Skip to content
2000
Cover image Placeholder

Abstract

Chemotherapy, a conventional breast cancer treatment, has limitations due to its non-specific mechanisms and undesirable side effects. Lipid-based nanoparticles (LNPs) have emerged as a versatile and superior platform for targeted breast cancer treatment, offering several distinct advantages over traditional therapies. This class of nanocarriers, which includes solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and liposomes, enhances the bioavailability and stability of therapeutic agents while minimizing systemic toxicity. LNPs can be engineered to precisely target breast cancer cells by exploiting tumor-specific markers, enabling selective delivery of chemotherapeutic agents and reducing off-target effects. SLNs provide controlled drug release and improved drug retention within the tumor, while NLCs offer higher drug-loading capacities and better stability. Liposomes, with their flexible design, allow for the encapsulation of both hydrophilic and hydrophobic drugs and can be modified for active targeting through surface functionalization. These lipid-based carriers also address the challenges of multi-drug resistance (MDR) by enhancing intracellular drug concentration and overcoming efflux mechanisms. In this review, we focus on lipid-based nanoparticles- a subtype of nanoparticles, and their potential advantages as drug delivery systems for breast cancer treatment. Results revealed that lipid-based nanoparticles have shown potential in breast cancer management, these include improved drug efficacy, enhanced ability to overcome cancer therapy resistance, and effective drug carrier for co-loaded drugs.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873326272241011161315
2024-10-17
2024-11-23
Loading full text...

Full text loading...

References

  1. Łukasiewicz S. Czeczelewski M. Forma A. Baj J. Sitarz R. Stanisławek A. Breast cancer — Epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—an updated review. Cancers (Basel) 2021 13 17 4287 10.3390/cancers13174287 34503097
    [Google Scholar]
  2. Watkins E.J. Overview of breast cancer. JAAPA 2019 32 10 13 17 10.1097/01.JAA.0000580524.95733.3d 31513033
    [Google Scholar]
  3. Nounou M.I. ElAmrawy F. Ahmed N. Abdelraouf K. Goda S. Syed-Sha-Qhattal H. Breast cancer: Conventional diagnosis and treatment modalities and recent patents and technologies. Breast Cancer (Auckl) 9 Suppl 2 2015 17 34 10.4137/BCBCR.S29420 26462242
    [Google Scholar]
  4. Pucci C. Martinelli C. Ciofani G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience 2019 13 961 10.3332/ecancer.2019.961 31537986
    [Google Scholar]
  5. Nurgali K. Jagoe R.T. Abalo R. Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae. Front. Pharmacol. 2018 9 245 10.3389/fphar.2018.00245 29623040
    [Google Scholar]
  6. Masoud V. Pagès G. Targeted therapies in breast cancer: New challenges to fight against resistance. World J. Clin. Oncol. 2017 8 2 120 134 10.5306/wjco.v8.i2.120 28439493
    [Google Scholar]
  7. Ye F. Dewanjee S. Li Y. Jha N.K. Chen Z.S. Kumar A. Vishakha Behl T. Jha S.K. Tang H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol. Cancer 2023 22 1 105 10.1186/s12943‑023‑01805‑y 37415164
    [Google Scholar]
  8. Samimi S. Maghsoudnia N. Eftekhari R.B. Dorkoosh F. Chapter 3 - Lipid-based nanoparticles for drug delivery systems. Characterization and Biology of Nanomaterials for Drug Delivery Elsevier 2019 47 76 10.1016/B978‑0‑12‑814031‑4.00003‑9
    [Google Scholar]
  9. Wang T. Suita Y. Miriyala S. Dean J. Tapinos N. Shen J. Advances in lipid-based nanoparticles for cancer chemoimmunotherapy. Pharmaceutics 2021 13 4 520 10.3390/pharmaceutics13040520 33918635
    [Google Scholar]
  10. Xu L. Wang X. Liu Y. Yang G. Falconer R.J. Zhao C.X. Lipid nanoparticles for drug delivery. Adv. NanoBiomed Res. 2022 2 2 2100109 10.1002/anbr.202100109 35179344
    [Google Scholar]
  11. Mitchell M.J. Billingsley M.M. Haley R.M. Wechsler M.E. Peppas N.A. Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021 20 2 101 124 10.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  12. Anselmo A.C. Mitragotri S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019 4 3 e10143 10.1002/btm2.10143 31572799
    [Google Scholar]
  13. Ramishetti S. Kedmi R. Goldsmith M. Leonard F. Sprague A.G. Godin B. Gozin M. Cullis P.R. Dykxhoorn D.M. Peer D. Systemic gene silencing in primary T lymphocytes using targeted lipid nanoparticles. ACS Nano 2015 9 7 6706 6716 10.1021/acsnano.5b02796 26042619
    [Google Scholar]
  14. Jain S. Patel N. Shah M.K. Khatri P. Vora N.J.J.s. Recent advances in lipid-based vesicles and particulate carriers for topical and transdermal application. J. Pharm. Sci. 2017 106 2 423 445 10.1016/j.xphs.2016.10.001
    [Google Scholar]
  15. Honeywell-Nguyen P.L. Bouwstra J.A. Vesicles as a tool for transdermal and dermal delivery. Drug Discov. Today Technol. 2 1 67 74 2005 10.1016/j.ddtec.2005.05.003 24981757
