Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

Brinzolamide (BRZ) represents a significant advancement in glaucoma treatment as a topically active carbonic anhydrase inhibitor (CAI). It exhibits selectivity and potent inhibitory activity for carbonic anhydrase type II isozyme (CA-II), which is crucial in aqueous humor secretion. With excellent ocular bioavailability and a formulation optimized for physiologic pH, brinzolamide effectively lowers intraocular pressure by inhibiting CA-II in ciliary processes. Its superior ocular comfort profile enhances patient compliance. Preclinical evaluations confirm its specific CA inhibition without notable side effects, and its low systemic absorption minimizes systemic CA inhibition-related issues. BRZ's prolonged tissue half-life in the eye ensures sustained IOP reduction, supported by clinical trials demonstrating comparable efficacy with reduced dosing frequency. Challenges in ocular disease treatment arise from physiological, anatomical, and dynamic barriers hindering effective drug delivery to the eye. Nanocarriers, such as micelles, nanoparticles, liposomes, niosomes, and dendrimers, offer promising solutions by improving permeation, targeting specific sites, and overcoming the limitations of conventional forms. This review explores diverse nanomedicines, detailing their applications, advantages, and disadvantages in ophthalmic drug delivery. It also includes recent research findings for a comprehensive overview of the current landscape.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873294344240408061056
2024-04-16
2025-07-11
Loading full text...

Full text loading...

References

  1. IkutaY. AoyagiS. TanakaY. SatoK. InadaS. KosekiY. OnoderaT. OikawaH. KasaiH. Creation of nano eye-drops and effective drug delivery to the interior of the eye.Sci. Rep.2017714422910.1038/srep4422928290486
    [Google Scholar]
  2. LiT. WangY. ChenJ. GaoX. PanS. SuY. ZhouX. Co-delivery of brinzolamide and miRNA-124 by biodegradable nanoparticles as a strategy for glaucoma therapy.Drug Deliv.202027141042110.1080/10717544.2020.173186132133894
    [Google Scholar]
  3. DesantisL. Preclinical overview of brinzolamide.Surv. Ophthalmol.200044Suppl. 2S119S12910.1016/S0039‑6257(99)00108‑310665514
    [Google Scholar]
  4. BrinzolamideI.M. Expert Opin. Pharmacother.20089465366210.1517/14656566.9.4.65318312166
    [Google Scholar]
  5. VoA. FengX. PatelD. MohammadA. KozakD. ChoiS. AshrafM. XuX. Factors affecting the particle size distribution and rheology of brinzolamide ophthalmic suspensions.Int. J. Pharm.202058611949510.1016/j.ijpharm.2020.11949532553495
    [Google Scholar]
  6. HosoyaK. YamamotoA. AkanumaS. TachikawaM. Lipophilicity and transporter influence on blood-retinal barrier permeability: a comparison with blood-brain barrier permeability.Pharm. Res.201027122715272410.1007/s11095‑010‑0272‑x20859661
    [Google Scholar]
  7. SharmaS. TrikhaS. PereraS.A. AungT. Clinical effectiveness of brinzolamide 1%-brimonidine 0.2% fixed combination for primary open-angle glaucoma and ocular hypertension.Clin. Ophthalmol.201592201220726648686
    [Google Scholar]
  8. WuW. LiJ. WuL. WangB. WangZ. XuQ. XinH. Ophthalmic delivery of brinzolamide by liquid crystalline nanoparticles: in vitro and in vivo evaluation.AAPS Pharm Sci Tech20131431063107110.1208/s12249‑013‑9997‑223813437
    [Google Scholar]
  9. IesterM. Brinzolamide ophthalmic suspension: a review of its pharmacology and use in the treatment of open angle glaucoma and ocular hypertension.Clin. Ophthalmol.20082351752310.2147/OPTH.S318219668749
    [Google Scholar]
  10. GaudanaR. AnanthulaH.K. ParenkyA. MitraA.K. Ocular drug delivery.AAPS J.201012334836010.1208/s12248‑010‑9183‑320437123
    [Google Scholar]
  11. ScozzafavaA. SupuranC.T. Glaucoma and the applications of carbonic anhydrase inhibitors.Subcell. Biochem.20147534935910.1007/978‑94‑007‑7359‑2_1724146387
    [Google Scholar]
  12. OcchipintiR. BoronW.F. Role of carbonic anhydrases and inhibitors in acid–base physiology: Insights from mathematical modeling.Int. J. Mol. Sci.20192015384110.3390/ijms2015384131390837
    [Google Scholar]
  13. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2023 update.Nucleic Acids Res.202351D1D1373D138010.1093/nar/gkac95636305812
    [Google Scholar]
  14. ZhangJ. JiaoJ. NiuM. GaoX. ZhangG. YuH. YangX. LiuL. Ten years of knowledge of nano- carrier based drug delivery systems in ophthalmology: Current evidence, challenges, and future prospective.Int. J. Nanomedicine2021166497653010.2147/IJN.S32983134588777
    [Google Scholar]
  15. CvetkovicR.S. PerryC.M. Brinzolamide.Drugs Aging2003201291994710.2165/00002512‑200320120‑0000814565787
    [Google Scholar]
  16. EdwardD.P. BouhenniR. Anterior segment alterations and comparative aqueous humor proteomics in the buphthalmic rabbit (an American Ophthalmological Society thesis).Transactions of the American Ophthalmological Society201110966114
