1124/jpet.119.256933 31072813
    [Google Scholar]
  70. Ahmed S. Amin M.M. Sayed S. Ocular drug delivery: A comprehensive review. AAPS PharmSciTech 2023 24 2 66 10.1208/s12249‑023‑02516‑9 36788150
    [Google Scholar]
  71. Regu V.R. Swain R.P. Subudhi B.B. Drug delivery for ocular allergy: Current formulation design strategies and future perspectives. Curr. Pharm. Des. 2023 29 33 2626 2639 10.2174/0113816128275375231030115828 37936454
    [Google Scholar]
  72. Li S. Chen L. Fu Y. Nanotechnology-based ocular drug delivery systems: Recent advances and future prospects. J. Nanobiotechnology 2023 21 1 232 10.1186/s12951‑023‑01992‑2 37480102
    [Google Scholar]
  73. Sahoo S. Dilnawaz F. Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov. Today 2008 13 3-4 144 151 10.1016/j.drudis.2007.10.021 18275912
    [Google Scholar]
  74. Mascarenhas M. Chaudhari P. Lewis S.A. Natamycin ocular delivery: Challenges and advancements in ocular therapeutics. Adv. Ther. 2023 40 8 3332 3359 10.1007/s12325‑023‑02541‑x 37289410
    [Google Scholar]
  75. Maulvi F.A. Desai D.T. Shetty K.H. Shah D.O. Willcox M.D.P. Advances and challenges in the nanoparticles-laden contact lenses for ocular drug delivery. Int. J. Pharm. 2021 608 121090 10.1016/j.ijpharm.2021.121090 34530102
    [Google Scholar]
  76. Almeida H. Amaral M. Lobao P. Frigerio C. Lobo S.J. Nanoparticles in ocular drug delivery systems for topical administration: Promises and challenges. Curr. Pharm. Des. 2015 21 36 5212 5224 10.2174/1381612821666150923095155 26412360
    [Google Scholar]
  77. Mandal A. Pal D. Agrahari V. Trinh H.M. Joseph M. Mitra A.K. Ocular delivery of proteins and peptides: Challenges and novel formulation approaches. Adv. Drug Deliv. Rev. 2018 126 67 95 10.1016/j.addr.2018.01.008 29339145
    [Google Scholar]
  78. Billowria K. Sandhu N.K. Singh B. Topical advances in mucoadhesive ocular drug delivery system. Curr. Drug Deliv. 2023 20 8 1127 1140 10.2174/1567201819666221010122413 36221885
    [Google Scholar]
  79. Ashique S. Sandhu N.K. Chawla V. Chawla P.A. Targeted drug delivery: Trends and perspectives. Curr. Drug Deliv. 2021 18 10 1435 1455 10.2174/1567201818666210609161301 34151759
    [Google Scholar]
  80. Slastnikova T.A. Ulasov A.V. Rosenkranz A.A. Sobolev A.S. Targeted intracellular delivery of antibodies: The state of the art. Front. Pharmacol. 2018 9 1208 10.3389/fphar.2018.01208 30405420
    [Google Scholar]
  81. Momtazmanesh S. Moghaddam S.S. Ghamari S-H. Rad E.M. Rezaei N. Shobeiri P. Aali A. Kangevari A.M. Kangevari A.Z. Abdelmasseh M. Abdoun M. Abdulah D.M. Abdullah M.A.Y. Abedi A. Abolhassani H. Tafreshi A.Z. Achappa B. Adane A.D.E. Adane T.D. Addo I.Y. Adnan M. Adnani S.Q.E. Ahmad S. Ahmadi A. Ahmadi K. Ahmed A. Ahmed A. Rashid T.A. Al Hamad H. Alahdab F. Alemayehu A. Alif S.M. Aljunid S.M. Almustanyir S. Altirkawi K.A. Guzman A.N. Dehkordi J.A. Behghadami A.M. Ancuceanu R. Andrei C.L. Andrei T. Antony C.M. Anyasodor A.E. Arabloo J. Arulappan J. Ashraf T. Athari S.S. Attia E.F. Ayele M.T. Azadnajafabad S. Babu A.S. Bagherieh S. Baltatu O.C. Banach M. Bardhan M. Adesi B.F. Barrow A. Basu S. Bayileyegn N.S. Bensenor I.M. Bhardwaj N. Bhardwaj P. Bhat A.N. Bhattacharyya K. Bouaoud S. Braithwaite D. Brauer M. Butt M.H. Butt Z.A. Calina D. Cámera L.A. Chanie