    [Google Scholar]
  16. Mohanta B.C. Palei N.N. Surendran V. Dinda S.C. Rajangam J. Deb J. Sahoo B.M. Lipid based nanoparticles: Current strategies for brain tumor targeting. Curr. Nanomater. 2019 4 2 84 100 10.2174/2405461504666190510121911
    [Google Scholar]
  17. Pozzi D. Colapicchioni V. Caracciolo G. Piovesana S. Capriotti A.L. Palchetti S. De Grossi S. Riccioli A. Amenitsch H. Laganà A. Effect of polyethyleneglycol (PEG) chain length on the bio–nano-interactions between PEGylated lipid nanoparticles and biological fluids: From nanostructure to uptake in cancer cells. Nanoscale 2014 6 5 2782 2792 10.1039/c3nr05559k 24463404
    [Google Scholar]
  18. Akanda M. Getti G. Nandi U. Mithu M.S. Douroumis D. Bioconjugated solid lipid nanoparticles (SLNs) for targeted prostate cancer therapy. Int. J. Pharm. 2021 599 120416 10.1016/j.ijpharm.2021.120416 33647403
    [Google Scholar]
  19. Sharma G. Lakkadwala S. Modgil A. Singh J. The role of cell-penetrating peptide and transferrin on enhanced delivery of drug to brain. Int. J. Mol. Sci. 2016 17 6 806 10.3390/ijms17060806 27231900
    [Google Scholar]
  20. Dong R. Zhou Y. Huang X. Zhu X. Lu Y. Shen J. Functional supramolecular polymers for biomedical applications. Adv. Mater. 2015 27 3 498 526 10.1002/adma.201402975 25393728
    [Google Scholar]
  21. Shcharbin D. Janaszewska A. Klajnert-Maculewicz B. Ziemba B. Dzmitruk V. Halets I. Loznikova S. Shcharbina N. Milowska K. Ionov M. Shakhbazau A. Bryszewska M. How to study dendrimers and dendriplexes III. Biodistribution, pharmacokinetics and toxicity in vivo. J. Control. Release 2014 181 40 52 10.1016/j.jconrel.2014.02.021 24607663
    [Google Scholar]
  22. Mohammadi-Samani S. Ghasemiyeh P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci. 2018 13 4 288 303 10.4103/1735‑5362.235156 30065762
    [Google Scholar]
  23. Attama A.A. Momoh M.A. Builders P.F. Lipid nanoparticulate drug delivery systems: A revolution in dosage form design and development. Recent Advances in Novel Drug Carrier Systems IntechOpen Rijeka, Croatia Sezer A.D. 2012 107 140
    [Google Scholar]
  24. Siram K. Rahman S.H. Balakumar K. Duganath N. Chandrasekar R. Hariprasad R. Chapter 4 - Pharmaceutical nanotechnology: Brief perspective on lipid drug delivery and its current scenario. Biomedical Applications of Nanoparticles William Andrew 2019 91 115 10.1016/B978‑0‑12‑816506‑5.00005‑X
    [Google Scholar]
  25. Bulbake U. Doppalapudi S. Kommineni N. Khan W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017 9 2 12 10.3390/pharmaceutics9020012 28346375
    [Google Scholar]
  26. Doktorovová S. Kovačević A.B. Garcia M.L. Souto E.B. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm. 2016 108 235 252 10.1016/j.ejpb.2016.08.001 27519829
    [Google Scholar]
  27. Reis F. Madureira A.R. Nunes S. Campos D. Fernandes J. Marques C. Zuzarte M. Gullón B. Rodríguez-Alcalá L.M. Calhau C. Sarmento B. Gomes A.M. Pintado M.M. Safety profile of solid lipid nanoparticles loaded with rosmarinic acid for oral use: in vitro and animal approaches. Int. J. Nanomedicine 2016 11 3621 3640 10.2147/IJN.S104623 27536103
    [Google Scholar]
  28. Mehnert W. Mäder K. Solid lipid nanoparticles. Adv. Drug Deliv. Rev. 2012 64 83 101 10.1016/j.addr.2012.09.021 11311991
    [Google Scholar]
  29. Qi J. Zhuang J. Lu Y. Dong X. Zhao W. Wu W. in vivo fate of lipid-based nanoparticles. Drug Discov. Today 2017 22 1 166 172 10.1016/j.drudis.2016.09.024 27713035
    [Google Scholar]
  30. Feeney O.M. Crum M.F. McEvoy C.L. Trevaskis N.L. Williams H.D. Pouton C.W. Charman W.N. Bergström C.A.S. Porter C.J.H. 50 years of oral lipid-based formulations: Provenance, progress and future perspectives. Adv. Drug Deliv. Rev. 2016 101 167 194 10.1016/j.addr.2016.04.007 27089810
    [Google Scholar]
  31. Paliwal R. Rai S. Vaidya B. Khatri K. Goyal A.K. Mishra N. Mehta A. Vyas S.P. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomedicine 2009 5 2 184 191 10.1016/j.nano.2008.08.003 19095502
    [Google Scholar]
  32. Sanna V. Caria G. Mariani A. Effect of lipid nanoparticles containing fatty alcohols having different chain length on the ex-vivo skin permeability of Econazole nitrate. Powder Technol. 2010 201 1 32 36 10.1016/j.powtec.2010.02.035
    [Google Scholar]
  33. Cabral H. Matsumoto Y. Mizuno K. Chen Q. Murakami M. Kimura M. Terada Y. Kano M.R. Miyazono K. Uesaka M. Nishiyama N. Kataoka K. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 2011 6 12 815 823 10.1038/nnano.2011.166 22020122
    [Google Scholar]
  34. Kim C.H. Lee S.G. Kang M.J. Lee S. Choi Y.W. Surface modification of lipid-based nanocarriers for cancer cell-specific drug targeting. J. Pharm. Investig. 2017 47 3 203 227 10.1007/s40005‑017‑0329‑5
    [Google Scholar]
