Skip to content
2000
Volume 15, Issue 1
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

The application of Quality Target Product Profile (QTPP) in optimizing nanoemulsion (NEM) shows immense potential in advancing pharmaceutical formulation design for effective drug delivery. By aligning QTPP with nanoemulsion attributes, this approach offers a pathway to tailored formulations that meet specific therapeutic objectives and responses. Incorporating QTPP facilitates informed choices in formulating design, covering pivotal factors like stability, drug release kinetics, bioavailability, and precise targeting. Moreover, this review extensively explores the real-world application of QTPP-guided tactics in refining nanoemulsion optimization. It highlights their pivotal role in anticipating and regulating responses, encompassing vital aspects like pharmacokinetics and pharmacodynamics. By conducting thorough examinations of case studies and research outcomes, this article clarifies the effectiveness of aligning QTPP criteria with NEM characteristics. This approach fosters the creation of customized formulations precisely suited to achieve distinct therapeutic objectives. This review amalgamates contemporary insights into harnessing QTPP for nanoemulsion optimization, illuminating its capacity to streamline formulation design, amplify treatment effectiveness by desiring drug release, and catalyze transformative shifts in pharmaceutical research.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873280769231217084737
2024-01-19
2024-12-25
Loading full text...

Full text loading...

References

  1. AksuB. YeğenG. Global regulatory perspectives on quality by design in pharma manufacturing. In: Pharmaceutical Quality by Design.Elsevier20191941
    [Google Scholar]
  2. RadhakrishnanR. Nanocarriers-encapsulating phytochemicals as potent therapeutics in cancer therapy.2017Available from: https://researchrepository.rmit.edu.au/esploro/outputs/9921864003901341?institution=61RMIT_INST&skipUsageReporting=true&recordUsage=false
    [Google Scholar]
  3. CunhaS. CostaC.P. MoreiraJ.N. Sousa LoboJ.M. SilvaA.C. Using the quality by design (QbD) approach to optimize formulations of lipid nanoparticles and nanoemulsions: A review.Nanomedicine20202810220610.1016/j.nano.2020.10220632334097
    [Google Scholar]
  4. PatelR.P. JoshiJ.R. An overview on nanoemulsion: A novel approach.Int. J. Pharm. Sci. Res.20123124640
    [Google Scholar]
  5. Che MarzukiN.H. WahabR.A. Abdul HamidM. An overview of nanoemulsion: Concepts of development and cosmeceutical applications.Biotechnol. Biotechnol. Equip.201933177979710.1080/13102818.2019.1620124
    [Google Scholar]
  6. TadrosT. IzquierdoP. EsquenaJ. SolansC. Formation and stability of nano-emulsions.Adv. Colloid Interface Sci.2004108-10930331810.1016/j.cis.2003.10.02315072948
    [Google Scholar]
  7. K S, Kumar A. Nanoemulsions: Techniques for the preparation and the recent advances in their food applications.Innov. Food Sci. Emerg. Technol.20227610291410.1016/j.ifset.2021.102914
    [Google Scholar]
  8. SolansC. SoléI. Nano-emulsions: Formation by low-energy methods.Curr. Opin. Colloid Interface Sci.201217524625410.1016/j.cocis.2012.07.003
    [Google Scholar]
  9. WilsonR.J. LiY. YangG. ZhaoC.X. Nanoemulsions for drug delivery.Particuology202264859710.1016/j.partic.2021.05.009
    [Google Scholar]
  10. KomaikoJ.S. McClementsD.J. Formation of food‐grade nanoemulsions using low‐energy preparation methods: A review of available methods.Compr. Rev. Food Sci. Food Saf.201615233135210.1111/1541‑4337.1218933371595
    [Google Scholar]
  11. KhuntD. PrajapatiB.G. PrajaptiM. MisraM. SalaveS. PatelJ.K. Drug delivery by micro, nanoemulsions in tuberculosis. In: Tubercular Drug Delivery Systems: Advances in Treatment of Infectious Diseases.Springer202317318810.1007/978‑3‑031‑14100‑3_9
    [Google Scholar]