    [Google Scholar]
  17. ShojiN. Brinzolamide: efficacy, safety and role in the management of glaucoma.Expert Rev. Ophthalmol.20072569570410.1586/17469899.2.5.695
    [Google Scholar]
  18. ZhaoM. MaJ. LiM. ZhangY. JiangB. ZhaoX. HuaiC. ShenL. ZhangN. HeL. QinS. Cytochrome p450 enzymes and drug metabolism in humans.Int. J. Mol. Sci.202122231280810.3390/ijms22231280834884615
    [Google Scholar]
  19. MarchW.F. OchsnerK.I. The brinzolamide long-term therapy study groupThe long-term safety and efficacy of brinzolamide 1.0% (Azopt) in patients with primary open-angle glaucoma or ocular hypertension.Am. J. Ophthalmol.2000129213614310.1016/S0002‑9394(99)00343‑810682964
    [Google Scholar]
  20. SilverL. Brinzolamide dose-response study groupDose-response evaluation of the ocular hypotensive effect of brinzolamide ophthalmic suspension (Azopt).Surv. Ophthalmol.200044Suppl. 2S147S15310.1016/S0039‑6257(99)00110‑110665517
    [Google Scholar]
  21. SallK. Brinzolamide primary therapy study groupThe efficacy and safety of brinzolamide 1% ophthalmic suspension (Azopt) as a primary therapy in patients with open-angle glaucoma or ocular hypertension.Surv. Ophthalmol.200044Suppl. 2S155S16210.1016/S0039‑6257(99)00107‑110665518
    [Google Scholar]
  22. SilverL.H. Brinzolamide primary therapy study groupClinical efficacy and safety of brinzolamide (Azopt™), a new topical carbonic anhydrase inhibitor for primary open-angle glaucoma and ocular hypertension.Am. J. Ophthalmol.1998126340040810.1016/S0002‑9394(98)00095‑69744373
    [Google Scholar]
  23. KurmiB.D. PatelP. PaliwalR. KumarP. PaliwalS.R. Multifunctional nanotherapeutics for intracellular trafficking of doxorubicin against breast cancer.Nanomedicine202318191261127910.2217/nnm‑2023‑008737721134
    [Google Scholar]
  24. GorantlaS. RapalliV.K. WaghuleT. SinghP.P. DubeyS.K. SahaR.N. SinghviG. Nanocarriers for ocular drug delivery: current status and translational opportunity.RSC Adv.20201046278352785510.1039/D0RA04971A35516960
    [Google Scholar]
  25. WadhwaS. PaliwalR. PaliwalS. VyasS. Nanocarriers in ocular drug delivery: an update review.Curr. Pharm. Des.200915232724275010.2174/13816120978892388619689343
    [Google Scholar]
  26. HanH. LiS. XuM. ZhongY. FanW. XuJ. ZhouT. JiJ. YeJ. YaoK. Polymer- and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives.Adv. Drug Deliv. Rev.202319611477010.1016/j.addr.2023.11477036894134
    [Google Scholar]
  27. RazaviM.S. EbrahimnejadP. FatahiY. D’EmanueleA. DinarvandR. Recent developments of nanostructures for the ocular delivery of natural compounds.Front Chem.20221085075710.3389/fchem.2022.85075735494641
    [Google Scholar]
  28. NatarajanJ.V. AngM. DarwitanA. ChattopadhyayS. WongT.T. VenkatramanS.S. Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye.Int. J. Nanomedicine2012712313122275828
    [Google Scholar]
  29. bigdeliA. MakhmalzadehB.S. FeghhiM. SoleimaniBiatianiE. Cationic liposomes as promising vehicles for timolol/brimonidine combination ocular delivery in glaucoma: formulation development and in vitro/in vivo evaluation.Drug Deliv. Transl. Res.20231341035104710.1007/s13346‑022‑01266‑836477776
    [Google Scholar]
  30. KimS.N. MinC.H. KimY.K. HaA. ParkC.G. LeeS.H. ParkK.H. ChoyY.B. Iontophoretic ocular delivery of latanoprost-loaded nanoparticles via skin-attached electrodes.Acta Biomater.2022144324110.1016/j.actbio.2022.03.01535292414
    [Google Scholar]
  31. NguyenD.D. LuoL.J. LaiJ.Y. Effects of shell thickness of hollow poly(lactic acid) nanoparticles on sustained drug delivery for pharmacological treatment of glaucoma.Acta Biomater.202011130231510.1016/j.actbio.2020.04.05532428681
    [Google Scholar]
  32. XuB. LiuT. Travoprost loaded microemulsion soaked contact lenses: Improved drug uptake, release kinetics and physical properties.J. Drug Deliv. Sci. Technol.20205710179210.1016/j.jddst.2020.101792
    [Google Scholar]
  33. XuH. LiuY. JinL. ChenX. ChenX. WangQ. TangZ. Preparation and characterization of ion-sensitive brimonidine tartrate in situ gel for ocular delivery.Pharmaceuticals20231619010.3390/ph1601009036678587
    [Google Scholar]
  34. SpataroG. MalecazeF. TurrinC.O. SolerV. DuhayonC. ElenaP.P. MajoralJ.P. CaminadeA.M. Designing dendrimers for ocular drug delivery.Eur. J. Med. Chem.201045132633410.1016/j.ejmech.2009.10.01719889480
    [Google Scholar]
  35. SatyanarayanaS.D. Abu LilaA.S. MoinA. MogladE.H. KhafagyE.S. AlotaibiH.F. ObaidullahA.J. CharyuluR.N. Ocular delivery of bimatoprost-loaded solid lipid nanoparticles for effective management of glaucoma.Pharmaceuticals2023167100110.3390/ph1607100137513913
    [Google Scholar]
  36. ShahS. DhawanV. HolmR. NagarsenkerM.S. PerrieY. Liposomes: Advancements and innovation in the manufacturing process.Adv. Drug Deliv. Rev.2020154-15510212210.1016/j.addr.2020.07.00232650041
    [Google Scholar]