G.S. Charalampous P. Chattu V.K. Ochir C.O. Chu D-T. Cohen A.J. Martins C.N. Dadras O. Darwesh A.M. Das S. Debela S.A. Ortiz D.L. Dereje D. Dianatinasab M. Diao N. Diaz D. Digesa L.E. Dirirsa G. Doku P.N. Dongarwar D. Douiri A. Dsouza H.L. Eini E. Ekholuenetale M. Ekundayo T.C. Elagali M.A.E. Elhadi M. Enyew D.B. Erkhembayar R. Etaee F. Fagbamigbe A.F. Faro A. Fatehizadeh A. Fekadu G. Filip I. Fischer F. Foroutan M. Franklin R.C. Gaal P.A. Gaihre S. Gaipov A. Gebrehiwot M. Gerema U. Getachew M.E. Getachew T. Ghafourifard M. Ghanbari R. Ghashghaee A. Gholami A. Gil A.U. Golechha M. Goleij P. Golinelli D. Guadie H.A. Gupta B. Gupta S. Gupta V.B. Gupta V.K. Hadei M. Halwani R. Hanif A. Hargono A. Harorani M. Hartono R.K. Hasani H. Hashi A. Hay S.I. Heidari M. Hellemons M.E. Herteliu C. Holla R. Horita N. Hoseini M. Hosseinzadeh M. Huang J. Hussain S. Hwang B-F. Iavicoli I. Ibitoye S.E. Ibrahim S. Ilesanmi O.S. Ilic I.M. Ilic M.D. Immurana M. Ismail N.E. J M.L. Jakovljevic M. Jamshidi E. Janodia M.D. Javaheri T. Jayapal S.K. Jayaram S. Jha R.P. Johnson O. Joo T. Joseph N. Jozwiak J.J. K V. Kaambwa B. Kabir Z. Kalankesh L.R. Kalhor R. Kandel H. Karanth S.D. Karaye I.M. Kassa B.G. Kassie G.M. Arani K.L. Keykhaei M. Khajuria H. Khan I.A. Khan M.A.B. Khan Y.H. Khreis H. Kim M.S. Kisa A. Kisa S. Knibbs L.D. Kolkhir P. Komaki S. Kompani F. Koohestani H.R. Koolivand A. Korzh O. Koyanagi A. Krishan K. Krohn K.J. Kumar N. Kumar N. Kurmi O.P. Kuttikkattu A. La Vecchia C. Lám J. Lan Q. Lasrado S. Latief K. Lauriola P. Lee S. Lee Y.H. Legesse S.M. Lenzi J. Li M-C. Lin R-T. Liu G. Liu W. Lo C-H. Lorenzovici L. Lu Y. Mahalingam S. Mahmoudi E. Mahotra N.B. Malekpour M-R. Malik A.A. Mallhi T.H. Malta D.C. Mansouri B. Mathews E. Maulud S.Q. Mechili E.A. Nasab E.M. Menezes R.G. Mengistu D.A. Mentis A-F. Meshkat M. Mestrovic T. de Sá M.G.N.A.C. Mirrakhimov E.M. Misganaw A. Mithra P. Moghadasi J. Mohammadi E. Mohammadi M. Mohammadshahi M. Mohammed S. Mohan S. Moka N. Monasta L. Moni M.A. Moniruzzaman M. Montazeri F. Moradi M. Mostafavi E. Kaambwa M.C. Zamora M.E. Murray C.J.L. Nair T.S. Nangia V. Swamy S.N. Narayana A.I. Natto Z.S. Nayak B.P. Negash W.W. Nena E. Kandel S.N. Niazi R.K. Nogueira de Sá A.T. Nowroozi A. Nzoputam C.I. Nzoputam O.J. Oancea B. Obaidur R.M. Odukoya O.O. Aliabad O.H. Okekunle A.P. Okonji O.C. Olagunju A.T. Bali A.O. Ostojic S.M. A M.P. Monedero P.A. Padubidri J.R. Fallahy P.M.T. Palicz T. Pana A. Park E-K. Patel J. Paudel R. Paudel U. Pedersini P. Pereira M. Pereira R.B. Petcu I-R. Pirestani M. Postma M.J. Prashant A. Rabiee M. Radfar A. Rafiei S. Rahim F. Ur Rahman M.H. Rahman M. Rahman M.A. Rahmani A.M. Rahmani S. Rahmanian V. Rajput P. Rana J. Rao C.R. Rao S.J. Rashedi S. Rashidi M-M. Ratan Z.A. Rawaf D.L. Rawaf S. Rawal L. Rawassizadeh R. Razeghinia M.S. Redwan M.E.M. Rezaei M. Rezaei N. Rezaei N. Rezaeian M. Rodrigues M. Rodriguez B.J.A. Roever L. Rueda R.D. Rudd K.E. Saad A.M.A. Sabour S. Saddik B. Sadeghi E. Sadeghi M. Saeed U. Sahebazzamani M. Sahebkar A. Sahoo H. Sajid M.R. Sakhamuri S. Salehi S. Samy A.M. Milicevic S.M.M. Jose S.B.P. Sathian B. Satpathy M. Saya G.K. Senthilkumaran S. Seylani A. Shahabi S. Shaikh M.A. Shanawaz M. Shannawaz M. Sheikhi R.A. Shekhar S. Sibhat M.M. Simpson C.R. Singh J.A. Singh P. Singh S. Skryabin