  35. Priya S. Desai V.M. Singhvi G. Surface modification of lipid-based nanocarriers: A potential approach to enhance targeted drug delivery. ACS Omega 2023 8 1 74 86 10.1021/acsomega.2c05976 36643539
    [Google Scholar]
  36. Murphy E.A. Majeti B.K. Barnes L.A. Makale M. Weis S.M. Lutu-Fuga K. Wrasidlo W. Cheresh D.A. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc. Natl. Acad. Sci. USA 2008 105 27 9343 9348 10.1073/pnas.0803728105 18607000
    [Google Scholar]
  37. Puri A. Lipid-Based Nanoparticles as Pharmaceutical Drug Carriers: From Concepts to Clinic. Crit. Rev. Ther. Drug Carrier Syst. 26 6 523 580 2009 10.1615/critrevtherdrugcarriersyst.v26.i6.10 20402623
    [Google Scholar]
  38. Hussain Z. Khan S. Imran M. Sohail M. Shah S.W.A. de Matas M. PEGylation: A promising strategy to overcome challenges to cancer-targeted nanomedicines: A review of challenges to clinical transition and promising resolution. Drug Deliv. Transl. Res. 2019 9 3 721 734 10.1007/s13346‑019‑00631‑4 30895453
    [Google Scholar]
  39. Kang X. Chen H. Li S. Jie L. Hu J. Wang X. Qi J. Ying X. Du Y. Magnesium lithospermate B loaded PEGylated solid lipid nanoparticles for improved oral bioavailability. Colloids Surf. B Biointerfaces 2018 161 597 605 10.1016/j.colsurfb.2017.11.008 29156336
    [Google Scholar]
  40. Yadav D. Dewangan H.K. PEGYLATION: An important approach for novel drug delivery system. J. Biomater. Sci. Polym. Ed. 2021 32 2 266 280 10.1080/09205063.2020.1825304 32942961
    [Google Scholar]
  41. Wu J. The enhanced permeability and retention (EPR) effect: The significance of the concept and methods to enhance its application. J. Pers. Med. 2021 11 8 771 10.3390/jpm11080771 34442415
    [Google Scholar]
  42. Luo Y. Teng Z. Li Y. Wang Q. Solid lipid nanoparticles for oral drug delivery: Chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydr. Polym. 2015 122 221 229 10.1016/j.carbpol.2014.12.084 25817662
    [Google Scholar]
  43. Fonte P. Andrade F. Araújo F. Andrade C. Chitosan-coated solid lipid nanoparticles for insulin delivery. Methods Enzymol. 2012 508 295 314 10.1016/B978‑0‑12‑391860‑4.00015‑X 22449932
    [Google Scholar]
  44. Hou X. Zaks T. Langer R. Dong Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021 6 12 1078 1094 10.1038/s41578‑021‑00358‑0 34394960
    [Google Scholar]
  45. Caracciolo G. Pozzi D. Capriotti A.L. Cavaliere C. Laganà A. Effect of DOPE and cholesterol on the protein adsorption onto lipid nanoparticles. J. Nanopart. Res. 2013 15 3 1498 10.1007/s11051‑013‑1498‑4
    [Google Scholar]
  46. Chen Y. He N. Yang T. Cai S. Zhang Y. Lin J. Huang M. Chen W. Zhang Y. Hong Z. Fucoxanthin loaded in palm stearin-and cholesterol-based solid lipid nanoparticle-microcapsules, with improved stability and bioavailability in vivo. Mar. Drugs 2022 20 4 237 10.3390/md20040237 35447909
    [Google Scholar]
  47. Vatansever O. Bahadori F. Bulut S. Eroglu M.S. Coating with cationic inulin enhances the drug release profile and in vitro anticancer activity of lecithin-based nano drug delivery systems. Int. J. Biol. Macromol. 2023 237 123955 10.1016/j.ijbiomac.2023.123955 36906213
    [Google Scholar]
  48. Menon I. Zaroudi M. Zhang Y. Aisenbrey E. Hui L. Fabrication of active targeting lipid nanoparticles: Challenges and perspectives. Mater. Today Adv. 2022 16 100299 10.1016/j.mtadv.2022.100299
    [Google Scholar]
  49. Chen L. Yan C. Zheng Z. Functional polymer surfaces for controlling cell behaviors. Mater. Today 2018 21 1 38 59 10.1016/j.mattod.2017.07.002
    [Google Scholar]
  50. Lee C. Kang S. Development of HER2-targeting-ligand-modified albumin nanoparticles based on the SpyTag/SpyCatcher system for photothermal therapy. Biomacromolecules 2021 22 6 2649 2658 10.1021/acs.biomac.1c00336 34060808
    [Google Scholar]
  51. Zhong Q. Zheng C. Yi K. Mintz R.L. Lv S. Tao Y. Li M. Structural and componential design: New strategies regulating the behavior of lipid-based nanoparticles in vivo. Biomater. Sci. 2023 11 14 4774 4788 10.1039/D3BM00387F 37249402
    [Google Scholar]
  52. Zahmatkeshan M. Gheybi F. Rezayat S.M. Jaafari M.R. Improved drug delivery and therapeutic efficacy of PEgylated liposomal doxorubicin by targeting anti-HER2 peptide in murine breast tumor model. Eur. J. Pharm. Sci. 2016 86 125 135 10.1016/j.ejps.2016.03.009 26972276
    [Google Scholar]
  53. Jeong H.Y. Kim H. Lee M. Hong J. Lee J.H. Kim J. Choi M.J. Park Y.S. Kim S.C. Development of HER2-specific aptamer-drug conjugate for breast cancer therapy. Int. J. Mol. Sci. 2020 21 24 9764 10.3390/ijms21249764 33371333
    [Google Scholar]
  54. Salvioni L. Zuppone S. Andreata F. Monieri M. Mazzucchelli S. Di Carlo C. Morelli L. Cordiglieri C. Donnici L. De Francesco R. Corsi F. Prosperi D. Vago R. Colombo M. Nanoparticle-mediated suicide gene therapy for triple negative breast cancer treatment. Adv. Ther. (Weinh.) 2020 3 8 2000007 10.1002/adtp.202000007
    [Google Scholar]
