Skip to content
2000
image of Transferosome as Nanocarrier for Drug Penetration Enhancement Across Skin: A Comparison with Liposome and Ethosome

Abstract

Transdermal drug delivery systems have greatly attracted investigators because of their advantages over parenteral and oral delivery methods. The skin's structure usually limits drug penetration, prompting the development of vesicular transdermal drug delivery systems like ethosomes, liposomes, niosomes, transferosomes, ., to increase drug delivery. This review aims to explore the concept of transferosome and to compare its composition and functionality with other vesicular systems. The recent applications of transferosomes in transdermal drug delivery were also discussed. An extensive literature review was conducted to gather information on the composition of transferosomes, their mechanism of action, and their comparative advantages over other vesicular systems. Transferosomes are composed of phosphatidylcholine and an edge activator, which provide an ultra-deformable characteristic, allowing them to penetrate the skin’s inner layers paracellular and intercellular pathways. The primary mechanism guiding transferosomes into the epidermis layer of skin is the osmotic gradient. Transferosomes overcome the limitations of liposomes and ethosomes, such as low encapsulation potential for hydrophilic molecules, leaky behaviour due to an uneven membrane, a short shelf-life, and other issues. Transferosomes have shown significant potential in transdermal drug delivery, with extensive research supporting their use in various drug categories, including anti-inflammatory, anti-cancer, antidiabetics, The ability of transferosomes to penetrate the skin layers effectively makes them a promising carrier for further research in the delivery of different classes of drugs.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873333341241030065955
2024-11-04
2024-12-29
Loading full text...

Full text loading...

References

  1. Chaurasiya P. Ganju E. Upmanyu N. Ray S.K. Jain P. Transfersomes: A novel technique for transdermal drug delivery. J. Drug Deliv. Ther. 2019 9 1 279 285 10.22270/jddt.v9i1.2198
    [Google Scholar]
  2. Malviya N. A P. Alexander A. Comparative study on ethosomes and transferosomes for enhancing skin permeability of sinapic acid. J. Mol. Liq. 2023 383 122098 10.1016/j.molliq.2023.122098
    [Google Scholar]
  3. Elsayed M.M.A. Abdallah O.Y. Naggar V.F. Khalafallah N.M. Lipid vesicles for skin delivery of drugs: Reviewing three decades of research. Int. J. Pharm. 2007 332 1-2 1 16 10.1016/j.ijpharm.2006.12.005 17222523
    [Google Scholar]
  4. Touitou E. Junginger H.E. Weiner N.D. Nagai T. Mezei M. Liposomes as carriers for topical and transdermal delivery. J. Pharm. Sci. 1994 83 9 1189 1203 10.1002/jps.2600830902 7830230
    [Google Scholar]
  5. Yadav D. Sandeep K. Pandey D. Dutta R.K. Liposomes for drug delivery. J. Biotechnol. Biomater. 2017 7 4 10.4172/2155‑952X.1000276
    [Google Scholar]
  6. Cevc G. Transfersomes, liposomes and other lipid suspensions on the skin: Permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 1996 13 3-4 257 388 10.1615/CritRevTherDrugCarrierSyst.v13.i3‑4.30 9016383
    [Google Scholar]
  7. Lymberopoulos A. Demopoulou C. Kyriazi M. Katsarou M.S. Demertzis N. Hatziandoniou S. Maswadeh H. Papaioanou G. Demetzos C. Maibach H. Rallis M. Liposome percutaneous penetration in vivo. Toxicol. Res. Appl. 2017 1 2397847317723196 10.1177/2397847317723196