V.Y. Skryabina A.A. Zangbar S.M.S. Song S. Soyiri I.N. Steiropoulos P. Stockfelt L. Sun J. Takahashi K. Talaat I.M. Tan K-K. Tat N.Y. Tat V.Y. Taye B.T. Thangaraju P. Thapar R. Thienemann F. Tiyuri A. Tran N.M.T. Tripathy J.P. Car L.T. Tusa B.S. Ullah I. Ullah S. Vacante M. Valdez P.R. Valizadeh R. van Boven J.F.M. Vasankari T.J. Vaziri S. Violante F.S. Vo B. Wang N. Wei M.Y. Westerman R. Wickramasinghe N.D. Xu S. Xu X. Yadav L. Yismaw Y. Yon D.K. Yonemoto N. Yu C. Yu Y. Yunusa I. Zahir M. Zangiabadian M. Zareshahrabadi Z. Zarrintan A. Zastrozhin M.S. Zegeye Z.B. Zhang Y. Naghavi M. Larijani B. Farzadfar F. Global burden of chronic respiratory diseases and risk factors, 1990–2019: An update from the Global Burden of Disease Study 2019. EClinicalMedicine 2023 59 101936 10.1016/j.eclinm.2023.101936 37229504
    [Google Scholar]
  82. Bisht R. Mandal A. Jaiswal J.K. Rupenthal I.D. Nanocarrier mediated retinal drug delivery: Overcoming ocular barriers to treat posterior eye diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018 10 2 e1473 10.1002/wnan.1473 28425224
    [Google Scholar]
  83. Wang R. Gao Y. Liu A. Zhai G. A review of nanocarrier-mediated drug delivery systems for posterior segment eye disease: Challenges analysis and recent advances. J. Drug Target. 2021 29 7 687 702 10.1080/1061186X.2021.1878366 33474998
    [Google Scholar]
  84. Faria M.J. Méijome G.J.M. Oliveira R.M.E.C.D. Carracedo G. Lúcio M. Recent advances and strategies for nanocarrier-mediated topical therapy and theranostic for posterior eye disease. Adv. Drug Deliv. Rev. 2024 210 115321 10.1016/j.addr.2024.115321 38679293
    [Google Scholar]
  85. Witting M. Obst K. Friess W. Hedtrich S. Recent advances in topical delivery of proteins and peptides mediated by soft matter nanocarriers. Biotechnol. Adv. 2015 33 6 1355 1369 10.1016/j.biotechadv.2015.01.010 25687276
    [Google Scholar]
  86. Lauraine P.E. Hilpert F. Weber B. Reuss A. Poveda A. Kristensen G. Sorio R. Vergote I. Witteveen P. Bamias A. Pereira D. Wimberger P. Oaknin A. Mirza M.R. Follana P. Bollag D. Coquard R.I. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: The AURELIA open-label randomized phase III trial. J. Clin. Oncol. 2014 32 13 1302 1308 10.1200/JCO.2013.51.4489 24637997
    [Google Scholar]
  87. Elsaid N. Jackson T.L. Elsaid Z. Alqathama A. Somavarapu S. PLGA microparticles entrapping chitosan-based nanoparticles for the ocular delivery of ranibizumab. Mol. Pharm. 2016 13 9 2923 2940 10.1021/acs.molpharmaceut.6b00335 27286558
    [Google Scholar]
  88. Park J.Y. Kwon S. Kim S.H. Kang Y.J. Khang D. Triamcinolone–gold nanoparticles repolarize synoviocytes and macrophages in an inflamed synovium. ACS Appl. Mater. Interfaces 2020 12 35 38936 38949 10.1021/acsami.0c09842 32805872
    [Google Scholar]
  89. Sharma A. Liaw K. Sharma R. Spriggs T. Rosa L.A.S. Kannan S. Kannan R.M. Dendrimer-mediated targeted delivery of rapamycin to tumor-associated macrophages improves systemic treatment of glioblastoma. Biomacromolecules 2020 21 12 5148 5161 10.1021/acs.biomac.0c01270 33112134
    [Google Scholar]
  90. Shariatifar H. Ranjbarian F. Hajiahmadi F. Farasat A. A comprehensive review on methotrexate containing nanoparticles; an appropriate tool for cancer treatment. Mol. Biol. Rep. 2022 49 11 11049 11060 10.1007/s11033‑022‑07782‑7 36097117
