Skip to content
2000
Volume 15, Issue 1
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

Background

Poor wound healing poses a significant global health challenge, leading to increased mortality rates and considerable healthcare expenses. Nanotechnology has emerged as a promising approach to address the complexities associated with wound healing, offering potential solutions to enhance the wound microenvironment and promote efficient tissue repair.

Aim

This review aims to comprehensively summarize recent advancements in the application of nanomaterials for wound healing, with a focus on their mechanisms of action. The review also explores the prospects and challenges of using nanomaterials in wound dressings, specifically in the context of antimicrobial, anti-inflammatory, and angiogenic effects.

Results

The integration of nanomaterials in wound healing has demonstrated significant progress in addressing key challenges, such as providing a suitable environment for cell migration, controlling microbial infections, and managing inflammation. Nanomaterials have been found to stimulate cellular and molecular processes, promoting hemostasis, immune regulation, and tissue proliferation, thereby accelerating wound closure and tissue regeneration.

Conclusion

Nanotechnology-based wound healing has shown great promise in revolutionizing wound care. Nanomaterials offer unique physicochemical and biological properties that can be harnessed to develop advanced wound dressings capable of sustained therapeutic agent delivery and targeted bacterial detection and treatment. Despite these promising advancements, challenges such as reproducibility, stability, toxicity, and histocompatibility must be addressed to ensure successful translation from laboratory research to clinical applications. Further research is required to better understand the behaviour of nanomaterial-based wound dressings and to explore innovative approaches, such as intelligent wound dressings that detect and treat infections synergistically, to enhance wound healing outcomes. Overall, nanomaterials hold tremendous potential for future wound healing strategies, paving the way for improved patient outcomes and reduced healthcare burdens.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873294822240517073406
2024-05-28
2024-12-24
Loading full text...

Full text loading...

References

  1. GonzalezA.C.O. CostaT.F. AndradeZ.A. MedradoA.R.A.P. Wound healing - A literature review.An. Bras. Dermatol.201691561462010.1590/abd1806‑4841.2016474127828635
    [Google Scholar]
  2. SchultzG.S. SibbaldR.G. FalangaV. AyelloE.A. DowsettC. HardingK. RomanelliM. StaceyM.C. TeotL. VanscheidtW. Wound bed preparation: A systematic approach to wound management.Wound Repair Regen.200311S1S1S2810.1046/j.1524‑475X.11.s2.1.x12654015
    [Google Scholar]
  3. SornbergerM.J. HeathN.L. TosteJ.R. McLouthR. Nonsuicidal self-injury and gender: Patterns of prevalence, methods, and locations among adolescents.Suicide Life Threat. Behav.201242326627810.1111/j.1943‑278X.2012.0088.x22435988
    [Google Scholar]
  4. StevensD.L. BisnoA.L. ChambersH.F. DellingerE.P. GoldsteinE.J.C. GorbachS.L. HirschmannJ.V. KaplanS.L. MontoyaJ.G. WadeJ.C. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the infectious diseases society of America.Clin. Infect. Dis.2014592e10e5210.1093/cid/ciu29624973422
    [Google Scholar]
  5. De LucaI. PedramP. MoeiniA. CerrutiP. PelusoG. Di SalleA. GermannN. Nanotechnology development for formulating essential oils in wound dressing materials to promote the wound-healing process: A review.Appl. Sci.2021114171310.3390/app11041713
    [Google Scholar]
  6. MakrantonakiE. MeinhardW. KarinS.K. Pathogenesis of wound healing disorders in the elderly.J. Dtsch. Dermatol. Ges.2017153255275
    [Google Scholar]
  7. WickeC. BachingerA. CoerperS. BeckertS. WitteM.B. KönigsrainerA. Aging influences wound healing in patients with chronic lower extremity wounds treated in a specialized wound care center.Wound Repair Regen.2009171253310.1111/j.1524‑475X.2008.00438.x19152648
    [Google Scholar]
  8. FerreiraM.C. TumaP.Jr CarvalhoV.F. KamamotoF. Complex wounds.Clinics200661657157810.1590/S1807‑5932200600060001417187095
    [Google Scholar]
  9. HardingK. QueenD. Chronic wounds and their management and prevention is a significiant public health issue.Int. Wound J.20107312512610.1111/j.1742‑481X.2010.00693.x20602642
    [Google Scholar]
  10. SenC.K. Human wound and its burden: Updated 2020 compendium of estimates.Adv. Wound Care202110528129210.1089/wound.2021.002633733885
    [Google Scholar]
  11. TelichowskaS.K. CzemplikM. KulmaA. SzopaJ. The local treatment and available dressings designed for chronic wounds.J. Am. Acad. Dermatol.2013684e117e12610.1016/j.jaad.2011.06.02821982060
    [Google Scholar]
  12. KolimiP. NaralaS. NyavanandiD. YoussefA.A.A. DudhipalaN. Innovative treatment strategies to accelerate wound healing: Trajectory and recent advancements.Cells20221115243910.3390/cells1115243935954282