    [Google Scholar]
  8. Rajan R. Jose S. Biju Mukund V.P. Vasudevan D. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation. J. Adv. Pharm. Technol. Res. 2011 2 3 138 143 10.4103/2231‑4040.85524 22171309
    [Google Scholar]
  9. Xu X. Khan M.A. Burgess D.J. Predicting hydrophilic drug encapsulation inside unilamellar liposomes. Int. J. Pharm. 2012 423 2 410 418 10.1016/j.ijpharm.2011.12.019 22207162
    [Google Scholar]
  10. Szoka F. Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl. Acad. Sci. USA 1978 75 9 4194 4198 10.1073/pnas.75.9.4194 279908
    [Google Scholar]
  11. Crommelin D.J.A. Fransen G.J. Salemink P.J.M. Stability of liposomes on storage. Targeting of Drugs With Synthetic Systems Springer Boston, MA Gregoriadis G. Senior J. Poste G. 1986 277 287 10.1007/978‑1‑4684‑5185‑6_20
    [Google Scholar]
  12. Touitou E. Composition of applying active substance to or through the skin. US Patent 5716638 1998
  13. Touitou E. Dayan N. Bergelson L. Godin B. Eliaz M. Ethosomes — Novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J. Control. Release 2000 65 3 403 418 10.1016/S0168‑3659(99)00222‑9 10699298
    [Google Scholar]
  14. Ge X. Wei M. He S. Yuan W.E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics 2019 11 2 55 10.3390/pharmaceutics11020055 30700021
    [Google Scholar]
  15. Witika B.A. Bassey K.E. Demana P.H. Siwe-Noundou X. Poka M.S. Current advances in specialised niosomal drug delivery: Manufacture, characterization and drug delivery applications. Int. J. Mol. Sci. 2022 23 17 9668 10.3390/ijms23179668 36077066
    [Google Scholar]
  16. Langer R. Transdermal drug delivery: Past progress, current status, and future prospects. Adv. Drug Deliv. Rev. 2004 56 5 557 558 10.1016/j.addr.2003.10.021 15019745
    [Google Scholar]
  17. Cevc G. Blume G. New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, Transfersomes. Biochim. Biophys. Acta 2001 1514 2 191 205 10.1016/S0005‑2736(01)00369‑8 11557020
    [Google Scholar]
  18. Rai S. Pandey V. Rai G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art. Nano Rev. Exp. 2017 8 1 1325708 10.1080/20022727.2017.1325708 30410704
    [Google Scholar]
  19. Cevc G. Schätzlein A. Richardsen H. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochim. Biophys. Acta. 2002 1564 1 21 30 10.1016/S0005‑2736(02)00401‑7 12100992
    [Google Scholar]
  20. Cevc G. Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug Deliv. Rev. 2004 56 5 675 711 10.1016/j.addr.2003.10.028 15019752
    [Google Scholar]
  21. Kumar A. Pathak K. Bali V. Ultra-adaptable nanovesicular systems: A carrier for systemic delivery of therapeutic agents. Drug Discov. Today 2012 17 21-22 1233 1241 10.1016/j.drudis.2012.06.013 22766375
    [Google Scholar]
  22. Rother M. Lavins B.J. Kneer W. Lehnhardt K. Seidel E.J. Mazgareanu S. Efficacy and safety of epicutaneous ketoprofen in Transfersome (IDEA-033) versus oral celecoxib and placebo in osteoarthritis of the knee: Multicentre randomised controlled trial. Ann. Rheum. Dis. 2007 66 9 1178 1183 10.1136/ard.2006.065128 17363401
    [Google Scholar]
  23. Verma P. Ram A. Jha A.K. Mishra A. Thakur A. Phosphatidylcholine: A revolution in drug delivery technology. Int. J. Pharm. Sci. Res. 2010 1 2 1 12
    [Google Scholar]
  24. Ezike T.C. Okpala U.S. Onoja U.L. Nwike C.P. Ezeako E.C. Okpara O.J. Okoroafor C.C. Eze S.C. Kalu O.L. Odoh E.C. Nwadike U.G. Ogbodo J.O. Umeh B.U. Ossai E.C. Nwanguma B.C. Advances in drug delivery systems, challenges and future directions. Heliyon 2023 9 6 e17488 10.1016/j.heliyon.2023.e17488 37416680