  37. YubaE. Development of functional liposomes by modification of stimuli-responsive materials and their biomedical applications.J. Mater. Chem. B Mater. Biol. Med.2020861093110710.1039/C9TB02470K31960007
    [Google Scholar]
  38. SercombeL. VeeratiT. MoheimaniF. WuS.Y. SoodA.K. HuaS. Advances and challenges of liposome assisted drug delivery.Front. Pharmacol.2015628610.3389/fphar.2015.0028626648870
    [Google Scholar]
  39. LaiW.F. WongW.T. RogachA.L. Molecular design of layer-by-layer functionalized liposomes for oral drug delivery.ACS Appl. Mater. Interfaces20201239433414335110.1021/acsami.0c1350432877163
    [Google Scholar]
  40. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  41. LiH. LiuY. ZhangY. FangD. XuB. ZhangL. ChenT. RenK. NieY. YaoS. SongX. Liposomes as a novel ocular delivery system for brinzolamide: in vitro and in vivo studies.AAPS Pharm. Sci. Tech.201617371071710.1208/s12249‑015‑0382‑126335415
    [Google Scholar]
  42. WangF. BaoX. FangA. LiH. ZhouY. LiuY. JiangC. WuJ. SongX. Nanoliposome-encapsulated brinzolamide-hydropropyl-β-cyclodextrin inclusion complex: a potential therapeutic ocular drug-delivery system.Front. Pharmacol.201899110.3389/fphar.2018.0009129487529
    [Google Scholar]
  43. ZhangY. RenK. HeZ. LiH. ChenT. LeiY. XiaS. HeG. XieY. ZhengY. SongX. Development of inclusion complex of brinzolamide with hydroxypropyl-β-cyclodextrin.Carbohydr. Polym.201398163864310.1016/j.carbpol.2013.06.05223987393
    [Google Scholar]
  44. JiT. LangJ. WangJ. CaiR. ZhangY. QiF. ZhangL. ZhaoX. WuW. HaoJ. QinZ. ZhaoY. NieG. Designing liposomes to suppress extracellular matrix expression to enhance drug penetration and pancreatic tumor therapy.ACS Nano20171198668867810.1021/acsnano.7b0102628806504
    [Google Scholar]
  45. SolimanO.A.E.A. MohamedE.A.M. El-DahanM.S. KhateraN.A.A. Potential use of cyclodextrin complexes for enhanced stability, anti-inflammatory efficacy, and ocular bioavailability of loteprednol etabonate.AAPS PharmSciTech20171841228124110.1208/s12249‑016‑0589‑927469220
    [Google Scholar]
  46. JinQ. LiH. JinZ. HuangL. WangF. ZhouY. LiuY. JiangC. OswaldJ. WuJ. SongX. TPGS modified nanoliposomes as an effective ocular delivery system to treat glaucoma.Int. J. Pharm.20185531-2212810.1016/j.ijpharm.2018.10.03330316795
    [Google Scholar]
  47. GreinerA. WendorffJ.H. Electrospinning: a fascinating method for the preparation of ultrathin fibers.Angew. Chem. Int. Ed.200746305670570310.1002/anie.20060464617585397
    [Google Scholar]
  48. WebberM.J. AppelE.A. MeijerE.W. LangerR. Supramolecular biomaterials.Nat. Mater.2016151132610.1038/nmat447426681596
    [Google Scholar]
  49. CegielskaO. SierakowskiM. SajkiewiczP. LorenzK. KogermannK. Mucoadhesive brinzolamide-loaded nanofibers for alternative glaucoma treatment.Eur. J. Pharm. Biopharm.2022180486210.1016/j.ejpb.2022.09.00836167272
    [Google Scholar]
  50. UzelE. DurgunM.E. Esentürk-Güzelİ. GüngörS. ÖzsoyY. Nanofibers in ocular drug targeting and tissue engineering: their importance, advantages, advances, and future perspectives.20231541062
    [Google Scholar]
  51. OmerS. ZelkóR. A systematic review of drug-loaded electrospun nanofiber-based ophthalmic inserts.Pharmaceutics20211310163710.3390/pharmaceutics1310163734683930
    [Google Scholar]
  52. SiafakaP.I. Özcan BülbülE. MiliotouA.N. KarantasI.D. OkurM.E. Üstündağ OkurN. Delivering active molecules to the eye; the concept of electrospinning as potent tool for drug delivery systems.J. Drug Deliv. Sci. Technol.20238410456510.1016/j.jddst.2023.104565
    [Google Scholar]
  53. DottC TyagiC TomarL A mucoadhesive electrospun nanofibrous matrix for rapid oramucosal drug delivery.J Nanomaterials2013201310.1155/2013/924947
    [Google Scholar]
  54. AkhterS. AnwarM. SiddiquiM.A. AhmadI. AhmadJ. AhmadM.Z. BhatnagarA. AhmadF.J. Improving the topical ocular pharmacokinetics of an immunosuppressant agent with mucoadhesive nanoemulsions: Formulation development, in-vitro and in-vivo studies.Colloids Surf. B Biointerfaces2016148192910.1016/j.colsurfb.2016.08.04827591567
    [Google Scholar]
  55. MarianecciC. Di MarzioL. RinaldiF. CeliaC. PaolinoD. AlhaiqueF. EspositoS. CarafaM. Niosomes from 80s to present: The state of the art.Adv. Colloid Interface Sci.201420518720610.1016/j.cis.2013.11.01824369107
    [Google Scholar]
  56. MoghtaderiM. SedaghatniaK. BourbourM. FatemizadehM. Salehi MoghaddamZ. HejabiF. HeidariF. QuaziS. Farasati FarB. Niosomes: a novel targeted drug delivery system for cancer.Med. Oncol.2022391224010.1007/s12032‑022‑01836‑336175809
    [Google Scholar]
  57. HamishehkarH. RahimpourY. KouhsoltaniM. Niosomes as a propitious carrier for topical drug delivery.Expert Opin. Drug Deliv.201310226127210.1517/17425247.2013.74631023252629
    [Google Scholar]
  58. GuptaP. YadavK.S. Formulation and evaluation of brinzolamide encapsulated niosomal in-situ gel for sustained reduction of IOP in rabbits.J. Drug Deliv. Sci. Technol.20226710300410.1016/j.jddst.2021.103004