  55. Wen H. Martínez M.G. Happonen E. Qian J. Vallejo V.G. Mendazona H.J. Jokivarsi K. Scaravilli M. Latonen L. Llop J. Lehto V.P. Xu W. A PEG-assisted membrane coating to prepare biomimetic mesoporous silicon for PET/CT imaging of triple-negative breast cancer. Int. J. Pharm. 2024 652 123764 10.1016/j.ijpharm.2023.123764 38176479
    [Google Scholar]
  56. Choi M.J. Lee Y.K. Choi K.C. Lee D.H. Jeong H.Y. Kang S.J. Kim M.W. You Y.M. Im C.S. Lee T.S. Park Y.S. Tumor-targeted erythrocyte membrane nanoparticles for theranostics of triple-negative breast cancer. Pharmaceutics 2023 15 2 350 10.3390/pharmaceutics15020350 36839675
    [Google Scholar]
  57. Li L. Yang W.W. Xu D.G. Stimuli-responsive nanoscale drug delivery systems for cancer therapy. J. Drug Target. 2019 27 4 423 433 10.1080/1061186X.2018.1519029 30173577
    [Google Scholar]
  58. Aryal M. Vykhodtseva N. Zhang Y.Z. Park J. McDannold N. Multiple treatments with liposomal doxorubicin and ultrasound-induced disruption of blood–tumor and blood–brain barriers improve outcomes in a rat glioma model. J. Control. Release 2013 169 1-2 103 111 10.1016/j.jconrel.2013.04.007 23603615
    [Google Scholar]
  59. Geng S. Wang Y. Wang L. Kouyama T. Gotoh T. Wada S. Wang J.Y. A light-responsive self-assembly formed by a cationic azobenzene derivative and SDS as a drug delivery system. Sci. Rep. 2017 7 1 39202 10.1038/srep39202 28051069
    [Google Scholar]
  60. Pradhan P. Giri J. Rieken F. Koch C. Mykhaylyk O. Döblinger M. Banerjee R. Bahadur D. Plank C. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J. Control. Release 2010 142 1 108 121 10.1016/j.jconrel.2009.10.002 19819275
    [Google Scholar]
  61. Halevas E. Mavroidi B. Swanson C.H. Smith G.C. Moschona A. Hadjispyrou S. Salifoglou A. Pantazaki A.A. Pelecanou M. Litsardakis G. Magnetic cationic liposomal nanocarriers for the efficient drug delivery of a curcumin-based vanadium complex with anticancer potential. J. Inorg. Biochem. 2019 199 110778 10.1016/j.jinorgbio.2019.110778 31442839
    [Google Scholar]
  62. Abasian P. Shakibi S. Maniati M.S. Nouri Khorasani S. Khalili S. Targeted delivery, drug release strategies, and toxicity study of polymeric drug nanocarriers. Polym. Adv. Technol. 2021 32 3 931 944 10.1002/pat.5168
    [Google Scholar]
  63. Raza A. Rasheed T. Nabeel F. Hayat U. Bilal M. Iqbal H.M.N. Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release. Molecules 2019 24 6 1117 10.3390/molecules24061117 30901827
    [Google Scholar]
  64. Das S.S. Bharadwaj P. Bilal M. Barani M. Rahdar A. Taboada P. Bungau S. Kyzas G.Z. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers (Basel) 2020 12 6 1397 10.3390/polym12061397 32580366
    [Google Scholar]
  65. Ahmadi A. Hosseini-Nami S. Abed Z. Beik J. Aranda-Lara L. Samadian H. Morales-Avila E. Jaymand M. Shakeri-Zadeh A. Recent advances in ultrasound-triggered drug delivery through lipid-based nanomaterials. Drug Discov. Today 2020 25 12 2182 2200 10.1016/j.drudis.2020.09.026 33010479
    [Google Scholar]
  66. Danhier F. Feron O. Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti- cancer drug delivery. J. Control. Release 2010 148 2 135 146 10.1016/j.jconrel.2010.08.027 20797419
    [Google Scholar]
  67. de la Rica R. Aili D. Stevens M.M. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Deliv. Rev. 2012 64 11 967 978 10.1016/j.addr.2012.01.002 22266127
    [Google Scholar]
  68. Kuang T. Liu Y. Gong T. Peng X. Hu X. Yu Z. Enzyme-responsive nanoparticles for anticancer drug delivery. Curr. Nanosci. 2015 12 1 38 46 10.2174/1573413711666150624170518
    [Google Scholar]
  69. Singh A. Amiji M.M. Stimuli-Responsive Drug Delivery Systems Royal Society of Chemistry Croydon, UK 2018 10.1039/9781788013536
    [Google Scholar]
  70. Massoumi B. Abbasian M. Jahanban-Esfahlan R. Motamedi S. Samadian H. Rezaei A. Derakhshankhah H. Farnudiyan-Habibi A. Jaymand M. PEGylated hollow pH-responsive polymeric nanocapsules for controlled drug delivery. Polym. Int. 2020 69 5 519 527 10.1002/pi.5987
    [Google Scholar]
  71. Sui F. Fang Z. Li L. Wan X. Zhang Y. Cai X. pH-triggered “PEG” sheddable and folic acid-targeted nanoparticles for docetaxel delivery in breast cancer treatment. Int. J. Pharm. 2023 644 123293 10.1016/j.ijpharm.2023.123293 37541534
    [Google Scholar]
  72. Rizwanullah M. Alam M. Harshita Mir S.R. Rizvi M.M.A. Amin S. Polymer-lipid hybrid nanoparticles: A next-generation nanocarrier for targeted treatment of solid tumors. Curr. Pharm. Des. 2020 26 11 1206 1215 10.2174/1381612826666200116150426 31951163
    [Google Scholar]
  73. Nitheesh Y. Pradhan R. Hejmady S. Taliyan R. Singhvi G. Alexander A. Kesharwani P. Dubey S.K. Surface engineered nanocarriers for the management of breast cancer. Mater. Sci. Eng. C 2021 130 112441 10.1016/j.msec.2021.112441 34702526
    [Google Scholar]
  74. Sheoran S. Arora S. Samsonraj R. Govindaiah P. vuree S. Lipid-based nanoparticles for treatment of cancer. Heliyon 2022 8 5 e09403 10.1016/j.heliyon.2022.e09403 35663739