    [Google Scholar]
  91. Massadeh S. Almohammed I. Barhoush E. Omer M. Aldhawi N. Almalik A. Alaamery M. Development of epirubicin-loaded biocompatible polymer PLA–PEG–PLA nanoparticles: Synthesis, characterization, stability, and in vitro anticancerous assessment. Polymers 2021 13 8 1212 10.3390/polym13081212 33918625
    [Google Scholar]
  92. Kalvodová A. Dvořáková K. Petrová E. Kohn M.B.B. Zbytovská J. The contest of nanoparticles: Searching for the most effective topical delivery of corticosteroids. Pharmaceutics 2023 15 2 513 10.3390/pharmaceutics15020513 36839836
    [Google Scholar]
  93. Satyanarayana S.D. Lila A.A.S. Moin A. Moglad E.H. Khafagy E.S. Alotaibi H.F. Obaidullah A.J. Charyulu R.N. Ocular delivery of bimatoprost-loaded solid lipid nanoparticles for effective management of glaucoma. Pharmaceuticals 2023 16 7 1001 10.3390/ph16071001 37513913
    [Google Scholar]
  94. Seedat N. Kalhapure R.S. Mocktar C. Vepuri S. Jadhav M. Soliman M. Govender T. Co-encapsulation of multi-lipids and polymers enhances the performance of vancomycin in lipid–polymer hybrid nanoparticles: in vitro and in silico studies. Mater. Sci. Eng. C 2016 61 616 630 10.1016/j.msec.2015.12.053 26838890
    [Google Scholar]
  95. Nicolás N.F.M. Villagra R.E. Osuna B.I. Calvo S.P. Martínez M.I. Pérez V.M.P. Sanz V.M. Barriuso A.M. Vanrell H.R. Ketorolac administration attenuates retinal ganglion cell death after axonal injury. Invest. Ophthalmol. Vis. Sci. 2016 57 3 1183 1192 10.1167/iovs.15‑18213 26975030
    [Google Scholar]
  96. Hussain A. Mahdi W.A. Alshehri S. Bukhari S.I. Almaniea M.A. Application of green nanoemulsion for elimination of rifampicin from a bulk aqueous solution. Int. J. Environ. Res. Public Health 2021 18 11 5835 10.3390/ijerph18115835 34071692
    [Google Scholar]
  97. Aboali F.A. Habib D.A. Elbedaiwy H.M. Farid R.M. Curcumin-loaded proniosomal gel as a biofreindly alternative for treatment of ocular inflammation: in-vitro and in-vivo assessment. Int. J. Pharm. 2020 589 119835 10.1016/j.ijpharm.2020.119835 32890654
    [Google Scholar]
  98. Barrett R.T. Hastings J.P. Ronquillo Y.C. Hoopes P.C. Moshirfar M. Coral keratitis: Case report and review of mechanisms of action, clinical management and prognosis of ocular exposure to palytoxin. Clin. Ophthalmol. 2021 15 141 156 10.2147/OPTH.S290455 33469260
    [Google Scholar]
  99. Meng F. Guo B. Ma Y. Li K. Niu F. Puerarin: A review of its mechanisms of action and clinical studies in ophthalmology. Phytomedicine 2022 107 154465 10.1016/j.phymed.2022.154465 36166943
    [Google Scholar]
  100. Chua A.J. Francesco V.D. Huang D. D’Souza A. Bleier B.S. Amiji M.M. Nanotechnology-enabled topical delivery of therapeutics in chronic rhinosinusitis. Nanomedicine 2023 18 20 1399 1415 10.2217/nnm‑2023‑0072 37800470
    [Google Scholar]
  101. Li Z. Yao L. Li J. Zhang W. Wu X. Liu Y. Lin M. Su W. Li Y. Liang D. Celastrol nanoparticles inhibit corneal neovascularization induced by suturing in rats. Int. J. Nanomedicine 2012 7 1163 1173 22419865
    [Google Scholar]
  102. Ashraf H. Cossu D. Ruberto S. Noli M. Jasemi S. Simula E.R. Sechi L.A. Latent potential of multifunctional selenium nanoparticles in neurological diseases and altered gut microbiota. Materials 2023 16 2 699 10.3390/ma16020699 36676436