    [Google Scholar]
  59. MandalA BishtR RupenthalID MitraAK Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies.J. controll. rele. : offi. j. Controll. Rele. Soci.201724896116
    [Google Scholar]
  60. CholkarK. PatelA. VadlapudiA.D. MitraA.K. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery.Recent Pat. Nanomed.201222829510.2174/187791231120202008225400717
    [Google Scholar]
  61. SiposB. KatonaG. CsókaI. A systematic, knowledge space-based proposal on quality by design-driven polymeric micelle development.Pharmaceutics202113570210.3390/pharmaceutics1305070234065825
    [Google Scholar]
  62. TalaeiS. MahboobianM.M. MohammadiM. Investigating the ocular toxicity potential and therapeutic efficiency of in situ gel nanoemulsion formulations of brinzolamide.Toxicol. Res.20209457858710.1093/toxres/tfaa06632905229
    [Google Scholar]
  63. MohanP. RajeswariJ. KesavanK. TPGS-chitosan conjugated mucoadhesive micelles of brinzolamide for glaucoma therapy: In vitro and in vivo evaluation.Materialia20232810171110.1016/j.mtla.2023.101711
    [Google Scholar]
  64. YavuzB. Bozdağ PehlivanS. ÜnlüN. Dendrimeric systems and their applications in ocular drug delivery.Sci. Worl. J.2013201311310.1155/2013/73234024396306
    [Google Scholar]
  65. LancinaM.G.III YangH. Dendrimers for ocular drug delivery.Can. J. Chem.201795989790210.1139/cjc‑2017‑019329147035
    [Google Scholar]
  66. WangJ. LiB. QiuL. QiaoX. YangH. Dendrimer-based drug delivery systems: history, challenges, and latest developments.J. Biol. Eng.20221611810.1186/s13036‑022‑00298‑535879774
    [Google Scholar]
  67. LancinaM.G.III SinghS. KompellaU.B. HusainS. YangH. Fast dissolving dendrimer nanofiber mats as alternative to eye drops for more efficient antiglaucoma drug delivery.ACS Biomater. Sci. Eng.2017381861186810.1021/acsbiomaterials.7b0031929152562
    [Google Scholar]
  68. OkurN.Ü. YağcılarA.P. SiafakaP.I. Promising polymeric drug carriers for local delivery: the case of in situ gels.Curr. Drug Deliv.202017867569310.2174/156720181766620060814574832510291
    [Google Scholar]
  69. PaulS. MajumdarS. ChakrabortyM. Revolutionizing ocular drug delivery: recent advancements in in situ gel technology.Bull. Natl. Res. Cent.202347115410.1186/s42269‑023‑01123‑9
    [Google Scholar]
  70. ViganiB. RossiS. SandriG. BonferoniM.C. CaramellaC.M. FerrariF. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes.Pharmaceutics202012985910.3390/pharmaceutics1209085932927595
    [Google Scholar]
  71. FanR. ChengY. WangR. ZhangT. ZhangH. LiJ. SongS. ZhengA. Thermosensitive hydrogels and advances in their application in disease therapy.Polymers20221412237910.3390/polym1412237935745954
    [Google Scholar]
  72. NiX. GuoQ. ZouY. XuanY. MohammadI.S. DingQ. HuH. Preparation and characterization of bear bile-loaded pH sensitive in-situ gel eye drops for ocular drug delivery.Iran. J. Basic Med. Sci.202023792292932774815
    [Google Scholar]
  73. SunJ. ZhouZ. A novel ocular delivery of brinzolamide based on gellan gum: in vitro and in vivo evaluation.Drug Des. Devel. Ther.20181238338910.2147/DDDT.S15340529503531
    [Google Scholar]
  74. LotfiM. KazemiS. ShirafkanF. HosseinzadehR. EbrahimpourA. BararyM. SioT.T. HosseiniS.M. MoghadamniaA.A. The protective effects of quercetin nano-emulsion on intestinal mucositis induced by 5-fluorouracil in mice.Biochem. Biophys. Res. Commun.2021585758110.1016/j.bbrc.2021.11.00534800883
    [Google Scholar]
  75. Fresco-CalaB. CárdenasS. Advanced polymeric solids containing nano- and micro-particles prepared via emulsion-based polymerization approaches. A review.Anal. Chim. Acta2022120833966910.1016/j.aca.2022.33966935525580
    [Google Scholar]
  76. MushtaqA. Mohd WaniS. MalikA.R. GullA. RamniwasS. Ahmad NayikG. ErcisliS. Alina MarcR. UllahR. BariA. Recent insights into nanoemulsions: Their preparation, properties and applications.Food Chem. X20231810068410.1016/j.fochx.2023.10068437131847
    [Google Scholar]
  77. ZongT.X. SilveiraA.P. MoraisJ.A.V. SampaioM.C. MuehlmannL.A. ZhangJ. JiangC.S. LiuS.K. Recent advances in antimicrobial nano-drug delivery systems.Nanomaterials20221211185510.3390/nano1211185535683711
    [Google Scholar]
  78. YehY.C. HuangT.H. YangS.C. ChenC.C. FangJ.Y. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: a review of recent advances.Front Chem.2020828610.3389/fchem.2020.0028632391321
    [Google Scholar]
  79. WangB. TianH. XiangD. Stabilizing the oil-in-water emulsions using the mixtures of dendrobium officinale polysaccharides and gum arabic or propylene glycol alginate.Molecules202025375910.3390/molecules2503075932050560
    [Google Scholar]
  80. LiuL.C. ChenY.H. LuD.W. Overview of recent advances in nano-based ocular drug delivery.Int. J. Mol. Sci.202324201535210.3390/ijms24201535237895032
    [Google Scholar]