    [Google Scholar]
  75. Kumar G. Nandakumar K. Mutalik S. Rao C.M. Biologicals to direct nanotherapeutics towards HER2-positive breast cancers. Nanomedicine 2020 27 102197 10.1016/j.nano.2020.102197 32275958
    [Google Scholar]
  76. Laginha K.M. Verwoert S. Charrois G.J.R. Allen T.M. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin. Cancer Res. 2005 11 19 6944 6949 10.1158/1078‑0432.CCR‑05‑0343 16203786
    [Google Scholar]
  77. Ghauri A. Ghauri I. Elhissi A.M. Ahmed W. Characterization of cochleate nanoparticles for delivery of the anti-asthma drug beclomethasone dipropionate. Advances in Medical and Surgical Engineering Academic Press 2020 267 277 10.1016/B978‑0‑12‑819712‑7.00014‑0
    [Google Scholar]
  78. Fiegl M. Mlineritsch B. Hubalek M. Bartsch R. Pluschnig U. Steger G.G. Single-agent pegylated liposomal doxorubicin (PLD) in the treatment of metastatic breast cancer: Results of an Austrian observational trial. BMC Cancer 2011 11 1 373 10.1186/1471‑2407‑11‑373 21864402
    [Google Scholar]
  79. Ghafari M. Haghiralsadat F. Khanamani Falahati-pour S. Zavar Reza J. Development of a novel liposomal nanoparticle formulation of cisplatin to breast cancer therapy. J. Cell. Biochem. 2020 121 7 3584 3592 10.1002/jcb.29651 31907989
    [Google Scholar]
  80. Katharotiya K. Shinde G. Katharotiya D. Shelke S. Patel R. Kulkarni D. Panzade P. Development, evaluation and biodistribution of stealth liposomes of 5-fluorouracil for effective treatment of breast cancer. J. Liposome Res. 2022 32 2 146 158 10.1080/08982104.2021.1905661 33847220
    [Google Scholar]
  81. Silva-Cázares M. Saavedra-Leos M. Jordan-Alejandre E. Nuñez-Olvera S. Cómpean-Martínez I. López-Camarillo C. Lipid-based nanoparticles for the therapeutic delivery of non-coding RNAs in breast cancer (Review). Oncol. Rep. 2020 44 6 2353 2363 10.3892/or.2020.7791 33125103
    [Google Scholar]
  82. Wu D. Zhao Z. Kim J. Razmi A. Wang L.L.W. Kapate N. Gao Y. Peng K. Ukidve A. Mitragotri S. Gemcitabine and doxorubicin in immunostimulatory monophosphoryl lipid A liposomes for treating breast cancer. Bioeng. Transl. Med. 2021 6 1 e10188 10.1002/btm2.10188 33532588
    [Google Scholar]
  83. Shukla S.K. Kulkarni N.S. Chan A. Parvathaneni V. Farrales P. Muth A. Gupta V. Metformin-encapsulated liposome delivery system: An effective treatment approach against breast cancer. Pharmaceutics 2019 11 11 559 10.3390/pharmaceutics11110559 31661947
    [Google Scholar]
  84. Ciccolini J. Serdjebi C. Peters G.J. Giovannetti E. Pharmacokinetics and pharmacogenetics of Gemcitabine as a mainstay in adult and pediatric oncology: An EORTC-PAMM perspective. Cancer Chemother. Pharmacol. 2016 78 1 1 12 10.1007/s00280‑016‑3003‑0 27007129
    [Google Scholar]
  85. Celia C. Cristiano M.C. Froiio F. Di Francesco M. d’Avanzo N. Di Marzio L. Fresta M. Nanoliposomes as multidrug carrier of gemcitabine/paclitaxel for the effective treatment of metastatic breast cancer disease: A comparison with Gemzar and Taxol. Adv. Ther. (Weinh.) 2021 4 1 2000121 10.1002/adtp.202000121
    [Google Scholar]
  86. Burande A.S. EGFR targeted paclitaxel and piperine co-loaded liposomes for the treatment of triple negative breast cancer. AAPS PharmSciTech 2020 21 1 12
    [Google Scholar]
  87. Füredi A. Szebényi K. Tóth S. Cserepes M. Hámori L. Nagy V. Karai E. Vajdovich P. Imre T. Szabó P. Szüts D. Tóvári J. Szakács G. Pegylated liposomal formulation of doxorubicin overcomes drug resistance in a genetically engineered mouse model of breast cancer. J. Control. Release 2017 261 287 296 10.1016/j.jconrel.2017.07.010 28700899
    [Google Scholar]
  88. Robinson K. Tiriveedhi V. Perplexing role of P-glycoprotein in tumor microenvironment. Front. Oncol. 2020 10 265 10.3389/fonc.2020.00265 32195185
    [Google Scholar]
  89. Xu H. Hu M. Liu M. An S. Guan K. Wang M. Li L. Zhang J. Li J. Huang L. Nano-puerarin regulates tumor microenvironment and facilitates chemo- and immunotherapy in murine triple negative breast cancer model. Biomaterials 2020 235 119769 10.1016/j.biomaterials.2020.119769 31986348
    [Google Scholar]
  90. Guney Eskiler G. Cecener G. Egeli U. Tunca B. Talazoparib nanoparticles for overcoming multidrug resistance in triple-negative breast cancer. J. Cell. Physiol. 2020 235 9 6230 6245 10.1002/jcp.29552 32017076
    [Google Scholar]
  91. Joun I. Nixdorf S. Deng W. Advances in lipid-based nanocarriers for breast cancer metastasis treatment. Front. Med. Technol. 2022 4 893056 10.3389/fmedt.2022.893056 36062261
    [Google Scholar]
  92. Costa K.M.N. Barros R.M. Jorge E.O. Sato M.R. Chorilli M. de Lima Damasceno B.P.G. Nicholas D. Callan J.F. Oshiro Junior J.A. Doxorubicin-loaded nanostructured lipid carriers functionalized with folic acid against MCF-7 breast cancer cell line. J. Nanopart. Res. 2023 25 4 56 10.1007/s11051‑023‑05704‑7