  12. GauthierG. CapronI. Pickering nanoemulsions: An overview of manufacturing processes, formulations, and applications.JCIS Open2021410003610.1016/j.jciso.2021.100036
    [Google Scholar]
  13. MariyateJ. BeraA. A critical review on selection of microemulsions or nanoemulsions for enhanced oil recovery.J. Mol. Liq.202235311879110.1016/j.molliq.2022.118791
    [Google Scholar]
  14. PrajapatiBG PatelDV KhuntDM Role of quality by design for the optimization of push pull osmotic pump of s-metoprolol succinate.Indian Drugs20225910
    [Google Scholar]
  15. KapoorD. SharmaS. VermaK. Quality-by-design-based engineered liposomal nanomedicines to treat cancer: An in-depth analysis.Nanomedicine202217171173118910.2217/nnm‑2022‑006936178357
    [Google Scholar]
  16. WalshJ. MasiniT. HuttnerB. MojaL. PenazzatoM. CappelloB. Assessing the appropriateness of formulations on the WHO model list of essential medicines for children: Development of a paediatric quality target product profile tool.Pharmaceutics202214347310.3390/pharmaceutics1403047335335850
    [Google Scholar]
  17. PatilHD PatilCB PatilVV PatilPS An overview on quality by design.Asian J Res Pharmaceut Sci2023131
    [Google Scholar]
  18. ChordiyaM. GangurdeH. SanchetiV. Quality by design: A Roadmap for quality pharmaceutical products.J Reports Pharmaceut Sci20198228910.4103/jrptps.JRPTPS_2_18
    [Google Scholar]
  19. JagtapK. ChaudhariB. RedasaniV. Quality by design (QbD) concept review in pharmaceuticals.Int Res J Pharma2022303307
    [Google Scholar]
  20. GurumukhiV.C. BariS.B. Fabrication of efavirenz loaded nano-formulation using quality by design (QbD) based approach: Exploring characterizations and in vivo safety.J. Drug Deliv. Sci. Technol.20205610154510.1016/j.jddst.2020.101545
    [Google Scholar]
  21. WaghuleT. DabholkarN. GorantlaS. RapalliV.K. SahaR.N. SinghviG. Quality by design (QbD) in the formulation and optimization of liquid crystalline nanoparticles (LCNPs): A risk based industrial approach.Biomed. Pharmacother.202114111194010.1016/j.biopha.2021.11194034328089
    [Google Scholar]
  22. AcharyaS.D. TamaneP.K. KhanteS.N. PokharkarV.B. QbD based optimization of curcumin nanoemulsion: DoE and cytotoxicity studies.Indian J Pharmaceut Educ Res202054232933610.5530/ijper.54.2.38
    [Google Scholar]
  23. PatraC.N. MishraA. JenaG.K. QbD enabled formulation development of nanoemulsion of nimodipine for improved biopharmaceutical performance.J. Pharm. Innov.202311910.1007/s12247‑023‑09714‑9
    [Google Scholar]
  24. AlshahraniA. AliA. Pre-clinical safety and efficacy evaluation of a herbal nanoemulsion-based formulation for treating inflammatory bowel disease.J. AOAC Int.202210541153116110.1093/jaoacint/qsac02035167688
    [Google Scholar]
  25. NamjoshiS. DabbaghiM. RobertsM.S. GriceJ.E. MohammedY. Quality by design: Development of the quality target product profile (QTPP) for semisolid topical products.Pharmaceutics202012328710.3390/pharmaceutics1203028732210126
    [Google Scholar]
  26. RaiV.K. SharmaA. ThakurA. Quality control of nanoemulsion: By PDCA cycle and 7QC tools.Curr. Drug Deliv.20211891244125510.2174/156720181866621020318051633538674
    [Google Scholar]
  27. LiJ. QiaoY. WuZ. Nanosystem trends in drug delivery using quality-by-design concept.J. Control. Release201725691810.1016/j.jconrel.2017.04.01928414149
    [Google Scholar]
  28. GurumukhiV.C. SonawaneV.P. TapadiyaG.G. BariS.B. SuranaS.J. ChalikwarS.S. Quality-by-design based fabrication of febuxostat-loaded nanoemulsion: Statistical optimization, characterizations, permeability, and bioavailability studies.Heliyon202394e1540410.1016/j.heliyon.2023.e1540437128342
    [Google Scholar]
  29. YenC.C. ChenY.C. WuM.T. WangC.C. WuY.T. Nanoemulsion as a strategy for improving the oral bioavailability and anti-inflammatory activity of andrographolide.Int. J. Nanomedicine20181366968010.2147/IJN.S15482429440893
    [Google Scholar]