    [Google Scholar]
  25. Iskandarsyah I I. Rahmi A.D. Pangesti D.M. Comparison of the characteristics of transfersomes and protransfersomes containing azelaic acid. J. Young Pharm. 2018 10 2s S11 S15 10.5530/jyp.2018.2s.3
    [Google Scholar]
  26. Jiang T. Wang T. Li T. Ma Y. Shen S. He B. Mo R. Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma. ACS Nano 2018 12 10 9693 9701 10.1021/acsnano.8b03800 30183253
    [Google Scholar]
  27. Kotla N.G. Chandrasekar B. Rooney P. Sivaraman G. Larrañaga A. Krishna K.V. Pandit A. Rochev Y. Biomimetic lipid-based nanosystems for enhanced dermal delivery of drugs and bioactive agents. ACS Biomater. Sci. Eng. 2017 3 7 1262 1272 10.1021/acsbiomaterials.6b00681 33440514
    [Google Scholar]
  28. Ascenso A. Batista C. Cardoso P. Mendes T. Praça F. Bentley V. Raposo S. Simões S. Development, characterization, and skin delivery studies of related ultradeformable vesicles: Transfersomes, ethosomes, and transethosomes. Int. J. Nanomedicine 2015 10 5837 5851 10.2147/IJN.S86186 26425085
    [Google Scholar]
  29. Garg V. Singh H. Bimbrawh S. Singh S.K. Gulati M. Vaidya Y. Kaur P. Ethosomes and transfersomes: Principles, perspectives and practices. Curr. Drug Deliv. 2017 14 5 613 633 10.2174/1567201813666160520114436 27199229
    [Google Scholar]
  30. Opatha S.A.T. Titapiwatanakun V. Chutoprapat R. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics 2020 12 9 855 10.3390/pharmaceutics12090855 32916782
    [Google Scholar]
  31. Alharbi W.S. Almughem F.A. Almehmady A.M. Jarallah S.J. Alsharif W.K. Alzahrani N.M. Alshehri A.A. Phytosomes as an emerging nanotechnology platform for the topical delivery of bioactive phytochemicals. Pharmaceutics 2021 13 9 1475 10.3390/pharmaceutics13091475 34575551
    [Google Scholar]
  32. Rane B.R. Gujarathi N.A. Transfersomes and protransfersome: Ultradeformable vesicular system. Novel Approaches for Drug Delivery IGI Global Publishing 2017 149 169 10.4018/978‑1‑5225‑0751‑2.ch006
    [Google Scholar]
  33. Jangdey M.S. Gupta A. Saraf S. Saraf S. Development and optimization of apigenin-loaded transfersomal system for skin cancer delivery: in vitro evaluation. Artif. Cells Nanomed. Biotechnol. 2017 45 7 1452 1462 10.1080/21691401.2016.1247850 28050929
    [Google Scholar]
  34. Hanaor D. Michelazzi M. Leonelli C. Sorrell C.C. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J. Eur. Ceram. Soc. 2012 32 1 235 244 10.1016/j.jeurceramsoc.2011.08.015
    [Google Scholar]
  35. Ali A. Saroj S. Saha S. Gupta S.K. Rakshit T. Pal S. Glucose-responsive chitosan nanoparticle/poly(vinyl alcohol) hydrogels for sustained insulin release in vivo. ACS Appl. Mater. Interfaces 2023 15 27 32240 32250 10.1021/acsami.3c05031 37368956
    [Google Scholar]
  36. Matharoo N. Mohd H. Michniak-Kohn B. Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2024 16 1 e1918 10.1002/wnan.1918 37527953
    [Google Scholar]
  37. Wang J. Wei Y. Fei Y.R. Fang L. Zheng H.S. Mu C.F. Li F.Z. Zhang Y.S. Preparation of mixed monoterpenes edge activated PEGylated transfersomes to improve the in vivo transdermal delivery efficiency of sinomenine hydrochloride. Int. J. Pharm. 2017 533 1 266 274 10.1016/j.ijpharm.2017.09.059 28943208
    [Google Scholar]
  38. Avadhani K.S. Manikkath J. Tiwari M. Chandrasekhar M. Godavarthi A. Vidya S.M. Hariharapura R.C. Kalthur G. Udupa N. Mutalik S. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv. 2017 24 1 61 74 10.1080/10717544.2016.1228718 28155509