    [Google Scholar]
  93. Oshiro-Junior J.A. Sato M.R. Boni F.I. Santos K.L.M. de Oliveira K.T. de Freitas L.M. Fontana C.R. Nicholas D. McHale A. Callan J.F. Chorilli M. Phthalocyanine-loaded nanostructured lipid carriers functionalized with folic acid for photodynamic therapy. Mater. Sci. Eng. C 2020 108 110462 10.1016/j.msec.2019.110462 31923986
    [Google Scholar]
  94. Iwasaki T. Ishibashi J. Tanaka H. Sato M. Asaoka A. Taylor D. Yamakawa M. Selective cancer cell cytotoxicity of enantiomeric 9-mer peptides derived from beetle defensins depends on negatively charged phosphatidylserine on the cell surface. Peptides 2009 30 4 660 668 10.1016/j.peptides.2008.12.019 19154767
    [Google Scholar]
  95. Chowdhury N. Chaudhry S. Hall N. Olverson G. Zhang Q.J. Mandal T. Dash S. Kundu A. Targeted delivery of doxorubicin liposomes for Her-2+ breast cancer treatment. AAPS PharmSciTech 2020 21 6 202 10.1208/s12249‑020‑01743‑8 32696338
    [Google Scholar]
  96. Jiang L. Li L. He B. Pan D. Luo K. Yi Q. Gu Z. Anti-cancer efficacy of paclitaxel loaded in pH triggered liposomes. J. Biomed. Nanotechnol. 2016 12 1 79 90 10.1166/jbn.2016.2123 27301174
    [Google Scholar]
  97. Elamir A. Ajith S. Sawaftah N.A. Abuwatfa W. Mukhopadhyay D. Paul V. Al-Sayah M.H. Awad N. Husseini G.A. Ultrasound-triggered herceptin liposomes for breast cancer therapy. Sci. Rep. 2021 11 1 7545 10.1038/s41598‑021‑86860‑5 33824356
    [Google Scholar]
  98. Raikwar S. Yadav V. Jain S. Jain S.K. Antibody-conjugated pH-sensitive liposomes for HER-2 positive breast cancer: Development, characterization, in vitro and in vivo assessment. J. Liposome Res. 2024 34 2 239 263 10.1080/08982104.2023.2248505 37594466
    [Google Scholar]
  99. Bhagwat G.S. Athawale R.B. Gude R.P. Md S. Alhakamy N.A. Fahmy U.A. Kesharwani P. Formulation and development of transferrin targeted solid lipid nanoparticles for breast cancer therapy. Front. Pharmacol. 2020 11 614290 10.3389/fphar.2020.614290 33329007
    [Google Scholar]
  100. Yassemi A. Kashanian S. Zhaleh H. Folic acid receptor-targeted solid lipid nanoparticles to enhance cytotoxicity of letrozole through induction of caspase-3 dependent-apoptosis for breast cancer treatment. Pharm. Dev. Technol. 2020 25 4 397 407 10.1080/10837450.2019.1703739 31893979
    [Google Scholar]
  101. Bayat P. Pakravan P. Salouti M. Ezzati Nazhad Dolatabadi J. Lysine decorated solid lipid nanoparticles of epirubicin for cancer targeting and therapy. Adv. Pharm. Bull. 2020 11 1 96 103 10.34172/apb.2021.010 33747856
    [Google Scholar]
  102. Tan L.K.S. How C.W. Low L.E. Ong B.H. Loh J.S. Lim S-Y. Ong Y.S. Foo J.B. Magnetic-guided targeted delivery of zerumbone/SPION co-loaded in nanostructured lipid carrier into breast cancer cells. J. Drug Deliv. Sci. Technol. 2023 87 104830 10.1016/j.jddst.2023.104830
    [Google Scholar]
  103. Kim C.H. Lee T.H. Kim B.D. Kim H.K. Lyu M.J. Jung H.M. Goo Y.T. Kang M.J. Lee S. Choi Y.W. Co-administration of tariquidar using functionalized nanostructured lipid carriers overcomes resistance to docetaxel in multidrug resistant MCF7/ADR cells. J. Drug Deliv. Sci. Technol. 2022 71 103323 10.1016/j.jddst.2022.103323
    [Google Scholar]
  104. Moti L.A.A. Hussain Z. Thu H.E. Khan S. Sohail M. Sarfraz R.M. Multi-functionalization, a promising adaptation to overcome challenges to clinical translation of nanomedicines as nano-diagnostics and nano-therapeutics for breast cancer. Curr. Pharm. Des. 2021 27 43 4356 4375 10.2174/1381612827666210830092539 34459374
    [Google Scholar]
  105. Auría-Soro C. Nesma T. Juanes-Velasco P. Landeira-Viñuela A. Fidalgo-Gomez H. Acebes-Fernandez V. Gongora R. Almendral Parra M.J. Manzano-Roman R. Fuentes M. Interactions of nanoparticles and biosystems: Microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials (Basel) 2019 9 10 1365 10.3390/nano9101365 31554176
    [Google Scholar]
  106. Ernsting M.J. Murakami M. Roy A. Li S.D. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J. Control. Release 2013 172 3 782 794 10.1016/j.jconrel.2013.09.013 24075927
    [Google Scholar]
  107. Saptarshi S.R. Duschl A. Lopata A.L. Interaction of nanoparticles with proteins: Relation to bio-reactivity of the nanoparticle. J. Nanobiotechnology 2013 11 1 26 10.1186/1477‑3155‑11‑26 23870291
    [Google Scholar]
  108. Loh J.S. Tan L.K.S. Lee W.L. Ming L.C. How C.W. Foo J.B. Kifli N. Goh B.H. Ong Y.S. Do lipid-based nanoparticles hold promise for advancing the clinical translation of anticancer alkaloids? Cancers (Basel) 2021 13 21 5346 10.3390/cancers13215346 34771511
    [Google Scholar]
  109. Elumalai K. Srinivasan S. Shanmugam A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomedical Technology 2024 5 109 122 10.1016/j.bmt.2023.09.001
    [Google Scholar]