    [Google Scholar]
  103. Liu C.H. Lai K.Y. Wu W.C. Chen Y.J. Lee W.S. Hsu C.Y. in vitro scleral lutein distribution by cyclodextrin containing nanoemulsions. Chem. Pharm. Bull. 2015 63 2 59 67 10.1248/cpb.c14‑00318 25748776
    [Google Scholar]
  104. Peng C. Kuang L. Zhao J. Ross A.E. Wang Z. Ciolino J.B. Bibliometric and visualized analysis of ocular drug delivery from 2001 to 2020. J. Control. Release 2022 345 625 645 10.1016/j.jconrel.2022.03.031 35321827
    [Google Scholar]
  105. Khiev D. Mohamed Z.A. Vichare R. Paulson R. Bhatia S. Mohapatra S. Lobo G.P. Valapala M. Kerur N. Passaglia C.L. Mohapatra S.S. Biswal M.R. Emerging nano-formulations and nanomedicines applications for ocular drug delivery. Nanomaterials 2021 11 1 173 10.3390/nano11010173 33445545
    [Google Scholar]
  106. Battaglia L. Serpe L. Foglietta F. Muntoni E. Gallarate M. Rodriguez D.P.A. Solinis M.A. Application of lipid nanoparticles to ocular drug delivery. Expert Opin. Drug Deliv. 2016 13 12 1743 1757 10.1080/17425247.2016.1201059 27291069
    [Google Scholar]
  107. Xu T. Zhang J. Chi H. Cao F. Multifunctional properties of organic-inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides for ocular drug delivery. Acta Biomater. 2016 36 152 163 10.1016/j.actbio.2016.02.041 26940970
    [Google Scholar]
  108. Cardigos J. Ferreira Q. Crisóstomo S. Coelho M.N. Cunha J.P. Pinto L.A. Ferreira J.T. Nanotechnology-ocular devices for glaucoma treatment: A literature review. Curr. Eye Res. 2019 44 2 111 117 10.1080/02713683.2018.1536218 30309248
    [Google Scholar]
  109. Gaballa S.A. Kompella U.B. Elgarhy O. Alqahtani A.M. Pierscionek B. Alany R.G. Abdelkader H. Corticosteroids in ophthalmology: Drug delivery innovations, pharmacology, clinical applications, and future perspectives. Drug Deliv. Transl. Res. 2021 11 3 866 893 10.1007/s13346‑020‑00843‑z 32901367
    [Google Scholar]
  110. Gupta P. Yadav K.S. Applications of microneedles in delivering drugs for various ocular diseases. Life Sci. 2019 237 116907 10.1016/j.lfs.2019.116907 31606378
    [Google Scholar]
  111. Cabral T. DiCarlo J.E. Justus S. Sengillo J.D. Xu Y. Tsang S.H. CRISPR applications in ophthalmologic genome surgery. Curr. Opin. Ophthalmol. 2017 28 3 252 259 10.1097/ICU.0000000000000359 28141764
    [Google Scholar]
  112. Mendell J.R. Zaidy A.S.A. Klapac R.L.R. Goodspeed K. Gray S.J. Kay C.N. Boye S.L. Boye S.E. George L.A. Salabarria S. Corti M. Byrne B.J. Tremblay J.P. Current clinical applications of in vivo gene therapy with AAVs. Mol. Ther. 2021 29 2 464 488 10.1016/j.ymthe.2020.12.007 33309881
    [Google Scholar]
  113. Shatz W. Aaronson J. Yohe S. Kelley R.F. Kalia Y.N. Strategies for modifying drug residence time and ocular bioavailability to decrease treatment frequency for back of the eye diseases. Expert Opin. Drug Deliv. 2019 16 1 43 57 10.1080/17425247.2019.1553953 30488721
    [Google Scholar]
  114. Borys T.B. Skonieczna K. Liberek G.I. Ocular ischemic syndrome – A systematic review. Med. Sci. Monit. 2012 18 8 RA138 RA144 10.12659/MSM.883260 22847215
    [Google Scholar]
  115. Zhou M. Liao J. Lai W. Xu R. Liu W. Xie D. Wang F. Zhang Z. Huang J. Zhang R. Li G. A celastrol-based nanodrug with reduced hepatotoxicity for primary and metastatic cancer treatment. EBioMedicine 2023 94 104724 10.1016/j.ebiom.2023.104724 37480625