    [Google Scholar]
  39. Sharma V. Yusuf M. Pathak K. Nanovesicles for transdermal delivery of felodipine: Development, characterization, and pharmacokinetics. Int. J. Pharm. Investig. 2014 4 3 119 130 10.4103/2230‑973X.138342 25126525
    [Google Scholar]
  40. Cevc G. Hydrocortisone and dexamethasone in very deformable drug carriers have increased biological potency, prolonged effect, and reduced therapeutic dosage. Biochim. Biophys. Acta Biomembr. 2004 1663 1-2 61 73 10.1016/S0005‑2736(04)00028‑8
    [Google Scholar]
  41. Cevc G. Blume G. Biological activity and characteristics of triamcinolone-acetonide formulated with the self-regulating drug carriers, Transfersomes. Biochim. Biophys. Acta. 2003 1614 2 156 164 10.1016/S0005‑2736(03)00172‑X 12896808
    [Google Scholar]
  42. Malakar J. Sen S.O. Nayak A.K. Sen K.K. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm. J. 2012 20 4 355 363 10.1016/j.jsps.2012.02.001 23960810
    [Google Scholar]
  43. El Zaafarany G.M. Awad G.A.S. Holayel S.M. Mortada N.D. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int. J. Pharm. 2010 397 1-2 164 172 10.1016/j.ijpharm.2010.06.034 20599487
    [Google Scholar]
  44. Ghanbarzadeh S. Arami S. Enhanced transdermal delivery of diclofenac sodium via conventional liposomes, ethosomes, and transfersomes. BioMed Res. Int. 2013 2013 1 7 10.1155/2013/616810 23936825
    [Google Scholar]
  45. Bulbake U. Doppalapudi S. Kommineni N. Khan W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017 9 2 12 10.3390/pharmaceutics9020012 28346375
    [Google Scholar]
  46. Abdulbaqi I.M. Darwis Y. Khan N.A.K. Assi R.A. Khan A.A. Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int. J. Nanomedicine 2016 11 2279 2304 10.2147/IJN.S105016 27307730
    [Google Scholar]
  47. Guimarães D. Cavaco-Paulo A. Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021 601 120571 10.1016/j.ijpharm.2021.120571 33812967
    [Google Scholar]
  48. Pandey V. Golhani D. Shukla R. Ethosomes: Versatile vesicular carriers for efficient transdermal delivery of therapeutic agents. Drug Deliv. 2015 22 8 988 1002 10.3109/10717544.2014.889777 24580572
    [Google Scholar]
  49. Wang N. Chen M. Wang T. Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization. J. Control. Release 2019 303 130 150 10.1016/j.jconrel.2019.04.025 31022431
    [Google Scholar]
  50. Mishra D. Mishra P.K. Dubey V. Nahar M. Dabadghao S. Jain N.K. Systemic and mucosal immune response induced by transcutaneous immunization using Hepatitis B surface antigen-loaded modified liposomes. Eur. J. Pharm. Sci. 2008 33 4-5 424 433 10.1016/j.ejps.2008.01.015 18359615
    [Google Scholar]
  51. Chauhan N. Vasava P. Khan S.L. Siddiqui F.A. Islam F. Chopra H. Emran T.B. Ethosomes: A novel drug carrier. Ann. Med. Surg. (Lond.) 2022 82 104595 10.1016/j.amsu.2022.104595 36124209
    [Google Scholar]
  52. Dave V. Kumar D. Lewis S. Paliwal S. Ethosome for enhanced transdermal drug delivery of aceclofenac. Int. J. Drug Deliv. 2010 2 1 81 92 10.5138/ijdd.2010.0975.0215.02016
    [Google Scholar]
  53. Angst M.S. Drover D.R. Pharmacology of drugs formulated with DepoFoam: A sustained release drug delivery system for parenteral administration using multivesicular liposome technology. Clin. Pharmacokinet. 2006 45 12 1153 1176 10.2165/00003088‑200645120‑00002 17112293
    [Google Scholar]
  54. Murry D.J. Blaney S.M. Clinical pharmacology of encapsulated sustained-release cytarabine. Ann. Pharmacother. 2000 34 10 1173 1178 10.1345/aph.19347 11054987