    [Google Scholar]
  13. KortingH.C. SchöllmannC. WhiteR.J. Management of minor acute cutaneous wounds: Importance of wound healing in a moist environment.J. Eur. Acad. Dermatol. Venereol.201125213013710.1111/j.1468‑3083.2010.03775.x20626534
    [Google Scholar]
  14. ObagiZ. DamianiG. GradaA. FalangaV. Principles of wound dressings: A review.Surg. Technol. Int.201935505731480092
    [Google Scholar]
  15. WolcottR. CuttingK. DowdS.E. PercivalS.L. Types of wounds and infections.Microbiology of Wounds PercivalS. CuttingK. CRC Press201021923210.1201/9781420079944‑c7
    [Google Scholar]
  16. ShiC. WangC. LiuH. LiQ. LiR. ZhangY. LiuY. ShaoY. WangJ. Selection of appropriate wound dressing for various wounds.Front. Bioeng. Biotechnol.2020818210.3389/fbioe.2020.0018232266224
    [Google Scholar]
  17. RahimK. SalehaS. ZhuX. HuoL. BasitA. FrancoO.L. Bacterial contribution in chronicity of wounds.Microb. Ecol.201773371072110.1007/s00248‑016‑0867‑927742997
    [Google Scholar]
  18. FalangaV. IsseroffR.R. SoulikaA.M. RomanelliM. MargolisD. KappS. GranickM. HardingK. Chronic wounds.Nat. Rev. Dis. Primers2022815010.1038/s41572‑022‑00377‑335864184
    [Google Scholar]
  19. WattS.M. PleatJ.M. Stem cells, niches and scaffolds: Applications to burns and wound care.Adv. Drug Deliv. Rev.20181238210610.1016/j.addr.2017.10.01229106911
    [Google Scholar]
  20. MenkeN.B. WardK.R. WittenT.M. BonchevD.G. DiegelmannR.F. Impaired wound healing.Clin. Dermatol.2007251192510.1016/j.clindermatol.2006.12.00517276197
    [Google Scholar]
  21. SorgH. TilkornD.J. HagerS. HauserJ. MirastschijskiU. Skin wound healing: An update on the current knowledge and concepts.Eur. Surg. Res.2017581-2819410.1159/00045491927974711
    [Google Scholar]
  22. FlanaganM. The physiology of wound healing.J. Wound Care20009629930010.12968/jowc.2000.9.6.2599411933346
    [Google Scholar]
  23. HansenB.H. Role of cytokines and inflammatory mediators in tissue destruction.J. Periodontal Res.199328750051010.1111/j.1600‑0765.1993.tb02113.x8263720
    [Google Scholar]
  24. RozmanP. BoltaZ. Use of platelet growth factors in treating wounds and soft-tissue injuries.Acta Dermatovenerol. Alp. Panonica Adriat.200716415616518204746
    [Google Scholar]
  25. RudijantoA. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis.Acta Med. Indones.2007392869317933075
    [Google Scholar]
  26. FrykbergR.G. BanksJ. Challenges in the treatment of chronic wounds.Adv. Wound Care20154956058210.1089/wound.2015.063526339534
    [Google Scholar]
  27. MoghaddamS.A. MohammadianS. VaziniH. TaghadosiM. EsmaeiliS.A. MardaniF. SeifiB. MohammadiA. AfshariJ.T. SahebkarA. Macrophage plasticity, polarization, and function in health and disease.J. Cell. Physiol.201823396425644010.1002/jcp.2642929319160
    [Google Scholar]
  28. CastellheimA. BrekkeO.L. EspevikT. HarboeM. MollnesT.E. Innate immune responses to danger signals in systemic inflammatory response syndrome and sepsis.Scand. J. Immunol.200969647949110.1111/j.1365‑3083.2009.02255.x19439008
    [Google Scholar]
  29. ChildressB.B. StechmillerJ.K. Role of nitric oxide in wound healing.Biol. Res. Nurs.20024151510.1177/109980040200400100212363282
    [Google Scholar]
  30. de BrásC.L.E. FrangogiannisN.G. Extracellular matrix-derived peptides in tissue remodeling and fibrosis.Matrix Biol.202091-9217618710.1016/j.matbio.2020.04.00632438055
    [Google Scholar]
  31. OrgillD. DemlingR.H. Current concepts and approaches to wound healing.Crit. Care Med.198816989990810.1097/00003246‑198809000‑000162456894
    [Google Scholar]
  32. AkhmanovaM. OsidakE. DomogatskyS. RodinS. DomogatskayaA. Physical, spatial, and molecular aspects of extracellular matrix of in vivo niches and artificial scaffolds relevant to stem cells research.Stem Cells Int.2015201513510.1155/2015/16702526351461
    [Google Scholar]
  33. TavelliL. BarootchiS. StefaniniM. ZucchelliG. GiannobileW.V. WangH.L. Wound healing dynamics, morbidity, and complications of palatal soft-tissue harvesting.Periodontol. 200020239219011910.1111/prd.1246636583690
    [Google Scholar]
  34. AkershoekJ.J. VligM. TalhoutW. BoekemaB.K.H.L. RichtersC.D. BeelenR.H.J. BrouwerK.M. MiddelkoopE. UlrichM.M.W. Cell therapy for full-thickness wounds: are fetal dermal cells a potential source?Cell Tissue Res.20163641839410.1007/s00441‑015‑2293‑626453400
    [Google Scholar]
  35. MartindaleJ.L. HolbrookN.J. Cellular response to oxidative stress: Signaling for suicide and survival.J. Cell. Physiol.2002192111510.1002/jcp.1011912115731
    [Google Scholar]
  36. BennettS.P. GriffithsG.D. SchorA.M. LeeseG.P. SchorS.L. Growth factors in the treatment of diabetic foot ulcers.Br. J. Surg.200390213314610.1002/bjs.401912555288
    [Google Scholar]
  37. PowersC.J. McLeskeyS.W. WellsteinA. Fibroblast growth factors, their receptors and signaling.Endocr. Relat. Cancer20007316519710.1677/erc.0.007016511021964