    [Google Scholar]
  116. Joshi P.H. Youssef A.A.A. Ghonge M. Varner C. Tripathi S. Dudhipala N. Majumdar S. Gatifloxacin loaded nano lipid carriers for the management of bacterial conjunctivitis. Antibiotics 2023 12 8 1318 10.3390/antibiotics12081318 37627738
    [Google Scholar]
  117. Emam e.g. A. Girgis G.N.S. Sokkary E.M.M.A. Soliman E.A.O.A. Gawad A.E.A. e.g. H. Ocular inserts of voriconazole-loaded proniosomal gels: Formulation, evaluation and microbiological studies. Int. J. Nanomedicine 2020 15 7825 7840 10.2147/IJN.S268208 33116503
    [Google Scholar]
  118. Patil R. Dehari D. Chaudhuri A. Kumar D.N. Kumar D. Singh S. Nath G. Agrawal A.K. Recent advancements in nanotechnology-based bacteriophage delivery strategies against bacterial ocular infections. Microbiol. Res. 2023 273 127413 10.1016/j.micres.2023.127413 37216845
    [Google Scholar]
  119. Sunoqrot S. Hamed R. Halim A.H. Tarawneh O. Synergistic interplay of medicinal chemistry and formulation strategies in nanotechnology – from drug discovery to nanocarrier design and development. Curr. Top. Med. Chem. 2017 17 13 1451 1468 10.2174/1568026616666161222111656 28017147
    [Google Scholar]
  120. Guo S. Shi Y. Liang Y. Liu L. Sun K. Li Y. Relationship and improvement strategies between drug nanocarrier characteristics and hemocompatibility: What can we learn from the literature. Asian J. Pharm. Sci. 2021 16 5 551 576 10.1016/j.ajps.2020.12.002 34849162
    [Google Scholar]
  121. Mishra D.K. Shandilya R. Mishra P.K. Lipid based nanocarriers: A translational perspective. Nanomedicine 2018 14 7 2023 2050 10.1016/j.nano.2018.05.021 29944981
    [Google Scholar]
  122. Premjit Y. Pandhi S. Kumar A. Rai D.C. Duary R.K. Mahato D.K. Current trends in flavor encapsulation: A comprehensive review of emerging encapsulation techniques, flavour release, and mathematical modelling. Food Res. Int. 2022 151 110879 10.1016/j.foodres.2021.110879 34980409
    [Google Scholar]
  123. Hennig R Goepferich A Nanoparticles for the treatment of ocular neovascularizations. Eur. J. Pharm. Biopharm. 2015 95 294 306 10.1016/j.ejpb.2015.02.027
    [Google Scholar]
  124. Wang W. Zou J. Recent progress in N6-methyladenosine modification in ocular surface diseases. Int. J. Ophthalmol. 2023 16 4 645 651 10.18240/ijo.2023.04.20 37077483
    [Google Scholar]
  125. Bielory L. Wagle P. Ocular surface lubricants. Curr. Opin. Allergy Clin. Immunol. 2017 17 5 382 389 10.1097/ACI.0000000000000392 28796122
    [Google Scholar]
  126. Sridhar M. Anatomy of cornea and ocular surface. Indian J. Ophthalmol. 2018 66 2 190 194 10.4103/ijo.IJO_646_17 29380756
    [Google Scholar]
  127. Allyn M.M. Luo R.H. Hellwarth E.B. Reilly S.K.E. Considerations for polymers used in ocular drug delivery. Front. Med. 2022 8 787644 10.3389/fmed.2021.787644 35155469
    [Google Scholar]
  128. Masters J.C. Nickens D.J. Xuan D. Shazer R.L. Amantea M. Clinical toxicity of antibody drug conjugates: A meta-analysis of payloads. Invest. New Drugs 2018 36 1 121 135 10.1007/s10637‑017‑0520‑6 29027591
    [Google Scholar]
  129. Gao Q. Ludwig C.A. Smith S.J. Schachar I.H. Ocular penetrance and safety of the dopaminergic prodrug etilevodopa. Transl. Vis. Sci. Technol. 2021 10 12 5 10.1167/tvst.10.12.5 34609478