    [Google Scholar]
  55. Ashtikar M. Nagarsekar K. Fahr A. Transdermal delivery from liposomal formulations – Evolution of the technology over the last three decades. J. Control. Release 2016 242 126 140 10.1016/j.jconrel.2016.09.008 27620074
    [Google Scholar]
  56. Ramteke S. Barupal A.K. Gupta V. Preparation and characterization of ethosomes for topical delivery of aceclofenac. Indian J. Pharm. Sci. 2010 72 5 582 586 10.4103/0250‑474X.78524 21694989
    [Google Scholar]
  57. Jafari A. Daneshamouz S. Ghasemiyeh P. Mohammadi-Samani S. Ethosomes as dermal/transdermal drug delivery systems: Applications, preparation and characterization. J. Liposome Res. 2023 33 1 34 52 10.1080/08982104.2022.2085742 35695714
    [Google Scholar]
  58. Ng T.T.C. Denning D.W. Liposomal amphotericin B (AmBisome) therapy in invasive fungal infections. Evaluation of United Kingdom compassionate use data. Arch. Intern. Med. 1995 155 10 1093 1098 10.1001/archinte.1995.00430100129015 7748054
    [Google Scholar]
  59. O’Byrne K.J. Thomas A.L. Sharma R.A. DeCatris M. Shields F. Beare S. Steward W.P. A phase I dose-escalating study of DaunoXome, liposomal daunorubicin, in metastatic breast cancer. Br. J. Cancer 2002 87 1 15 20 10.1038/sj.bjc.6600344 12085249
    [Google Scholar]
  60. Maniyar M.M. Deshmukh A.S. Shelke S.J. Ethosomes: A carrier for transdermal drug delivery system. Asian J. Pharma. Res. 2022 Aug 225 228 10.52711/2231‑5691.2022.00037
    [Google Scholar]
  61. Benson H.A.E. Transfersomes for transdermal drug delivery. Expert Opin. Drug Deliv. 2006 3 6 727 737 10.1517/17425247.3.6.727 17076595
    [Google Scholar]
  62. Otto F. Froelich A. Microemulsion-based polymer gels with ketoprofen and menthol: Physicochemical properties and drug release studies. Gels 2024 10 7 435 10.3390/gels10070435 39057458
    [Google Scholar]
  63. Ngo V.T.H. Bajaj T. Ibuprofen StatPearls Publishing Treasure Island (FL) 2024 31194439
    [Google Scholar]
  64. Eto S. Matsumura R. Shimane Y. Fujimi M. Berhanu S. Kasama T. Kuruma Y. Phospholipid synthesis inside phospholipid membrane vesicles. Commun. Biol. 2022 5 1 1016 10.1038/s42003‑022‑03999‑1 36167778
    [Google Scholar]
  65. Hady M.A. Darwish A.B. Abdel-Aziz M.S. Sayed O.M. Design of transfersomal nanocarriers of nystatin for combating vulvovaginal candidiasis; A different prospective. Colloids Surf. B Biointerfaces 2022 211 112304 10.1016/j.colsurfb.2021.112304 34959094
    [Google Scholar]
  66. Cevc G. Transdermal drug delivery of insulin with ultradeformable carriers. Clin. Pharmacokinet. 2003 42 5 461 474 10.2165/00003088‑200342050‑00004 12739984
    [Google Scholar]
  67. Cevc G. Gebauer D. Stieber J. Schätzlein A. Blume G. Ultraflexible vesicles, Transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochim. Biophys. Acta. 1998 1368 2 201 215 10.1016/S0005‑2736(97)00177‑6 9459598
    [Google Scholar]
  68. Wu P.S. Li Y.S. Kuo Y.C. Tsai S.J.J. Lin C.C. Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol. Molecules 2019 24 3 600 10.3390/molecules24030600 30743989
    [Google Scholar]
  69. Cevc G. Blume G. Schätzlein A. Transfersomes-mediated transepidermal delivery improves the regio-specificity and biological activity of corticosteroids in vivo. J. Control. Release 1997 45 3 211 226 10.1016/S0168‑3659(96)01566‑0
    [Google Scholar]