    [Google Scholar]
  38. SingerA.J. ClarkR.A.F. Cutaneous wound healing.N. Engl. J. Med.19993411073874610.1056/NEJM19990902341100610471461
    [Google Scholar]
  39. LederleW. StarkH.J. SkobeM. FusenigN.E. MuellerM.M. Platelet-derived growth factor-BB controls epithelial tumor phenotype by differential growth factor regulation in stromal cells.Am. J. Pathol.200616951767178310.2353/ajpath.2006.06012017071599
    [Google Scholar]
  40. RobsonM.C. The role of growth factors in the healing of chronic wounds.Wound Repair Regen.199751121710.1046/j.1524‑475X.1997.50106.x16984452
    [Google Scholar]
  41. TrengoveN.J. OhmannB.H. StaceyM.C. Mitogenic activity and cytokine levels in non-healing and healing chronic leg ulcers.Wound Repair Regen.200081132510.1046/j.1524‑475x.2000.00013.x10760211
    [Google Scholar]
  42. UutelaM. WirzeniusM. PaavonenK. RajantieI. HeY. KarpanenT. LohelaM. WiigH. SalvenP. PajusolaK. ErikssonU. AlitaloK. PDGF-D induces macrophage recruitment, increased interstitial pressure, and blood vessel maturation during angiogenesis.Blood2004104103198320410.1182/blood‑2004‑04‑148515271796
    [Google Scholar]
  43. HeldinC.H. WestermarkB. Mechanism of action and in vivo role of platelet-derived growth factor.Physiol. Rev.19997941283131610.1152/physrev.1999.79.4.128310508235
    [Google Scholar]
  44. ShirahaH. GladingA. GuptaK. WellsA. IP-10 inhibits epidermal growth factor-induced motility by decreasing epidermal growth factor receptor-mediated calpain activity.J. Cell Biol.1999146124325410.1083/jcb.146.1.24310402474
    [Google Scholar]
  45. SchultzG. ClarkW. RotatoriD.S. EGF and TGF-α in wound healing and repair.J. Cell. Biochem.199145434635210.1002/jcb.2404504072045428
    [Google Scholar]
  46. BrownG.L. CurtsingerL.III BrightwellJ.R. AckermanD.M. TobinG.R. PolkH.C.Jr NascimentoG.C. ValenzuelaP. SchultzG.S. Enhancement of epidermal regeneration by biosynthetic epidermal growth factor.J. Exp. Med.198616351319132410.1084/jem.163.5.13193486247
    [Google Scholar]
  47. BrownG.L. CurtsingerL.J. WhiteM. MitchellR.O. PietschJ. NordquistR. FraunhoferA.V. SchultzG.S. Acceleration of tensile strength of incisions treated with EGF and TGF-beta.Ann. Surg.1988208678879410.1097/00000658‑198812000‑000193264140
    [Google Scholar]
  48. JiangC.K. MagnaldoT. OhtsukiM. FreedbergI.M. BernerdF. BlumenbergM. Epidermal growth factor and transforming growth factor alpha specifically induce the activation- and hyperproliferation-associated keratins 6 and 16.Proc. Natl. Acad. Sci.199390146786679010.1073/pnas.90.14.67867688128
    [Google Scholar]
  49. MastB.A. SchultzG.S. Interactions of cytokines, growth factors, and proteases in acute and chronic wounds.Wound Repair Regen.19964441142010.1046/j.1524‑475X.1996.40404.x17309691
    [Google Scholar]
  50. LeeH.S.T. KoosheshF. SaunderD.N. KondoS. Modulation of TGF-β1 production from human keratinocytes by UVB.Exp. Dermatol.19976210511010.1111/j.1600‑0625.1997.tb00155.x9209893
    [Google Scholar]
  51. EppleyB.L. WoodellJ.E. HigginsJ. Platelet quantification and growth factor analysis from platelet-rich plasma: Implications for wound healing.Plast. Reconstr. Surg.200411461502150810.1097/01.PRS.0000138251.07040.5115509939
    [Google Scholar]
  52. KopeckiZ. LuchettiM.M. AdamsD.H. StrudwickX. MantamadiotisT. StoppacciaroA. GabrielliA. RamsayR.G. CowinA.J. Collagen loss and impaired wound healing is associated with c-Myb deficiency.J. Pathol.2007211335136110.1002/path.211317152050
    [Google Scholar]
  53. FrankS. HübnerG. BreierG. LongakerM.T. GreenhalghD.G. WernerS. Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing.J. Biol. Chem.199527021126071261310.1074/jbc.270.21.126077759509
    [Google Scholar]
  54. YebraM. ParryG.C.N. StrömbladS. MackmanN. RosenbergS. MuellerB.M. ChereshD.A. Requirement of receptor-bound urokinase-type plasminogen activator for integrin alphavbeta5-directed cell migration.J. Biol. Chem.199627146293932939910.1074/jbc.271.46.293938910604
    [Google Scholar]
  55. MorbidelliL. ChangC.H. DouglasJ.G. GrangerH.J. LeddaF. ZicheM. Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium.Am. J. Physiol.19962701 Pt 2H411H4158769777
    [Google Scholar]
  56. FinnertyC.C. HerndonD.N. PrzkoraR. PereiraC.T. OliveiraH.M. QueirozD.M.M. RochaA.M.C. JeschkeM.G. Cytokine expression profile over time in severely burned pediatric patients.Shock2006261131910.1097/01.shk.0000223120.26394.7d16783192
    [Google Scholar]
  57. GallucciR.M. SloanD.K. HeckJ.M. MurrayA.R. O’DellS.J. Interleukin 6 indirectly induces keratinocyte migration.J. Invest. Dermatol.2004122376477210.1111/j.0022‑202X.2004.22323.x15086564
    [Google Scholar]
  58. SatoM. SawamuraD. InaS. YaguchiT. HanadaK. HashimotoI. in vivo introduction of the interleukin 6 gene into human keratinocytes: Induction of epidermal proliferation by the fully spliced form of interleukin 6, but not by the alternatively spliced form.Arch. Dermatol. Res.19992917-840040410.1007/s00403005042910482009