  81. PınarS.G. OktayA.N. KaraküçükA.E. ÇelebiN. Formulation strategies of nanosuspensions for various administration routes.Pharmaceutics2023155152010.3390/pharmaceutics1505152037242763
    [Google Scholar]
  82. Gawin-MikołajewiczA. NartowskiK.P. DybaA.J. GołkowskaA.M. MalecK. KarolewiczB. Ophthalmic nanoemulsions: from composition to technological processes and quality control.Mol. Pharm.202118103719374010.1021/acs.molpharmaceut.1c0065034533317
    [Google Scholar]
  83. BoddedaB. BodduP. AvasaralaH. JayantiV. Design and ocular tolerance of flurbiprofen loaded nanosuspension.Pharm. Nanotechnol.201531566710.2174/2211738503666150630185230
    [Google Scholar]
  84. MobarakiM. SoltaniM. Zare HarofteS. L ZoudaniE. DaliriR. AghamirsalimM. RaahemifarK. Biodegradable nanoparticle for cornea drug delivery: focus review.Pharmaceutics20201212123210.3390/pharmaceutics1212123233353013
    [Google Scholar]
  85. RebiboL TamC SunY Topical tacrolimus nanocapsules eye drops for therapeutic effect enhancement in both anterior and posterior ocular inflammation models.J. Controll. Rele. : offi.l J. Controll. Relea. Soci.202133328329710.1016/j.jconrel.2021.03.035
    [Google Scholar]
  86. WuK.Y. AshkarS. JainS. MarchandM. TranS.D. Breaking barriers in eye treatment: polymeric nano-based drug-delivery system for anterior segment diseases and glaucoma.Polymers2023156137310.3390/polym1506137336987154
    [Google Scholar]
  87. MikušováV. MikušP. Advances in chitosan-based nanoparticles for drug delivery.Int. J. Mol. Sci.20212217965210.3390/ijms2217965234502560
    [Google Scholar]
  88. DubeyV. MohanP. DangiJ.S. KesavanK. Brinzolamide loaded chitosan-pectin mucoadhesive nanocapsules for management of glaucoma: Formulation, characterization and pharmacodynamic study.Int. J. Biol. Macromol.20201521224123210.1016/j.ijbiomac.2019.10.21931751741
    [Google Scholar]
  89. AgarwalR. IezhitsaI. AgarwalP. Abdul NasirN.A. RazaliN. AlyautdinR. IsmailN.M. Liposomes in topical ophthalmic drug delivery: an update.Drug Deliv.20162341075109110.3109/10717544.2014.94333625116511
    [Google Scholar]
  90. HondaM. AsaiT. OkuN. ArakiY. TanakaM. EbiharaN. Liposomes and nanotechnology in drug development: focus on ocular targets.Int. J. Nanomedicine2013849550310.2147/IJN.S3072523439842
    [Google Scholar]
  91. KwonS. KimS.H. KhangD. LeeJ.Y. Potential therapeutic usage of nanomedicine for glaucoma treatment.Int. J. Nanomedicine2020155745576510.2147/IJN.S25479232821099
    [Google Scholar]
  92. YangC. YangJ. LuA. GongJ. YangY. LinX. LiM. XuH. Nanoparticles in ocular applications and their potential toxicity.Front. Mol. Biosci.2022993175910.3389/fmolb.2022.93175935911959
    [Google Scholar]
  93. WangR. GaoY. LiuA. ZhaiG. A review of nanocarrier-mediated drug delivery systems for posterior segment eye disease: challenges analysis and recent advances.J. Drug Target.202129768770210.1080/1061186X.2021.187836633474998
    [Google Scholar]
  94. LiZ. LiuM. KeL. WangL.J. WuC. LiC. LiZ. WuY.L. Flexible polymeric nanosized micelles for ophthalmic drug delivery: research progress in the last three years.Nanoscale Adv.20213185240525410.1039/D1NA00596K36132623
    [Google Scholar]
  95. OnugwuA.L. NwagwuC.S. OnugwuO.S. EchezonaA.C. AgboC.P. IhimS.A. EmehP. NnamaniP.O. AttamaA.A. KhutoryanskiyV.V. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases.J. Control. Release202335446548810.1016/j.jconrel.2023.01.01836642250
    [Google Scholar]
  96. WuY. LiuY. LiX. KebebeD. ZhangB. RenJ. LuJ. LiJ. DuS. LiuZ. Research progress of in-situ gelling ophthalmic drug delivery system.Asia J Pharmaceutic Sci201914111510.1016/j.ajps.2018.04.00832104434
    [Google Scholar]
  97. Al-QaysiZ.K. BeadhamI.G. SchwikkardS.L. BearJ.C. Al-KinaniA.A. AlanyR.G. Sustained release ocular drug delivery systems for glaucoma therapy.Expert Opin. Drug Deliv.202320790591910.1080/17425247.2023.221905337249548
    [Google Scholar]
  98. DhahirRK Al-NimaAM Al-BazzazFY Nanoemulsions as ophthalmic drug delivery systems.Turki J Pharmaceut Sci202118565266410.4274/tjps.galenos.2020.59319
    [Google Scholar]
  99. DurakS. Esmaeili RadM. Alp YetisginA. Eda SutovaH. KutluO. CetinelS. ZarrabiA. Niosomal drug delivery systems for ocular disease-recent advances and future prospects.Nanomaterials2020106119110.3390/nano1006119132570885
    [Google Scholar]
  100. AlbarqiH.A. GargA. AhmadM.Z. AlqahtaniA.A. WalbiI.A. AhmadJ. Recent progress in chitosan-based nanomedicine for its ocular application in glaucoma.Pharmaceutics202315268110.3390/pharmaceutics1502068136840002
    [Google Scholar]
  101. TerreniE. ZucchettiE. TampucciS. BurgalassiS. MontiD. ChetoniP. Combination of nanomicellar technology and in situ gelling polymer as ocular drug delivery system (odds) for cyclosporine-A.Pharmaceutics202113219210.3390/pharmaceutics1302019233535607
    [Google Scholar]
  102. WongK.Y. LiuY. ZhouL. WongM.S. LiuJ. Mucin-targeting-aptamer functionalized liposomes for delivery of cyclosporin A for dry eye diseases.J. Mater. Chem. B Mater. Biol. Med.202311214684469410.1039/D3TB00598D37161679