  110. He H. Liu L. Morin E.E. Liu M. Schwendeman A. Survey of clinical translation of cancer nanomedicines — Lessons learned from successes and failures. Acc. Chem. Res. 2019 52 9 2445 2461 10.1021/acs.accounts.9b00228 31424909
    [Google Scholar]
  111. Kamoun W.S. Dugast A.S. Suchy J.J. Grabow S. Fulton R.B. Sampson J.F. Luus L. Santiago M. Koshkaryev A. Sun G. Askoxylakis V. Tam E. Huang Z.R. Drummond D.C. Sawyer A.J. Synergy between EphA2-ILs-DTXp, a novel EphA2-targeted nanoliposomal taxane, and PD-1 inhibitors in preclinical tumor models. Mol. Cancer Ther. 2020 19 1 270 281 10.1158/1535‑7163.MCT‑19‑0414 31597714
    [Google Scholar]
  112. Sercombe L. Veerati T. Moheimani F. Wu S.Y. Sood A.K. Hua S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015 6 286 10.3389/fphar.2015.00286 26648870
    [Google Scholar]
  113. Chaudhuri A. Kumar D.N. Shaik R.A. Eid B.G. Abdel-Naim A.B. Md S. Ahmad A. Agrawal A.K. Lipid-based nanoparticles as a pivotal delivery approach in triple negative breast cancer (TNBC) therapy. Int. J. Mol. Sci. 2022 23 17 10068 10.3390/ijms231710068 36077466
    [Google Scholar]
  114. Pandey S. Shaikh F. Gupta A. Tripathi P. Yadav J.S. A recent update: Solid lipid nanoparticles for effective drug delivery. Adv. Pharm. Bull. 2022 12 1 17 33 35517874
    [Google Scholar]
  115. Hafner A. Lovrić J. Lakoš G.P. Pepić I. Nanotherapeutics in the EU: An overview on current state and future directions. Int. J. Nanomedicine 2014 9 1005 1023 24600222
    [Google Scholar]
  116. Mishra D.K. Shandilya R. Mishra P.K. Lipid based nanocarriers: A translational perspective. Nanomedicine 2018 14 7 2023 2050 10.1016/j.nano.2018.05.021 29944981
    [Google Scholar]
  117. Wang D. Sun Y. Liu Y. Meng F. Lee R.J. Clinical translation of immunoliposomes for cancer therapy: Recent perspectives. Expert Opin. Drug Deliv. 2018 15 9 893 903 10.1080/17425247.2018.1517747 30169978
    [Google Scholar]
  118. Pelaz B. Alexiou C. Alvarez-Puebla R.A. Alves F. Andrews A.M. Ashraf S. Balogh L.P. Ballerini L. Bestetti A. Brendel C. Bosi S. Carril M. Chan W.C.W. Chen C. Chen X. Chen X. Cheng Z. Cui D. Du J. Dullin C. Escudero A. Feliu N. Gao M. George M. Gogotsi Y. Grünweller A. Gu Z. Halas N.J. Hampp N. Hartmann R.K. Hersam M.C. Hunziker P. Jian J. Jiang X. Jungebluth P. Kadhiresan P. Kataoka K. Khademhosseini A. Kopeček J. Kotov N.A. Krug H.F. Lee D.S. Lehr C.M. Leong K.W. Liang X.J. Ling Lim M. Liz-Marzán L.M. Ma X. Macchiarini P. Meng H. Möhwald H. Mulvaney P. Nel A.E. Nie S. Nordlander P. Okano T. Oliveira J. Park T.H. Penner R.M. Prato M. Puntes V. Rotello V.M. Samarakoon A. Schaak R.E. Shen Y. Sjöqvist S. Skirtach A.G. Soliman M.G. Stevens M.M. Sung H.W. Tang B.Z. Tietze R. Udugama B.N. VanEpps J.S. Weil T. Weiss P.S. Willner I. Wu Y. Yang L. Yue Z. Zhang Q. Zhang Q. Zhang X.E. Zhao Y. Zhou X. Parak W.J. Diverse applications of nanomedicine. ACS Nano 2017 11 3 2313 2381 10.1021/acsnano.6b06040 28290206
    [Google Scholar]
  119. Ventola C.L. Progress in nanomedicine: Approved and investigational nanodrugs. P&T 2017 42 12 742 755 29234213
    [Google Scholar]
  120. Shah S. Dhawan V. Holm R. Nagarsenker M.S. Perrie Y. Liposomes: Advancements and innovation in the manufacturing process. Adv. Drug Deliv. Rev. 2020 154-155 102 122 10.1016/j.addr.2020.07.002 32650041
    [Google Scholar]
  121. Lu W. Yao J. Zhu X. Qi Y. Nanomedicines: Redefining traditional medicine. Biomed. Pharmacother. 2021 134 111103 10.1016/j.biopha.2020.111103 33338747
    [Google Scholar]
  122. Allen T.M. Cullis P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013 65 1 36 48 10.1016/j.addr.2012.09.037 23036225
    [Google Scholar]
  123. Jiang Y. Jiang Z. Wang M. Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv. Drug Deliv. Rev. 2022 180 114034 10.1016/j.addr.2021.114034 34736986
    [Google Scholar]
  124. Nel J. Elkhoury K. Velot E. Functionalized liposomes for targeted breast cancer drug delivery. Bioact. Mater. 24 401 437 2023 10.1016/j.bioactmat.2022.12.027 36632508
    [Google Scholar]
  125. Soininen S.K. Repo J.K. Karttunen V. Auriola S. Vähäkangas K.H. Ruponen M. Human placental cell and tissue uptake of doxorubicin and its liposomal formulations. Toxicol. Lett. 2015 239 2 108 114 10.1016/j.toxlet.2015.09.011 26383631
    [Google Scholar]
  126. Harris L. Batist G. Belt R. Rovira D. Navari R. Azarnia N. Welles L. Winer E. Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as first-line therapy of metastatic breast carcinoma. Cancer 2002 94 1 25 36 10.1002/cncr.10201 11815957
    [Google Scholar]
  127. Swenson C.E. Perkins W.R. Roberts P. Janoff A.S. Liposome technology and the development of Myocet™ (liposomal doxorubicin citrate). Breast 2001 10 1 7 10.1016/S0960‑9776(01)80001‑1
    [Google Scholar]
  128. Bozzuto G. Molinari A. Liposomes as nanomedical devices. Int. J. Nanomedicine 2015 10 975 999 10.2147/IJN.S68861 25678787
    [Google Scholar]
  129. Sawant R.R. Torchilin V.P. Challenges in development of targeted liposomal therapeutics. AAPS J. 2012 14 2 303 315 10.1208/s12248‑012‑9330‑0 22415612