    [Google Scholar]
  59. RappoleeD.A. MarkD. BandaM.J. WerbZ. Wound macrophages express TGF-alpha and other growth factors in vivo: Analysis by mRNA phenotyping.Science1988241486670871210.1126/science.30415943041594
    [Google Scholar]
  60. RajaR. SivamaniK. GarciaM.S. IsseroffR.R. Wound re-epithelialization: Modulating kerationcyte migration in wound healing.Front. Biosci.2007128-122849286810.2741/227717485264
    [Google Scholar]
  61. TangA. GilchrestB.A. Regulation of keratinocyte growth factor gene expression in human skin fibroblasts.J. Dermatol. Sci.1996111415010.1016/0923‑1811(95)00418‑18867766
    [Google Scholar]
  62. MacedoL. EnfieldP.G. AlshitsV. ElsonG. CronsteinB.N. LeibovichS.J. Wound healing is impaired in MyD88-deficient mice: A role for MyD88 in the regulation of wound healing by adenosine A2A receptors.Am. J. Pathol.200717161774178810.2353/ajpath.2007.06104817974599
    [Google Scholar]
  63. WalshM.C. LeeJ. ChoiY. Tumor necrosis factor receptor- associated factor 6 ( TRAF 6) regulation of development, function, and homeostasis of the immune system.Immunol. Rev.20152661729210.1111/imr.1230226085208
    [Google Scholar]
  64. ChenL. DengH. CuiH. FangJ. ZuoZ. DengJ. LiY. WangX. ZhaoL. Inflammatory responses and inflammation-associated diseases in organs.Oncotarget2018967204721810.18632/oncotarget.2320829467962
    [Google Scholar]
  65. PiipponenM. LiD. LandénN.X. The immune functions of keratinocytes in skin wound healing.Int. J. Mol. Sci.20202122879010.3390/ijms2122879033233704
    [Google Scholar]
  66. HildebrandJ.M. YiZ. BuchtaC.M. PoovasseryJ. StunzL.L. BishopG.A. Roles of tumor necrosis factor receptor associated factor 3 (TRAF3) and TRAF5 in immune cell functions.Immunol. Rev.20112441557410.1111/j.1600‑065X.2011.01055.x22017431
    [Google Scholar]
  67. Pilehvar-SoltanahmadiY. DadashpourM. MohajeriA. FattahiA. SheervalilouR. ZarghamiN. An overview on application of natural substances incorporated with electrospun nanofibrous scaffolds to development of innovative wound dressings.Mini Rev. Med. Chem.201818541442710.2174/138955751766617030811214728271816
    [Google Scholar]
  68. FarahaniM. ShafieeA. Wound healing: From passive to smart dressings.Adv. Healthc. Mater.20211016210047710.1002/adhm.20210047734174163
    [Google Scholar]
  69. BoatengJ. CatanzanoO. Advanced therapeutic dressings for effective wound healing—A review.J. Pharm. Sci.2015104113653368010.1002/jps.2461026308473
    [Google Scholar]
  70. FelgueirasH.P. AmorimM.T.P. Functionalization of electrospun polymeric wound dressings with antimicrobial peptides.Colloids Surf. B Biointerfaces201715613314810.1016/j.colsurfb.2017.05.00128527357
    [Google Scholar]
  71. MouraL.I.F. DiasA.M.A. CarvalhoE. de SousaH.C. Recent advances on the development of wound dressings for diabetic foot ulcer treatment—A review.Acta Biomater.2013977093711410.1016/j.actbio.2013.03.03323542233
    [Google Scholar]
  72. Rezvani GhomiE. NiaziM. RamakrishnaS. The evolution of wound dressings: From traditional to smart dressings.Polym. Adv. Technol.202334252053010.1002/pat.5929
    [Google Scholar]
  73. SinghP. GargA. PanditS. MokkapatiV. MijakovicI. Antimicrobial effects of biogenic nanoparticles.Nanomaterials2018812100910.3390/nano812100930563095
    [Google Scholar]
  74. SimõesD. MiguelS.P. RibeiroM.P. CoutinhoP. MendonçaA.G. CorreiaI.J. Recent advances on antimicrobial wound dressing: A review.Eur. J. Pharm. Biopharm.201812713014110.1016/j.ejpb.2018.02.02229462687
    [Google Scholar]
  75. AlvesP.J. BarretoR.T. BarroisB.M. GrysonL.G. MeaumeS. MonstreyS.J. Update on the role of antiseptics in the management of chronic wounds with critical colonisation and/or biofilm.Int. Wound J.202118334235810.1111/iwj.1353733314723
    [Google Scholar]
  76. Howell-JonesR.S. WilsonM.J. HillK.E. HowardA.J. PriceP.E. ThomasD.W. A review of the microbiology, antibiotic usage and resistance in chronic skin wounds.J. Antimicrob. Chemother.200555214314910.1093/jac/dkh51315649989
    [Google Scholar]
  77. MihaiM.M. DimaM.B. DimaB. HolbanA.M. Nanomaterials for wound healing and infection control.Materials20191213217610.3390/ma1213217631284587
    [Google Scholar]
  78. NegutI. GrumezescuV. GrumezescuA. Treatment strategies for infected wounds.Molecules2018239239210.3390/molecules2309239230231567
    [Google Scholar]
  79. AljaafariM.N. AlAliA.O. BaqaisL. AlqubaisyM. AlAliM. MoloukiA. Ong-AbdullahJ. AbushelaibiA. LaiK.S. LimS.H.E. An overview of the potential therapeutic applications of essential oils.Molecules202126362810.3390/molecules2603062833530290
    [Google Scholar]
  80. ChouhanS. SharmaK. GuleriaS. Antimicrobial activity of some essential oils—present status and future perspectives.Medicines2017435810.3390/medicines403005828930272
    [Google Scholar]
  81. ScepankovaH. Combarros-FuertesP. FresnoJ.M. TornadijoM.E. DiasM.S. PintoC.A. SaraivaJ.A. EstevinhoL.M. Role of honey in advanced wound care.Molecules20212616478410.3390/molecules2616478434443372