  70. Eleraky N.E. El-Badry M. Omar M. El-Koussi W. Mohamed N. Abdel-Lateef M. Hassan A. Curcumin transferosome-loaded thermosensitive intranasal in situ gel as prospective antiviral therapy for SARS-Cov-2. Int. J. Nanomedicine 2023 18 5831 5869 10.2147/IJN.S423251 37869062
    [Google Scholar]
  71. Agrawal R. Sandhu S.K. Sharma I. Kaur I.P. Development and evaluation of curcumin-loaded elastic vesicles as an effective topical anti-inflammatory formulation. AAPS PharmSciTech 2015 16 2 364 374 10.1208/s12249‑014‑0232‑6 25319056
    [Google Scholar]
  72. Lu Y. Hou S.X. Chen T. Sun Y.Y. Yang B.X. Yuan Z.Y. Preparation of transfersomes of vincristine sulfate and study on its prcutaneous penetration. Zhongguo Zhongyao Zazhi 2005 30 12 900 903 16124605
    [Google Scholar]
  73. Lu Y. Hou S.X. Zhang L.K. Li Y. He J.Y. Guo D.D. Transdermal and lymph targeting transfersomes of vincristine. Yao Xue Xue Bao 2007 42 10 1097 1101 18229621
    [Google Scholar]
  74. Bhatia A. Singh B. Wadhwa S. Raza K. Katare O.P. Novel phospholipid-based topical formulations of tamoxifen: evaluation for antipsoriatic activity using mouse-tail model. Pharm. Dev. Technol. 2014 19 2 160 163 10.3109/10837450.2013.763260 23369039
    [Google Scholar]
  75. Gupta A. Aggarwal G. Singla S. Arora R. Transfersomes: A novel vesicular carrier for enhanced transdermal delivery of sertraline: Development, characterization, and performance evaluation. Sci. Pharm. 2012 80 4 1061 1080 10.3797/scipharm.1208‑02 23264950
    [Google Scholar]
  76. Bnyan R. Khan I. Ehtezazi T. Saleem I. Gordon S. O’Neill F. Roberts M. Formulation and optimisation of novel transfersomes for sustained release of local anaesthetic. J. Pharm. Pharmacol. 2019 71 10 1508 1519 10.1111/jphp.13149 31373700
    [Google Scholar]
  77. Omar M.M. Hasan O.A. El Sisi A.M. Preparation and optimization of lidocaine transferosomal gel containing permeation enhancers: A promising approach for enhancement of skin permeation. Int. J. Nanomedicine 2019 14 1551 1562 10.2147/IJN.S201356 30880964
    [Google Scholar]
  78. M V.L. Zafaruddin M. Kuchana V. Design and characterization of transferosomal gel of repaglinide. Int. Res. J. Pharm. 2015 6 1 38 42 10.7897/2230‑8407.0619
    [Google Scholar]
  79. Hussain G. Kohli K. Umar A. Amin S. Nanovesicular delivery of repaglinide through skin. Sci. Adv. Mater. 2013 5 7 810 821 10.1166/sam.2013.1522
    [Google Scholar]
  80. Singh S. Verma D. Mirza M.A. Das A.K. dudeja M. Anwer M.K. Sultana Y. Talegaonkar S. Iqbal Z. Development and optimization of ketoconazole loaded nano-transfersomal gel for vaginal delivery using Box-Behnken design: in vitro, ex-vivo characterization and antimicrobial evaluation. J. Drug Deliv. Sci. Technol. 2017 39 95 103 10.1016/j.jddst.2017.03.007
    [Google Scholar]
  81. Moawad F.A. Ali A.A. Salem H.F. Nanotransfersomes-loaded thermosensitive in situ gel as a rectal delivery system of tizanidine HCl: Preparation, in vitro and in vivo performance. Drug Deliv. 2017 24 1 252 260 10.1080/10717544.2016.1245369 28156169
    [Google Scholar]
  82. Ramezani V. Honarvar M. Seyedabadi M. Karimollah A. Ranjbar A.M. Hashemi M. Formulation and optimization of transfersome containing minoxidil and caffeine. J. Drug Deliv. Sci. Technol. 2018 44 129 135 10.1016/j.jddst.2017.12.003
    [Google Scholar]
  83. Parkash V. Maan S. Chaudhary V. Jogpal V. Mittal G. Jain V. Implementation of design of experiments in development and optimization of transfersomal carrier system of tacrolimus for the dermal management of psoriasis in albino wistar rat. J. Bioequivalence Bioavailab. 2018 10 5 10.4172/0975‑0851.1000385