    [Google Scholar]
  130. Talegaonkar S. Bhattacharyya A. Potential of lipid nanoparticles (SLNs and NLCs) in enhancing oral bioavailability of drugs with poor intestinal permeability. AAPS PharmSciTech 2019 20 3 121 10.1208/s12249‑019‑1337‑8 30805893
    [Google Scholar]
  131. Abdelghany A.A. D’Oria F. Alio J.L. Surgery for glaucoma in modern corneal graft procedures. Surv. Ophthalmol. 2021 66 2 276 289 10.1016/j.survophthal.2020.08.002 32827497
    [Google Scholar]
  132. Billard F.S. Dupas B. Eye disorders other than diabetic retinopathy in patients with diabetes. Diabetes Metab. 2021 47 6 101279 10.1016/j.diabet.2021.101279 34534696
    [Google Scholar]
  133. Jha B.S. Farnoodian M. Bharti K. Regulatory considerations for developing a phase I investigational new drug application for autologous induced pluripotent stem cells-based therapy product. Stem Cells Transl. Med. 2021 10 2 198 208 10.1002/sctm.20‑0242 32946199
    [Google Scholar]
  134. Lalu L. Tambe V. Pradhan D. Nayak K. Bagchi S. Maheshwari R. Kalia K. Tekade R.K. Novel nanosystems for the treatment of ocular inflammation: Current paradigms and future research directions. J. Control. Release 2017 268 19 39 10.1016/j.jconrel.2017.07.035 28756272
    [Google Scholar]
  135. Wang C. Pang Y. Nano-based eye drop: Topical and noninvasive therapy for ocular diseases. Adv. Drug Deliv. Rev. 2023 194 114721 10.1016/j.addr.2023.114721 36773886
    [Google Scholar]
  136. Sultana Y. Maurya D.P. Iqbal Z. Aqil M. Nanotechnology in ocular delivery: Current and future directions. Drugs Today 2011 47 6 441 455 10.1358/dot.2011.47.6.1549023 21695286
    [Google Scholar]
  137. Zsiros E. Lynam S. Attwood K.M. Wang C. Chilakapati S. Gomez E.C. Liu S. Akers S. Lele S. Frederick P.J. Odunsi K. Efficacy and safety of pembrolizumab in combination with bevacizumab and oral metronomic cyclophosphamide in the treatment of recurrent ovarian cancer. JAMA Oncol. 2021 7 1 78 85 10.1001/jamaoncol.2020.5945 33211063
    [Google Scholar]
  138. de Winter R.J. Katagiri Y. Asano T. Milewski K.P. Lurz P. Buszman P. Jessurun G.A.J. Koch K.T. Troquay R.P.T. Hamer B.J.B. Ophuis T.O. Wöhrle J. Wyderka R. Cayla G. Hofma S.H. Levesque S. Żurakowski A. Fischer D. Kośmider M. Goube P. Arkenbout E.K. Noutsias M. Ferrari M.W. Onuma Y. Wijns W. Serruys P.W. A sirolimus-eluting bioabsorbable polymer-coated stent (MiStent) versus an everolimus-eluting durable polymer stent (Xience) after percutaneous coronary intervention (DESSOLVE III): A randomised, single-blind, multicentre, non-inferiority, phase 3 trial. Lancet 2018 391 10119 431 440 10.1016/S0140‑6736(17)33103‑3 29203070
    [Google Scholar]
  139. Sarkisian SR Jr Ang RE Lee AM Berdahl JP Heersink SB Burden JH Doan LV Stephens KG Kothe AC Usner DW Katz LJ Navratil T Phase 3 randomized clinical trial of the safety and efficacy of travoprost intraocular implant in patients with open-angle glaucoma or ocular hypertension. Ophthalmology 2024 131 9 1021 1032 10.1016/j.ophtha.2024.02.022
    [Google Scholar]