    [Google Scholar]
  82. MostafaviE. SoltantabarP. WebsterT.J. Nanotechnology and picotechnology: A new arena for translational medicine.Biomaterials in Translational MedicineAcademic Press201919121210.1016/B978‑0‑12‑813477‑1.00009‑8
    [Google Scholar]
  83. MadkourL.H. Introduction to nanotechnology (NT) and nanomaterials (NMs).Nanoelectronic MaterialsSpringer2019147
    [Google Scholar]
  84. OwenA. DufèsC. MoscatelliD. MayesE. LovellJ.F. KattiK.V. SokolovK. MazzaM. FontaineO. RannardS. StoneV. The application of nanotechnology in medicine: treatment and diagnostics.Nanomedicine2014991291129410.2217/nnm.14.9325204820
    [Google Scholar]
  85. BuzeaC. PachecoI.I. RobbieK. Nanomaterials and nanoparticles: Sources and toxicity.Biointerphases200724MR17MR7110.1116/1.281569020419892
    [Google Scholar]
  86. NiemeyerC.M. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science.Angew. Chem. Int. Ed.200140224128415810.1002/1521‑3773(20011119)40:22<4128::AID‑ANIE4128>3.0.CO;2‑S29712109
    [Google Scholar]
  87. VijayakumarG. KimH.J. RangarajuluS.K. in vitro antibacterial and wound healing activities evoked by silver nanoparticles synthesized through probiotic bacteria.Antibiotics202312114110.3390/antibiotics1201014136671342
    [Google Scholar]
  88. AbdelhakiemM.A.H. HusseinA. SeleimS.M. AbdelbasetA.E. ElkareemA.M. Silver nanoparticles and platelet-rich fibrin accelerate tendon healing in donkey.Sci. Rep.2023131342110.1038/s41598‑023‑30543‑w36854886
    [Google Scholar]
  89. DuttY. PandeyR.P. DuttM. GuptaA. VibhutiA. RajV.S. ChangC.M. PriyadarshiniA. Silver nanoparticles phytofabricated through Azadirachta indica: Anticancer, apoptotic, and wound-healing properties.Antibiotics202312112110.3390/antibiotics1201012136671322
    [Google Scholar]
  90. ManikandanR. AnjaliR. BeulajaM. PrabhuN.M. KoodalingamA. SaiprasadG. ChitraP. ArumugamM. Synthesis, characterization, anti-proliferative and wound healing activities of silver nanoparticles synthesized from Caulerpa scalpelliformis.Process Biochem.20197913514110.1016/j.procbio.2019.01.013
    [Google Scholar]
  91. SajjadA. ZiaM. XiaoX. OlssonR.T. CapezzaA.J. RasheedF. Wheat gluten hydrolysates with embedded Ag-nanoparticles; a structure-function assessment for potential applications as wound sorbents with antimicrobial properties.Polym. Test.202311810789610.1016/j.polymertesting.2022.107896
    [Google Scholar]
  92. FranciscoP. Neves AmaralM. NevesA. GonçalvesF.T. VianaA.S. CatarinoJ. FaíscaP. SimõesS. PerdigãoJ. CharmierA.J. GasparM.M. ReisC.P. Pluronic® F127 hydrogel containing silver nanoparticles in skin burn regeneration: An experimental approach from fundamental to translational research.Gels20239320010.3390/gels903020036975649
    [Google Scholar]
  93. CapekI. Polymer decorated gold nanoparticles in nanomedicine conjugates.Adv. Colloid Interface Sci.201724938639910.1016/j.cis.2017.01.00728259207
    [Google Scholar]
  94. OdongoS.A. FredrickO.O. LugasiS.O. Onani Mo, Agong SG. Biogenic Synthesis of Gold Nanoparticles from Physalis peruviana and Application in Wound Healing.J. Chem.202220229034840
    [Google Scholar]
  95. BatoolZ. MuhammadG. IqbalM.M. AslamM.S. RazaM.A. SajjadN. AbdullahM. AkhtarN. SyedA. ElgorbanA.M. Al-RejaieS.S. ShafiqZ. Hydrogel assisted synthesis of gold nanoparticles with enhanced microbicidal and in vivo wound healing potential.Sci. Rep.2022121657510.1038/s41598‑022‑10495‑335449438
    [Google Scholar]
  96. SchwartzV.B. ThétiotF. RitzS. PützS. ChoritzL. LappasA. FörchR. LandfesterK. JonasU. Antibacterial surface coatings from zinc oxide nanoparticles embedded in poly (n-isopropylacrylamide) hydrogel surface layers.Adv. Funct. Mater.201222112376238610.1002/adfm.201102980
    [Google Scholar]
  97. LiangY. LiangY. ZhangH. GuoB. Antibacterial biomaterials for skin wound dressing.Asian J. Pharmaceut. Sci.202217335338410.1016/j.ajps.2022.01.00135782328
    [Google Scholar]
  98. BapatR.A. ChaubalT.V. JoshiC.P. BapatP.R. ChoudhuryH. PandeyM. GorainB. KesharwaniP. An overview of application of silver nanoparticles for biomaterials in dentistry.Mater. Sci. Eng. C20189188189810.1016/j.msec.2018.05.06930033323
    [Google Scholar]
  99. SinghM. ThakurV. KumarV. RajM. GuptaS. DeviN. UpadhyayS.K. MachoM. BanerjeeA. EweD. SauravK. Silver nanoparticles and its mechanistic insight for chronic wound healing: Review on recent progress.Molecules20222717558710.3390/molecules2717558736080353
    [Google Scholar]
  100. SalatinS. LotfipourF. JelvehgariM. A brief overview on nano- sized materials used in the topical treatment of skin and soft tissue bacterial infections.Expert Opin. Drug Deliv.201916121313133110.1080/17425247.2020.169399831738622
    [Google Scholar]
  101. IvaskA. VoelckerN.H. SeabrookS.A. HorM. KirbyJ.K. FenechM. DavisT.P. KeP.C. DNA melting and genotoxicity induced by silver nanoparticles and graphene.Chem. Res. Toxicol.20152851023103510.1021/acs.chemrestox.5b0005225781053