    [Google Scholar]
  84. El Maghraby G.M.M. Williams A.C. Barry B.W. Skin hydration and possible shunt route penetration in controlled estradiol delivery from ultradeformable and standard liposomes. J. Pharm. Pharmacol. 2010 53 10 1311 1322 10.1211/0022357011777800 11697538
    [Google Scholar]
  85. Triveni U. Nagaich U. Mishra D.K. Jain N. Full factorial design-based development and characterization of ciclopirox olamine loaded transferosomes: An efficient approach for the management of Athlete’s foot. J. Drug Deliv. Sci. Technol. 2024 99 105939 10.1016/j.jddst.2024.105939
    [Google Scholar]
  86. Potisuwan S. Apichatwatana N. Rujivipat S. Improved skin permeation of transferosomes containing Eulophia macrobulbon extract. Colloids Surf. B Biointerfaces 2023 229 113474 10.1016/j.colsurfb.2023.113474 37540959
    [Google Scholar]
  87. Abd-allah H. Ragaie M.H. Elmowafy E. Unraveling the pharmaceutical and clinical relevance of the influence of syringic acid loaded linoleic acid transferosomes on acne. Int. J. Pharm. 2023 639 122940 10.1016/j.ijpharm.2023.122940 37040824
    [Google Scholar]
  88. Deng P. Athary Abdulhaleem M F. Masoud R.E. Alamoudi W.M. Zakaria M.Y. Employment of PEGylated ultra-deformable transferosomes for transdermal delivery of tapentadol with boosted bioavailability and analgesic activity in post-surgical pain. Int. J. Pharm. 2022 628 122274 10.1016/j.ijpharm.2022.122274 36228884
    [Google Scholar]
  89. Maji R. Omolo C.A. Jaglal Y. Singh S. Devnarain N. Mocktar C. Govender T. A transferosome-loaded bigel for enhanced transdermal delivery and antibacterial activity of vancomycin hydrochloride. Int. J. Pharm. 2021 607 120990 10.1016/j.ijpharm.2021.120990 34389419
    [Google Scholar]
  90. Ramkanth S. Anitha P. Gayathri R. Mohan S. Babu D. Formulation and design optimization of nano-transferosomes using pioglitazone and eprosartan mesylate for concomitant therapy against diabetes and hypertension. Eur. J. Pharm. Sci. 2021 162 105811 10.1016/j.ejps.2021.105811 33757828
    [Google Scholar]
  91. Ren J. Liu T. Bi B. Sohail S. Din F. Development and evaluation of tacrolimus loaded nano-transferosomes for skin targeting and dermatitis treatment. J. Pharm. Sci. 2024 113 2 471 485 10.1016/j.xphs.2023.10.033 37898166
    [Google Scholar]
  92. Rasheed M.S. Ansari S.F. Shahzadi I. Formulation, characterization of glucosamine loaded transfersomes and in vivo evaluation using papain induced arthritis model. Sci. Rep. 2022 12 1 19813 10.1038/s41598‑022‑23103‑1 36396950
    [Google Scholar]
  93. Varia U. Joshi D. Jadeja M. Katariya H. Detholia K. Soni V. Development and evaluation of ultradeformable vesicles loaded transdermal film of boswellic acid. Future J. Pharm. Sci. 2022 8 1 39 10.1186/s43094‑022‑00428‑2
    [Google Scholar]
  94. Mohammad S.I. Aldosari B.N. Mehanni M.M. El-Gendy A.O. Hozayen W.G. Afzal O. Zaki R.M. Sayed O.M. Fabrication and application of targeted ciprofloxacin nanocarriers for the treatment of chronic bacterial prostatitis. Int. J. Pharm. X 2024 7 100247 10.1016/j.ijpx.2024.100247 38706465
    [Google Scholar]
  95. Khan A.U. Jamshaid H. ud Din F. Zeb A. Khan G.M. Designing, optimization and characterization of trifluralin transfersomal gel to passively target cutaneous leishmaniasis. J. Pharm. Sci. 2022 111 6 1798 1811 10.1016/j.xphs.2022.01.010 35081406
    [Google Scholar]