    [Google Scholar]
  103. PatelAsha ChhowalaIshrat DharamsiAbhay PatelRakesh Optimization of PCL-HA laden biodegradable nanoparticles containing Cyclosporine-A for the treatment of Dry eye syndrome: in vitro-in vivo evaluation".Int. J. Nanopartic.202013
    [Google Scholar]
  104. SoibermanU. KambhampatiS.P. WuT. MishraM.K. OhY. SharmaR. WangJ. Al TowerkiA.E. YiuS. StarkW.J. KannanR.M. Subconjunctival injectable dendrimer-dexamethasone gel for the treatment of corneal inflammation.Biomaterials2017125385310.1016/j.biomaterials.2017.02.01628226245
    [Google Scholar]
  105. TaheriS.L. RezazadehM. HassanzadehF. AkbariV. DehghaniA. TalebiA. MostafaviS.A. Preparation, physicochemical, and retinal anti-angiogenic evaluation of poloxamer hydrogel containing dexamethasone/avastin-loaded chitosan-N- acetyl-L-cysteine nanoparticles.Int. J. Biol. Macromol.20222201605161810.1016/j.ijbiomac.2022.09.10136116595
    [Google Scholar]
  106. Alami-MilaniM. Zakeri-MilaniP. ValizadehH. SattariS. SalatinS. JelvehgariM. Evaluation of anti-inflammatory impact of dexamethasone-loaded PCL-PEG-PCL micelles on endotoxin-induced uveitis in rabbits.Pharm. Dev. Technol.201924668068810.1080/10837450.2019.157837030892119
    [Google Scholar]
  107. FialhoS.L. Da Silva-CunhaA. New vehicle based on a microemulsion for topical ocular administration of dexamethasone.Clin. Exp. Ophthalmol.200432662663210.1111/j.1442‑9071.2004.00914.x15575833
    [Google Scholar]
  108. SwaminathanS. VaviaP.R. TrottaF. CavalliR. Nanosponges encapsulating dexamethasone for ocular delivery: formulation design, physicochemical characterization, safety and corneal permeability assessment.J. Biomed. Nanotechnol.201396998100710.1166/jbn.2013.159423858964
    [Google Scholar]
  109. IbrahimH.K. El-LeithyI.S. MakkyA.A. Mucoadhesive nanoparticles as carrier systems for prolonged ocular delivery of gatifloxacin/prednisolone bitherapy.Mol. Pharm.20107257658510.1021/mp900279c20163167
    [Google Scholar]
  110. KatzerT. ChavesP. BernardiA. PohlmannA. GuterresS.S. Ruver BeckR.C. Prednisolone-loaded nanocapsules as ocular drug delivery system: development, in vitro drug release and eye toxicity.J. Microencapsul.201431651952810.3109/02652048.2013.87993024697184
    [Google Scholar]
  111. ChengY.H. KoY.C. ChangY.F. HuangS.H. LiuC.J. Thermosensitive chitosan-gelatin-based hydrogel containing curcumin-loaded nanoparticles and latanoprost as a dual-drug delivery system for glaucoma treatment.Exp. Eye Res.201917917918710.1016/j.exer.2018.11.01730471279
    [Google Scholar]
  112. XuJ. GeY. BuR. ZhangA. FengS. WangJ. GouJ. YinT. HeH. ZhangY. TangX. Co-delivery of latanoprost and timolol from micelles-laden contact lenses for the treatment of glaucoma.J. Control. Release2019305182810.1016/j.jconrel.2019.05.02531103677
    [Google Scholar]
  113. WadetwarR.N. AgrawalA.R. KanojiyaP.S. In situ gel containing Bimatoprost solid lipid nanoparticles for ocular delivery: in-vitro and ex-vivo evaluation.J. Drug Deliv. Sci. Technol.20205610157510.1016/j.jddst.2020.101575
    [Google Scholar]
  114. LiQ. MaC. MaY. MaY. MaoY. MengZ. Sustained bimatoprost release using gold nanoparticles laden contact lenses.J. Biomater. Sci. Polym. Ed.202132121618163410.1080/09205063.2021.192765633980134
    [Google Scholar]
  115. FrancaJ.R. FoureauxG. FuscaldiL.L. RibeiroT.G. RodriguesL.B. BravoR. CastilhoR.O. YoshidaM.I. CardosoV.N. FernandesS.O. CronembergerS. FerreiraA.J. FaracoA.A.G. Bimatoprost-loaded ocular inserts as sustained release drug delivery systems for glaucoma treatment: in vitro and in vivo evaluation.PLoS One201494e9546110.1371/journal.pone.009546124788066
    [Google Scholar]
  116. XuW. JiaoW. LiS. TaoX. MuG. Bimatoprost loaded microemulsion laden contact lens to treat glaucoma.J. Drug Deliv. Sci. Technol.20195410133010.1016/j.jddst.2019.101330
    [Google Scholar]
  117. JungH.J. Abou-JaoudeM. CarbiaB.E. PlummerC. ChauhanA. Glaucoma therapy by extended release of timolol from nanoparticle loaded silicone-hydrogel contact lenses.J. Control. Release20131651828910.1016/j.jconrel.2012.10.01023123188
    [Google Scholar]
  118. HuangJ. PengT. LiY. ZhanZ. ZengY. HuangY. PanX. WuC.Y. WuC. Ocular cubosome drug delivery system for timolol maleate: preparation, characterization, cytotoxicity, ex-vivo, and in vivo Evaluation.AAPS PharmSciTech20171882919292610.1208/s12249‑017‑0763‑828429294
    [Google Scholar]
  119. HathoutRM, Gad HA, Abdel-Hafez SM. Gelatinized core liposomes: A new Trojan horse for the development of a novel timolol maleate glaucoma medication.Int. J. Pharm.2019556192-19910.1016/j.ijpharm.2018.12.01530553005
    [Google Scholar]
  120. ZafarA. AlruwailiN.K. ImamS.S. AlsaidanO.A. AlharbiK.S. YasirM. ElmowafyM. AnsariM.J. SalahuddinM. AlshehriS. Formulation of carteolol chitosomes for ocular delivery: Formulation optimization, ex-vivo permeation, and ocular toxicity examination.Cutan. Ocul. Toxicol.202140433834910.1080/15569527.2021.195822534340615