    [Google Scholar]
  102. PaladiniF. PolliniM. Antimicrobial silver nanoparticles for wound healing application: Progress and future trends.Materials20191216254010.3390/ma1216254031404974
    [Google Scholar]
  103. KhundkarR. MalicC. BurgeT. Use of acticoat™ dressings in burns: What is the evidence?Burns201036675175810.1016/j.burns.2009.04.00820346592
    [Google Scholar]
  104. KurupM. KumarM. ChandraM. VenkateswarluB. RamanathanS. in-vitro and in-vivo wound healing activity of biogenically synthesised S. Alternata methanolic extract silver nanoparticle transdermal patches.Pak. Heart J.20235613946
    [Google Scholar]
  105. SpirescuV.A. ChircovC. GrumezescuA.M. VasileB.Ș. AndronescuE. Inorganic nanoparticles and composite films for antimicrobial therapies.Int. J. Mol. Sci.2021229459510.3390/ijms2209459533925617
    [Google Scholar]
  106. KumariA. RainaN. WahiA. GohK.W. SharmaP. NagpalR. JainA. MingL.C. GuptaM. Wound-healing effects of curcumin and its nanoformulations: A comprehensive review.Pharmaceutics20221411228810.3390/pharmaceutics1411228836365107
    [Google Scholar]
  107. BlinovA.V. KachanovM.D. GvozdenkoA.A. NagdalianA.A. BlinovaA.A. RekhmanZ.A. GolikA.B. VakalovD.S. MaglakelidzeD.G. NagapetovaA.G. PokhilkoA.D. BurkinaI.V. Synthesis and characterization of zinc oxide nanoparticles stabilized with biopolymers for application in wound-healing mixed gels.Gels2023915710.3390/gels901005736661823
    [Google Scholar]
  108. SaddikM.S. ElsayedM.M.A. El-MokhtarM.A. SedkyH. Abdel-AleemJ.A. Abu-DiefA.M. Al-HakkaniM.F. HusseinH.L. Al-ShelkamyS.A. MeligyF.Y. KhamesA. TalebA.H.A. Tailoring of novel azithromycin-loaded zinc oxide nanoparticles for wound healing.Pharmaceutics202214111110.3390/pharmaceutics1401011135057019
    [Google Scholar]
  109. NandhiniS.N. SisubalanN. VijayanA. KarthikeyanC. GnanarajM. GideonD.A.M. JebastinT. VaraprasadK. SadikuR. Recent advances in green synthesized nanoparticles for bactericidal and wound healing applications.Heliyon202392e1312810.1016/j.heliyon.2023.e1312836747553
    [Google Scholar]
  110. ZangenehM.M. GhaneialvarH. AkbaribazmM. GhanimatdanM. AbbasiN. GooraniS. PirabbasiE. ZangenehA. Novel synthesis of Falcaria vulgaris leaf extract conjugated copper nanoparticles with potent cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing activities under in vitro and in vivo condition.J. Photochem. Photobiol. B201919711155610.1016/j.jphotobiol.2019.11155631326842
    [Google Scholar]
  111. TaheriM. ArabestaniM.Z. AslS.S. KalhoriF. AsgariM. HosseiniS.M. Co-delivery of vancomycin, ampicillin nano-antibiotics by solid lipid nanoparticles on wound infection caused by Staphylococcus aureus: in vitro and in vivo study.Res Square202310.21203/rs.3.rs‑2530181/v1
    [Google Scholar]
  112. FatimaF. AleemuddinM. AhmedM.M. AnwerM.K. AldawsariM.F. SolimanG.A. MahdiW.A. JafarM. HamadA.M. AlshehriS. Design and evaluation of solid lipid nanoparticles loaded topical gels: Repurpose of fluoxetine in diabetic wound healing.Gels2022912110.3390/gels901002136661789
    [Google Scholar]
  113. ZhouY. CaiC.Y. WangC. HuG.M. LiY.T. HanM.J. HuS. ChengP. Ferric-loaded lipid nanoparticles inducing ferroptosis-like cell death for antibacterial wound healing.Drug Deliv.20233011810.1080/10717544.2022.215213436453025
    [Google Scholar]
  114. AwadM. BarnesT.J. JoyceP. ThomasN. PrestidgeC.A. Liquid crystalline lipid nanoparticle promotes the photodynamic activity of gallium protoporphyrin against S. aureus biofilms.J. Photochem. Photobiol. B202223211247410.1016/j.jphotobiol.2022.11247435644068
    [Google Scholar]
  115. GawandeM.B. MongaY. ZborilR. SharmaR.K. Silica-decorated magnetic nanocomposites for catalytic applications.Coord. Chem. Rev.201528811814310.1016/j.ccr.2015.01.001
    [Google Scholar]
  116. GaoG. JiangY.W. JiaH.R. WuF.G. Near-infrared light-controllable on-demand antibiotics release using thermo-sensitive hydrogel-based drug reservoir for combating bacterial infection.Biomaterials2019188839510.1016/j.biomaterials.2018.09.04530339942
    [Google Scholar]
  117. MartínezH.S.P. GonzálezR.T.I. MolinaF.M.A. y GoytiaB.J.J. SanmiguelM.J.J. TriviñoZ.D.G. PadillaR.C. A novel gold calreticulin nanocomposite based on chitosan for wound healing in a diabetic mice model.Nanomaterials2019917510.3390/nano901007530625974
    [Google Scholar]
  118. ZouP. LeeW.H. GaoZ. QinD. WangY. LiuJ. SunT. GaoY. Wound dressing from polyvinyl alcohol/chitosan electrospun fiber membrane loaded with OH- CATH30 nanoparticles.Carbohydr. Polym.202023211578610.1016/j.carbpol.2019.11578631952594
    [Google Scholar]
  119. BarnesC.P. SellS.A. BolandE.D. SimpsonD.G. BowlinG.L. Nanofiber technology: Designing the next generation of tissue engineering scaffolds.Adv. Drug Deliv. Rev.200759141413143310.1016/j.addr.2007.04.02217916396
    [Google Scholar]