  140. Lublin F. Miller D.H. Freedman M.S. Cree B.A.C. Wolinsky J.S. Weiner H. Lubetzki C. Hartung H.P. Montalban X. Uitdehaag B.M.J. Merschhemke M. Li B. Putzki N. Liu F.C. Häring D.A. Kappos L. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): A phase 3, randomised, double-blind, placebo-controlled trial. Lancet 2016 387 10023 1075 1084 10.1016/S0140‑6736(15)01314‑8 26827074
    [Google Scholar]
  141. Sheppard J. Kannarr S. Luchs J. Malhotra R. Justice A. Ogundele A. Darby C. Bacharach J. Efficacy and safety of OTX-101, a novel nanomicellar formulation of cyclosporine A, for the treatment of keratoconjunctivitis sicca: Pooled analysis of a phase 2b/3 and phase 3 study. Eye Contact Lens 2020 46 1 S14 S19 10.1097/ICL.0000000000000636 31361655
    [Google Scholar]
  142. Tanihara H. Yamamoto T. Aihara M. Kawakita K. Kojima S. Kanazawa M. Nojima T. Suganami H. Ripasudil–brimonidine fixed-dose combination vs ripasudil or brimonidine: Two phase 3 randomized clinical trials. Am. J. Ophthalmol. 2023 248 35 44 10.1016/j.ajo.2022.11.017 36410471
    [Google Scholar]
  143. Wirta D. Vollmer P. Paauw J. Chiu K.H. Henry E. Striffler K. Nau J. Wirta D. Rubin J. Reilly C. Bergstrom L. Olsen K. Jerkins G. Pattar G. Segal B. Aune C. Goosey J. Geffin J. Terveen D. Kenyon K. Dao J. Kenyon K. Peterson J. Zimmer D. Vollmer P. Boehmer B. Paauw J. Nieman Y. Liang E. Efficacy and safety of OC-01 (Varenicline Solution) nasal spray on signs and symptoms of dry eye disease. Ophthalmology 2022 129 4 379 387 10.1016/j.ophtha.2021.11.004 34767866
    [Google Scholar]
  144. Tannir N.M. Plimack E. Ng C. Tamboli P. Bekele N.B. Xiao L. Smith L. Lim Z. Pagliaro L. Araujo J. Aparicio A. Matin S. Wood C.G. Jonasch E. A phase 2 trial of sunitinib in patients with advanced non-clear cell renal cell carcinoma. Eur. Urol. 2012 62 6 1013 1019 10.1016/j.eururo.2012.06.043 22771265
    [Google Scholar]
  145. Powles T. Plimack E.R. Soulières D. Waddell T. Stus V. Gafanov R. Nosov D. Pouliot F. Melichar B. Vynnychenko I. Azevedo S.J. Borchiellini D. McDermott R.S. Bedke J. Tamada S. Yin L. Chen M. Molife L.R. Atkins M.B. Rini B.I. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): Extended follow-up from a randomised, open-label, phase 3 trial. Lancet Oncol. 2020 21 12 1563 1573 10.1016/S1470‑2045(20)30436‑8 33284113
    [Google Scholar]
  146. Srinivasarao D.A. Lohiya G. Katti D.S. Fundamentals, challenges, and nanomedicine-based solutions for ocular diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019 11 4 e1548 10.1002/wnan.1548 30506871
    [Google Scholar]
  147. Harris G. Rickard J.J.S. Butt G. Kelleher L. Blanch R.J. Cooper J. Oppenheimer P.G. Review: Emerging eye-based diagnostic technologies for traumatic brain injury. IEEE Rev. Biomed. Eng. 2023 16 530 559 10.1109/RBME.2022.3161352 35320105
    [Google Scholar]
  148. Mandal S. Vishvakarma P. Bhumika K. Developments in emerging topical drug delivery systems for ocular disorders. Curr. Drug Res. Rev. 2024 16 3 251 267 10.2174/0125899775266634231213044704 38158868
    [Google Scholar]
  149. Bajaj S. Orbuch D. Wang J.V. Biesman B.S. Geronemus R.G. Interventional and device treatment of the periocular area. Clin. Dermatol. 2024 42 4 360 372 10.1016/j.clindermatol.2024.01.008 38336142
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873336214241214043549
Loading
/content/journals/cnanom/10.2174/0124681873336214241214043549
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test