    [Google Scholar]
  121. NagaiN. YamaokaS. FukuokaY. IshiiM. OtakeH. KanaiK. OkamotoN. ShimomuraY. Enhancement in corneal permeability of dissolved carteolol by its combination with magnesium hydroxide nanoparticles.Int. J. Mol. Sci.201819128210.3390/ijms1901028229342127
    [Google Scholar]
  122. Emad EldeebA. SalahS. GhorabM. Proniosomal gel-derived niosomes: an approach to sustain and improve the ocular delivery of brimonidine tartrate; formulation, in-vitro characterization, and in- vivo pharmacodynamic study.Drug Deliv.201926150952110.1080/10717544.2019.160962231090464
    [Google Scholar]
  123. ShivakumarH.N. DesaiB.G. SubhashP.G. AshokP. HulakotiB. Design of ocular inserts of brimonidine tartrate by response surface methodology.J. Drug Deliv. Sci. Technol.200717642143010.1016/S1773‑2247(07)50083‑3
    [Google Scholar]
  124. ZhaoY. HuangC. ZhangZ. HongJ. XuJ. SunX. SunJ. Sustained release of brimonidine from BRI@SR@TPU implant for treatment of glaucoma.Drug Deliv.202229161362310.1080/10717544.2022.203980635174743
    [Google Scholar]
  125. SunJ. LeiY. DaiZ. LiuX. HuangT. WuJ. XuZ.P. SunX. Sustained release of brimonidine from a new composite drug delivery system for treatment of glaucoma.ACS Appl. Mater. Interfaces2017997990799910.1021/acsami.6b1650928198606
    [Google Scholar]
  126. KassemA.A. SalamaA. MohsenA.M. Formulation and optimization of cationic nanoemulsions for enhanced ocular delivery of dorzolamide hydrochloride using Box-Behnken design: In vitro and in vivo assessments.J. Drug Deliv. Sci. Technol.20226810304710.1016/j.jddst.2021.103047
    [Google Scholar]
  127. TuomelaA. LiuP. PuranenJ. RönkköS. LaaksonenT. KalesnykasG. OksalaO. IlkkaJ. LaruJ. JärvinenK. HirvonenJ. PeltonenL. Brinzolamide nanocrystal formulations for ophthalmic delivery: Reduction of elevated intraocular pressure in vivo.Int. J. Pharm.20144671-2344110.1016/j.ijpharm.2014.03.04824680962
    [Google Scholar]
  128. SmithS.M. SalmonJ.H. AbbarajuS. AminR. GilgerB.C. Tolerability, pharmacokinetics, and pharmacodynamics of a brinzolamide episcleral sustained release implant in normotensive New Zealand white rabbits.J. Drug Deliv. Sci. Technol.20216110212310.1016/j.jddst.2020.102123
    [Google Scholar]
  129. PatelC.C. MandavaN. OliverS.C.N. BravermanR. Quiroz-MercadoH. OlsonJ.L. Treatment of intractable posterior uveitis in pediatric patients with the fluocinolone acetonide intravitreal implant (Retisert).Retina201232353754210.1097/IAE.0b013e31822058bb21963487
    [Google Scholar]
  130. SalamaA.H. MahmoudA.A. KamelR. A novel method for preparing surface-modified fluocinolone acetonide loaded plga nanoparticles for ocular use: In vitro and in vivo evaluations.AAPS PharmSciTech20161751159117210.1208/s12249‑015‑0448‑026589410
    [Google Scholar]
  131. ShelleyH. AnnajiM. GrantM. FasinaO. BabuR.J. Sustained release biodegradable microneedles of difluprednate for delivery to posterior eye.J. Ocul. Pharmacol. Ther.202238644945810.1089/jop.2021.008935167767
    [Google Scholar]
  132. Gonzalez-PizarroR. ParrottaG. VeraR. Sánchez-LópezE. GalindoR. KjeldsenF. BadiaJ. BaldomaL. EspinaM. GarcíaM.L. Ocular penetration of fluorometholone-loaded PEG-PLGA nanoparticles functionalized with cell-penetrating peptides.Nanomedicine201914233089310410.2217/nnm‑2019‑020131769335
    [Google Scholar]
  133. BabaK. HashidaN. TujikawaM. QuantockA.J. NishidaK. The generation of fluorometholone nanocrystal eye drops, their metabolization to dihydrofluorometholone and penetration into rabbit eyes.Int. J. Pharm.202159212006710.1016/j.ijpharm.2020.12006733189813
    [Google Scholar]
  134. NirbhavaneP. SharmaG. SinghB. BegumG. JonesM.C. RauzS. VincentR. DennistonA.K. HillL.J. KatareO.P. Triamcinolone acetonide loaded-cationic nano-lipoidal formulation for uveitis: Evidences of improved biopharmaceutical performance and anti-inflammatory activity.Colloids Surf. B Biointerfaces202019011090210.1016/j.colsurfb.2020.11090232143010
    [Google Scholar]
  135. YanJ. PengX. CaiY. CongW. Development of facile drug delivery platform of ranibizumab fabricated PLGA-PEGylated magnetic nanoparticles for age-related macular degeneration therapy.J. Photochem. Photobiol. B201818313313610.1016/j.jphotobiol.2018.04.03329704861
    [Google Scholar]
  136. ElsaidN. JacksonT.L. ElsaidZ. AlqathamaA. SomavarapuS. PLGA microparticles entrapping chitosan-based nanoparticles for the ocular delivery of ranibizumab.Mol. Pharm.20161392923294010.1021/acs.molpharmaceut.6b0033527286558
    [Google Scholar]
  137. JosephR.R. TanD.W.N. RamonM.R.M. NatarajanJ.V. AgrawalR. WongT.T. VenkatramanS.S. Characterization of liposomal carriers for the transscleral transport of Ranibizumab.Sci. Rep.2017711680310.1038/s41598‑017‑16791‑729196745
    [Google Scholar]