  120. LiuD. ZhaoS. JiangY. GaoC. WuY. LiuY. Biocompatible dual network bovine serum albumin-loaded hydrogel-accelerates wound healing.Eur. Polym. J.202318511182010.1016/j.eurpolymj.2023.111820
    [Google Scholar]
  121. CaoH. XiangD. ZhouX. YueP. ZouY. ZhongZ. MaY. WangL. WuS. YeQ. High-strength, antibacterial, antioxidant, hemostatic, and biocompatible chitin/PEGDE-tannic acid hydrogels for wound healing.Carbohydr. Polym.202330712060910.1016/j.carbpol.2023.12060936781272
    [Google Scholar]
  122. WangX. WuJ. WangM. LuC. LiW. LuQ. LiY. LianB. ZhangB. Substance P&dimethyloxallyl glycine-loaded carboxymethyl chitosan/gelatin hydrogel for wound healing.J. Biomed. Mater. Res. A2023111340441410.1002/jbm.a.3747536479810
    [Google Scholar]
  123. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. TorresR.M.P. TorresA.L.S. TorresD.L.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  124. AktasB. DasR. AcikgozA. DemircanG. YalcinS. AktasH.G. BalakM.V. DLP 3D printing of TiO2- doped Al2O3 bioceramics: Manufacturing, mechanical properties, and biological evaluation.Mater. Today Commun.20243810787210.1016/j.mtcomm.2023.107872
    [Google Scholar]
  125. YangY. WangF. YinD. FangZ. HuangL. Astragulus polysaccharide-loaded fibrous mats promote the restoration of microcirculation in/around skin wounds to accelerate wound healing in a diabetic rat model.Colloids Surf. B Biointerfaces201513611111810.1016/j.colsurfb.2015.09.00626370325
    [Google Scholar]
  126. Ranjbar-MohammadiM. RabbaniS. BahramiS.H. JoghataeiM.T. MoayerF. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers.Mater. Sci. Eng. C2016691183119110.1016/j.msec.2016.08.03227612816
    [Google Scholar]
  127. VargasE.A.T. do BarachoV.N.C. de BritoJ. de QueirozA.A.A. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications.Acta Biomater.2010631069107810.1016/j.actbio.2009.09.01819788943
    [Google Scholar]
  128. YousefiI. PakravanM. RahimiH. BahadorA. FarshadzadehZ. HaririanI. An investigation of electrospun Henna leaves extract-loaded chitosan based nanofibrous mats for skin tissue engineering.Mater. Sci. Eng. C20177543344410.1016/j.msec.2017.02.07628415483
    [Google Scholar]
  129. SelvarajS. FathimaN.N. Fenugreek incorporated silk fibroin nanofibers—A potential antioxidant scaffold for enhanced wound healing.ACS Appl. Mater. Interfaces2017975916592610.1021/acsami.6b1630628125204
    [Google Scholar]
  130. LinL. PeretsA. Har-elY. VarmaD. LiM. LazaroviciP. WoerdemanD.L. LelkesP.I. Alimentary ‘green’ proteins as electrospun scaffolds for skin regenerative engineering.J. Tissue Eng. Regen. Med.2013712994100810.1002/term.149322499248
    [Google Scholar]
  131. CerchiaraT. AbruzzoA. PalominoN.R.A. VitaliB. De RoseR. ChidichimoG. CeseracciuL. AthanassiouA. SaladiniB. DalenaF. BigucciF. LuppiB. Spanish broom (Spartium junceum L.) fibers impregnated with vancomycin-loaded chitosan nanoparticles as new antibacterial wound dressing: Preparation, characterization and antibacterial activity.Eur. J. Pharm. Sci.20179910511210.1016/j.ejps.2016.11.02827931851
    [Google Scholar]
  132. SuganyaS. RamS.T. LakshmiB.S. GiridevV.R. Herbal drug incorporated antibacterial nanofibrous mat fabricated by electrospinning: An excellent matrix for wound dressings.J. Appl. Polym. Sci.201112152893289910.1002/app.33915
    [Google Scholar]
  133. SuwantongO. OpanasopitP. RuktanonchaiU. SupapholP. Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance.Polymer200748267546755710.1016/j.polymer.2007.11.019
    [Google Scholar]
  134. PannerselvamB. Dharmalingam JothinathanM.K. RajenderanM. PerumalP. ThangaveluP.K. KimH.J. SinghV. RangarajuluS.K. An in vitro study on the burn wound healing activity of cotton fabrics incorporated with phytosynthesized silver nanoparticles in male Wistar albino rats.Eur. J. Pharm. Sci.201710018719610.1016/j.ejps.2017.01.01528108362
    [Google Scholar]
  135. GargS. ChandraA. MazumderA. MazumderR. Green synthesis of silver nanoparticles using Arnebia nobilis root extract and wound healing potential of its hydrogel.Asian J. Pharm.2014829510110.4103/0973‑8398.134925
    [Google Scholar]
  136. KimJ.E. LeeJ. JangM. KwakM.H. GoJ. KhoE.K. SongS.H. SungJ.E. LeeJ. HwangD.Y. Accelerated healing of cutaneous wounds using phytochemically stabilized gold nanoparticle deposited hydrocolloid membranes.Biomater. Sci.20153350951910.1039/C4BM00390J26222294
    [Google Scholar]
  137. NaragintiS. KumariP.L. DasR.K. SivakumarA. PatilS.H. AndhalkarV.V. Amelioration of excision wounds by topical application of green synthesized, formulated silver and gold nanoparticles in albino Wistar rats.Mater. Sci. Eng. C20166229330010.1016/j.msec.2016.01.06926952426
    [Google Scholar]
  138. KrychowiakM. GrinholcM. BanasiukR. BaranowskaK.M. GłódD. KawiakA. KrólickaA. Combination of silver nanoparticles and Drosera binata extract as a possible alternative for antibiotic treatment of burn wound infections caused by resistant Staphylococcus aureus.PLoS One2014912e11572710.1371/journal.pone.011572725551660