  96. Ibrahim S.S. Abo Elseoud O.G. Mohamedy M.H. Amer M.M. Mohamed Y.Y. Elmansy S.A. Kadry M.M. Attia A.A. Fanous R.A. Kamel M.S. Solyman Y.A. Shehata M.S. George M.Y. Corrigendum to “Nose-to-brain delivery of chrysin transfersomal and composite vesicles in doxorubicin-induced cognitive impairment in rats: Insights on formulation, oxidative stress and TLR4/NF-kB/NLRP3 pathways” [Neuropharmacol. (2021) 1, 197, 108738]. Neuropharmacology 2024 254 109989 10.1016/j.neuropharm.2024.109989 38762408
    [Google Scholar]
  97. Hosny K.M. Rizg W.Y. Alfayez E. Elgebaly S.S. Alamoudi A.J. Felimban R.I. Tayeb H.H. Mushtaq R.Y. Safhi A.Y. Alharbi M. Almehmady A.M. Preparation and optimization of aloe ferox gel loaded with finasteride-oregano oil nanocubosomes for treatment of alopecia. Drug Deliv. 2022 29 1 284 293 10.1080/10717544.2022.2026534 35019794
    [Google Scholar]
  98. Adin S.N. Gupta I. Aqil M. Mujeeb M. Baicalin loaded transethosomes for rheumatoid arthritis: Development, characterization, pharmacokinetic and pharmacodynamic evaluation. J. Drug Deliv. Sci. Technol. 2023 81 104209 10.1016/j.jddst.2023.104209
    [Google Scholar]
  99. Rafique M. Ali Z. Sohail S. Zahid F. Khan M.I. Din F. Alamri A. Al Fatease A. Alqahtani T. Lahiq A.A. Development of dexibuprofen loaded nano transfersomal gel with enhanced biopharmaceutical performance in complete Freund’s adjuvant induced arthritis model. J. Drug Deliv. Sci. Technol. 2024 98 105928 10.1016/j.jddst.2024.105928
    [Google Scholar]
  100. Bariguian Revel F. Fayet M. Hagen M. Topical diclofenac, an efficacious treatment for osteoarthritis: A narrative review. Rheumatol. Ther. 2020 7 2 217 236 10.1007/s40744‑020‑00196‑6 32086778
    [Google Scholar]
  101. Padma Prashanthini V. Sivaraman S. Kathirvelu P. Shanmugasundaram J. Subramanian V. Ramesh S.S. Karthikeyan E. Cheriyan B.V. Transferosomal gel for transdermal delivery of insulin: Formulation development and ex-vivo permeation study. Intelligent Pharmacy 2023 1 4 212 216 10.1016/j.ipha.2023.07.001
    [Google Scholar]
  102. Zhang Y. Yu J. Kahkoska A.R. Wang J. Buse J.B. Gu Z. Advances in transdermal insulin delivery. Adv. Drug Deliv. Rev. 2019 139 51 70 10.1016/j.addr.2018.12.006 30528729
    [Google Scholar]
  103. Klonoff D.C. Afrezza inhaled insulin: The fastest-acting FDA-approved insulin on the market has favorable properties. J. Diabetes Sci. Technol. 2014 8 6 1071 1073 10.1177/1932296814555820 25355710
    [Google Scholar]
  104. Aslam B. Hussain A. Faisal M.N. Sindhu Z.D. Khan R.U. Alhidary I.A. Naz S. Tufarelli V. Curcumin co-encapsulation potentiates anti-arthritic efficacy of meloxicam biodegradable nanoparticles in adjuvant-induced arthritis animal model. Biomedicines 2023 11 10 2662 10.3390/biomedicines11102662 37893036
    [Google Scholar]
  105. Frei G. Haimhoffer Á. Csapó E. Bodnár K. Vasvári G. Nemes D. Lekli I. Gyöngyösi A. Bácskay I. Fehér P. Józsa L. in vitro and in vivo efficacy of topical dosage forms containing self-nanoemulsifying drug delivery system loaded with curcumin. Pharmaceutics 2023 15 8 2054 10.3390/pharmaceutics15082054 37631267
    [Google Scholar]
  106. Bahar E. Yoon H. Lidocaine: A local anesthetic, its adverse effects and management. Medicina (Kaunas) 2021 57 8 782 10.3390/medicina57080782 34440986
    [Google Scholar]
  107. Khatter N.J. Khan M.A. Clotrimazole Treasure Island (FL) StatPearls Publishing 2024 32809478
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873333341241030065955
Loading
/content/journals/cnanom/10.2174/0124681873333341241030065955
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test