  138. QianC. YanP. WanG. LiangS. DongY. WangJ. Facile synthetic photoluminescent graphene quantum dots encapsulated β-cyclodextrin drug carrier system for the management of macular degeneration: detailed analytical and biological investigations.J. Photochem. Photobiol. B201818924424910.1016/j.jphotobiol.2018.10.01930419519
    [Google Scholar]
  139. PeterA. Campochiaro, Shamika Gune, Mauricio Maia, Han Ting Ding, Katie Maass; pharmacokinetic profile of the port delivery system with ranibizumab (pds) in the phase 3 archway trial.Invest. Ophthalmol. Vis. Sci.2021628350
    [Google Scholar]
  140. YandrapuS.K. UpadhyayA.K. PetrashJ.M. KompellaU.B. Nanoparticles in porous microparticles prepared by supercritical infusion and pressure quench technology for sustained delivery of bevacizumab.Mol. Pharm.201310124676468610.1021/mp400487f24131101
    [Google Scholar]
  141. JiangP. ChaparroF.J. CuddingtonC.T. PalmerA.F. OhrM.P. LannuttiJ.J. Swindle-ReillyK.E. Injectable biodegradable bi-layered capsule for sustained delivery of bevacizumab in treating wet age-related macular degeneration.J. Control. Release202032044245610.1016/j.jconrel.2020.01.03631981659
    [Google Scholar]
  142. ZhangX.P. SunJ.G. YaoJ. ShanK. LiuB.H. YaoM.D. GeH.M. JiangQ. ZhaoC. YanB. Effect of nanoencapsulation using poly (lactide-co-glycolide) (PLGA) on anti-angiogenic activity of bevacizumab for ocular angiogenesis therapy.Biomed. Pharmacother.20181071056106310.1016/j.biopha.2018.08.09230257317
    [Google Scholar]
  143. JiangP. JacobsK.M. OhrM.P. Swindle-ReillyK.E. Chitosan-polycaprolactone core shell microparticles for sustained delivery of bevacizumab.Mol. Pharm.20201772570258410.1021/acs.molpharmaceut.0c0026032484677
    [Google Scholar]
  144. LiuW. LeeB.S. MielerW.F. Kang-MielerJ.J. Biodegradable microsphere-hydrogel ocular drug delivery system for controlled and extended release of bioactive aflibercept in vitro.Curr. Eye Res.201944326427410.1080/02713683.2018.153398330295090
    [Google Scholar]
  145. KellyS. HiraniA. ShahidadpuryV. SolankiA. HalaszK. Varghese GuptaS. MadowB. SutariyaV. Aflibercept nanoformulation inhibits vegf expression in ocular in vitro model: a preliminary report.Biomedicines2018639210.3390/biomedicines603009230208574
    [Google Scholar]
  146. LaddhaU.D. KshirsagarS.J. Formulation of PPAR-gamma agonist as surface modified PLGA nanoparticles for non-invasive treatment of diabetic retinopathy: in vitro and in vivo evidences.Heliyon202068e0458910.1016/j.heliyon.2020.e0458932832706
    [Google Scholar]
  147. JoD.H. KimJ.H. YuY.S. LeeT.G. KimJ.H. Antiangiogenic effect of silicate nanoparticle on retinal neovascularization induced by vascular endothelial growth factor.Nanomedicine20128578479110.1016/j.nano.2011.09.00321945900
    [Google Scholar]
  148. PaivaM.R.B. AndradeG.F. DouradoL.F.N. CastroB.F.M. FialhoS.L. SousaE.M.B. Silva-CunhaA. Surface functionalized mesoporous silica nanoparticles for intravitreal application of tacrolimus.J. Biomater. Appl.20213581019103310.1177/088532822097760533290123
    [Google Scholar]
  149. DaveV. SharmaR. GuptaC. SurS. Folic acid modified gold nanoparticle for targeted delivery of Sorafenib tosylate towards the treatment of diabetic retinopathy.Colloids Surf. B Biointerfaces202019411115110.1016/j.colsurfb.2020.11115132540764
    [Google Scholar]
  150. TanG YuS PanH LiJ LiuD YuanK Bioadhesive chitosan-loaded liposomes: A more efficient and higher permeable ocular delivery platform for timolol maleate.Int. j. biolo. macromolecul.201794Pt A35536310.1016/j.ijbiomac.2016.10.035
    [Google Scholar]
  151. FrancoP. SaccoO. VaianoV. De MarcoI. Supercritical carbon dioxide-based processes in photocatalytic applications.Molecules2021269264010.3390/molecules2609264033946498
    [Google Scholar]
  152. MirallesE. Kamma-LorgerC.S. DomènechÒ. SosaL. CasalsI. CalpenaA.C. Silva-AbreuM. Assessment of efficacy and safety using ppar-γ agonist-loaded nanocarriers for inflammatory eye diseases.Int. J. Mol. Sci.202223191118410.3390/ijms23191118436232486
    [Google Scholar]
  153. KesarlaR. TankT. VoraP.A. ShahT. ParmarS. OmriA. Preparation and evaluation of nanoparticles loaded ophthalmic in situ gel.Drug Deliv.20162372363237010.3109/10717544.2014.98733325579467
    [Google Scholar]
  154. GuoC. ZhangY. YangZ. LiM. LiF. CuiF. LiuT. ShiW. WuX. Nanomicelle formulation for topical delivery of cyclosporine A into the cornea: In vitro mechanism and in vivo permeation evaluation.Sci. Rep.2015511296810.1038/srep12968
    [Google Scholar]
  155. EldeebA.E. SalahS. GhorabM. Formulation and evaluation of cubosomes drug delivery system for treatment of glaucoma: Ex-vivo permeation and in-vivo pharmacodynamic study.J. Drug Deliv. Sci. Technol.20195223624710.1016/j.jddst.2019.04.036
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873294344240408061056
Loading
/content/journals/cnanom/10.2174/0124681873294344240408061056
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test