    [Google Scholar]
  139. SankarR. BaskaranA. ShivashangariK.S. RavikumarV. Inhibition of pathogenic bacterial growth on excision wound by green synthesized copper oxide nanoparticles leads to accelerated wound healing activity in Wistar Albino rats.J. Mater. Sci. Mater. Med.201526721410.1007/s10856‑015‑5543‑y26194977
    [Google Scholar]
  140. BhuvaneswariT. ThiyagarajanM. GeethaN. VenkatachalamP. Bioactive compound loaded stable silver nanoparticle synthesis from microwave irradiated aqueous extracellular leaf extracts of Naringi crenulata and its wound healing activity in experimental rat model.Acta Trop.2014135556110.1016/j.actatropica.2014.03.00924681224
    [Google Scholar]
  141. HajialyaniM. TewariD. Sobarzo-SánchezE. NabaviS.M. FarzaeiM.H. AbdollahiM. Natural product-based nanomedicines for wound healing purposes: therapeutic targets and drug delivery systems.Int. J. Nanomedicine2018135023504310.2147/IJN.S17407230214204
    [Google Scholar]
  142. SivaranjaniV. PhilominathanP. Synthesize of Titanium dioxide nanoparticles using Moringa oleifera leaves and evaluation of wound healing activity.Wound Medicine2016121510.1016/j.wndm.2015.11.002
    [Google Scholar]
  143. SarwerQ. AmjadM.S. MehmoodA. BinishZ. MustafaG. FarooqA. QaseemM.F. AbasiF. de la LastraP.J.M. Green synthesis and characterization of silver nanoparticles using Myrsine africana Leaf extract for their antibacterial, antioxidant and phytotoxic activities.Molecules20222721761210.3390/molecules2721761236364438
    [Google Scholar]
  144. BajpaiSK AhujaS ChandN BajpaiM Nano cellulose dispersed chitosan film with Ag NPs/Curcumin: An in vivo study on Albino Rats for wound dressing.Int J Biol Macromol2017104Pt A10121019
    [Google Scholar]
  145. DhapteV. KadamS. MogheA. PokharkarV. Probing the wound healing potential of biogenic silver nanoparticles.J. Wound Care2014239431441, 434, 436 passim10.12968/jowc.2014.23.9.43125284295
    [Google Scholar]
  146. SugumarS. GhoshV. NirmalaM.J. MukherjeeA. ChandrasekaranN. Ultrasonic emulsification of eucalyptus oil nanoemulsion: Antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats.Ultrason. Sonochem.20142131044104910.1016/j.ultsonch.2013.10.02124262758
    [Google Scholar]
  147. GhayempourS MontazerM RadM.M. Encapsulation of aloe vera extract into natural Tragacanth Gum as a novel green wound healing product.Int J Biol Macromol.201693Pt A34434910.1016/j.ijbiomac.2016.08.076
    [Google Scholar]
  148. AranaL. SaladoC. VegaS. OlaizolaA.O. AradaI. SuarezT. UsobiagaA. ArrondoJ.L.R. AlonsoA. GoñiF.M. AlkortaI. Solid lipid nanoparticles for delivery of Calendula officinalis extract.Colloids Surf. B Biointerfaces2015135182610.1016/j.colsurfb.2015.07.02026231862
    [Google Scholar]
  149. SinglaR. SoniS. KulurkarP.M. KumariA. SM. PatialV. PadwadY.S. YadavS.K. In situ functionalized nanobiocomposites dressings of bamboo cellulose nanocrystals and silver nanoparticles for accelerated wound healing.Carbohydr. Polym.201715515216210.1016/j.carbpol.2016.08.06527702499
    [Google Scholar]
  150. SinglaR. SoniS. PatialV. KulurkarP.M. KumariA. SM. PadwadY.S. YadavS.K. in vivo diabetic wound healing potential of nanobiocomposites containing bamboo cellulose nanocrystals impregnated with silver nanoparticles.Int. J. Biol. Macromol.2017105Pt 1455510.1016/j.ijbiomac.2017.06.10928669805
    [Google Scholar]
  151. GumusZ.P. GulerE. DemirB. BarlasF.B. YavuzM. ColpankanD. SenisikA.M. TeksozS. UnakP. CoskunolH. TimurS. Herbal infusions of black seed and wheat germ oil: Their chemical profiles, in vitro bio-investigations and effective formulations as Phyto-Nanoemulsions.Colloids Surf. B Biointerfaces2015133738010.1016/j.colsurfb.2015.05.04426087391
    [Google Scholar]
  152. BuranasukhonW. AthikomkulchaiS. TadtongS. ChittasuphoC. Wound healing activity of Pluchea indica leaf extract in oral mucosal cell line and oral spray formulation containing nanoparticles of the extract.Pharm. Biol.20175511767177410.1080/13880209.2017.132651128534695
    [Google Scholar]
  153. FaezizadehZ. GharibA. GodarzeeM. in-vitro and in-vivo evaluation of silymarin nanoliposomes against isolated methicillin-resistant Staphylococcus aureus. Iran. J. Pharm. Res.201514262763325901172
    [Google Scholar]
  154. MoulaouiK. CaddeoC. MancaM.L. CastangiaI. ValentiD. EscribanoE. AtmaniD. FaddaA.M. ManconiM. Identification and nanoentrapment of polyphenolic phytocomplex from Fraxinus angustifolia: in vitro and in vivo wound healing potential.Eur. J. Med. Chem.20158917918810.1016/j.ejmech.2014.10.04725462238
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873294822240517073406
Loading
/content/journals/cnanom/10.2174/0124681873294822240517073406
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): angiogenic effect; mechanism; Nanomaterial; nanotechnology; wound dressing; wound healing
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test