    [Google Scholar]
  130. Allen C. Why I’m holding onto hope for nano in oncology. Mol. Pharm. 2016 13 8 2603 2604 10.1021/acs.molpharmaceut.6b00547 27404330
    [Google Scholar]
  131. Norouzi M. Amerian M. Amerian M. Atyabi F. Clinical applications of nanomedicine in cancer therapy. Drug Discov. Today 2020 25 1 107 125 10.1016/j.drudis.2019.09.017 31586642
    [Google Scholar]
  132. Duan Y. Dhar A. Patel C. Khimani M. Neogi S. Sharma P. Siva Kumar N. Vekariya R.L. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Advances 2020 10 45 26777 26791 10.1039/D0RA03491F 35515778
    [Google Scholar]
  133. Yap K.M. Sekar M. Fuloria S. Wu Y.S. Gan S.H. Mat Rani N.N.I. Subramaniyan V. Kokare C. Lum P.T. Begum M.Y. Mani S. Meenakshi D.U. Sathasivam K.V. Fuloria N.K. Drug delivery of natural products through nanocarriers for effective breast cancer therapy: A comprehensive review of literature. Int. J. Nanomedicine 2021 16 7891 7941 10.2147/IJN.S328135 34880614
    [Google Scholar]
  134. Nguyen T-T-L. Maeng H.J. Solid lipid nanoparticles. Pharmaceutics 2022 14 3 952 973 35335948
    [Google Scholar]
  135. Elmowafy M. Al-Sanea M.M. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharm. J. 2021 29 9 999 1012 10.1016/j.jsps.2021.07.015 34588846
    [Google Scholar]
  136. Abdel-Mageed H.M. Abd El Aziz A.E. Mohamed S.A. AbuelEzz N.Z. The tiny big world of solid lipid nanoparticles and nanostructured lipid carriers: An updated review. J. Microencapsul. 2022 39 1 72 94 10.1080/02652048.2021.2021307 34958628
    [Google Scholar]
  137. May J.P. Li S.D. Hyperthermia-induced drug targeting. Expert Opin. Drug Deliv. 2013 10 4 511 527 10.1517/17425247.2013.758631 23289519
    [Google Scholar]
  138. Munster P. Krop i.e. LoRusso P. Ma C. Siegel B.A. Shields A.F. Molnár I. Wickham T.J. Reynolds J. Campbell K. Hendriks B.S. Adiwijaya B.S. Geretti E. Moyo V. Miller K.D. Safety and pharmacokinetics of MM-302, a HER2-targeted antibody–liposomal doxorubicin conjugate, in patients with advanced HER2-positive breast cancer: A phase 1 dose-escalation study. Br. J. Cancer 2018 119 9 1086 1093 10.1038/s41416‑018‑0235‑2 30361524
    [Google Scholar]
  139. Sheikh A. Alhakamy N.A. Md S. Kesharwani P. Recent progress of RGD modified liposomes as multistage rocket against cancer. Front. Pharmacol. 2022 12 803304 10.3389/fphar.2021.803304 35145405
    [Google Scholar]
  140. Tagde P. Najda A. Nagpal K. Kulkarni G.T. Shah M. Ullah O. Balant S. Rahman M.H. Nanomedicine-based delivery strategies for breast cancer treatment and management. Int. J. Mol. Sci. 2022 23 5 2856 10.3390/ijms23052856 35269998
    [Google Scholar]
  141. Yadav A. Singh S. Sohi H. Dang S. Advances in delivery of chemotherapeutic agents for cancer treatment. AAPS PharmSciTech 2021 23 1 25 10.1208/s12249‑021‑02174‑9 34907501
    [Google Scholar]
  142. Mirhadi E. Gheybi F. Mahmoudi N. Hemmati M. Soleymanian F. Ghasemi A. Askarizadeh A. Iranshahi M. Jaafari M.R. Alavizadeh S.H. Amino acid coordination complex mediates cisplatin entrapment within PEGylated liposome: An implication in colorectal cancer therapy. Int. J. Pharm. 2022 623 121946 10.1016/j.ijpharm.2022.121946 35750277
    [Google Scholar]
  143. Sorolla A. Sorolla M.A. Wang E. Ceña V. Peptides, proteins and nanotechnology: A promising synergy for breast cancer targeting and treatment. Expert Opin. Drug Deliv. 2020 17 11 1597 1613 10.1080/17425247.2020.1814733 32835538
    [Google Scholar]
  144. Mirza Z. Karim S. Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. Semin. Cancer Biol. 2021 69 226 237 10.1016/j.semcancer.2019.10.020 31704145
    [Google Scholar]
  145. Avitabile E. Bedognetti D. Ciofani G. Bianco A. Delogu L.G. How can nanotechnology help the fight against breast cancer? Nanoscale 2018 10 25 11719 11731 10.1039/C8NR02796J 29917035
    [Google Scholar]
  146. Aneja P. Rahman M. Beg S. Aneja S. Dhingra V. Chugh R. Cancer targeted magic bullets for effective treatment of cancer. Recent Patents Anti-Infect. Drug Disc. 2015 9 2 121 135 10.2174/1574891X10666150415120506 25876849
    [Google Scholar]
  147. Byrne J.D. Betancourt T. Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 2008 60 15 1615 1626 10.1016/j.addr.2008.08.005 18840489
    [Google Scholar]
  148. Shi J. Kantoff P.W. Wooster R. Farokhzad O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017 17 1 20 37 10.1038/nrc.2016.108 27834398
    [Google Scholar]
  149. Gonzalez-Valdivieso J. Girotti A. Schneider J. Arias F.J. Advanced nanomedicine and cancer: Challenges and opportunities in clinical translation. Int. J. Pharm. 2021 599 120438 10.1016/j.ijpharm.2021.120438 33662472
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873326272241011161315
Loading
/content/journals/cnanom/10.2174/0124681873326272241011161315
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test