  30. NagiA. IqbalB. KumarS. SharmaS. AliJ. BabootaS. Quality by design based silymarin nanoemulsion for enhancement of oral bioavailability.J. Drug Deliv. Sci. Technol.201740354410.1016/j.jddst.2017.05.019
    [Google Scholar]
  31. SéguyL. GrooA.C. GouxD. HennequinD. Malzert-FréonA. Design of non-haemolytic nanoemulsions for intravenous administration of hydrophobic APIs.Pharmaceutics20201212114110.3390/pharmaceutics1212114133255606
    [Google Scholar]
  32. SimõesA. VeigaF. FigueirasA. VitorinoC. A practical framework for implementing Quality by Design to the development of topical drug products: Nanosystem-based dosage forms.Int. J. Pharm.2018548138539910.1016/j.ijpharm.2018.06.05229953928
    [Google Scholar]
  33. SoniG. KaleK. ShettyS. GuptaM.K. YadavK.S. Quality by design (QbD) approach in processing polymeric nanoparticles loading anticancer drugs by high pressure homogenizer.Heliyon202064e0384610.1016/j.heliyon.2020.e0384632373744
    [Google Scholar]
  34. CunhaS. ForbesB. Sousa LoboJ.M. SilvaA.C. Improving drug delivery for Alzheimer’s disease through nose-to-brain delivery using nanoemulsions, Nanostructured Lipid Carriers (NLC) and in situ hydrogels.Int. J. Nanomedicine2021164373439010.2147/IJN.S30585134234432
    [Google Scholar]
  35. PirainoL.R. BenoitD.S.W. DeLouiseL.A. Optimizing soluble cues for salivary gland tissue mimetics using a design of experiments (DoE) approach.Cells20221112196210.3390/cells1112196235741092
    [Google Scholar]
  36. UpadhyayM. AdenaS.K.R. VardhanH. YadavS.K. MishraB. Development of biopolymers based interpenetrating polymeric network of capecitabine: A drug delivery vehicle to extend the release of the model drug.Int. J. Biol. Macromol.201811590791910.1016/j.ijbiomac.2018.04.12329705110
    [Google Scholar]
  37. ArslanA. YetB. NemutluE. Akdağ ÇaylıY. EroğluH. ÖnerL. Celecoxib nanoformulations with enhanced solubility, dissolution rate, and oral bioavailability: Experimental approaches over in vitro >/in vivo Evaluation.Pharmaceutics202315236310.3390/pharmaceutics1502036336839685
    [Google Scholar]
  38. BhattacharyaS. PrajapatiB.G. Formulation, design and development of niosome based topical gel for skin cancer.Med Clin Res201722123
    [Google Scholar]
  39. PrajapatiB.G. PatelD.V. Formulation and optimization of domperidone fast dissolving tablet by wet granulation techniques using factorial design.IntJ PharmTech201021293299
    [Google Scholar]
  40. PrajapatiB. VariaU. Bosentan loaded Microemulsion: A novel formulation and evaluation of their in-vitro and in-vivo characteristic.Int. J. Pharm. Sci. Drug Res.202012546447210.25004/IJPSDR.2020.120506
    [Google Scholar]
  41. IlzarbeL. ÁlvarezM.J. VilesE. TancoM. Practical applications of design of experiments in the field of engineering: a bibliographical review.Qual. Reliab. Eng. Int.200824441742810.1002/qre.909
    [Google Scholar]
  42. TianG. WeiY. ZhaoJ. LiW. QuH. Application of near-infrared spectroscopy combined with design of experiments for process development of the pulsed spray fluid bed granulation process.Powder Technol.201833952153310.1016/j.powtec.2018.08.009
    [Google Scholar]
  43. Martínez-RazoG. PiresP.C. Domínguez-LópezM.L. VeigaF. Vega-LópezA. Paiva-SantosA.C. Norcantharidin nanoemulsion development, characterization, and in vitro antiproliferation effect on B16F1 melanoma cells.Pharmaceuticals202316450110.3390/ph1604050137111258
    [Google Scholar]
  44. JaiswalM DudheR SharmaPK Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech201552123127
    [Google Scholar]
  45. FernandesS.Y. de AraújoD. PontesM.S. Pre-emergent bioherbicide potential of Schinus terebinthifolia Raddi essential oil nanoemulsion for Urochloa brizantha.Biocatal. Agric. Biotechnol.20234710259810.1016/j.bcab.2022.102598
    [Google Scholar]
  46. ElkatebH. CauldbeckH. NiezabitowskaE. High drug loading solid lipid nanoparticles, nanostructured lipid carriers and nanoemulsions for the dual drug delivery of the HIV drugs darunavir and ritonavir.JCIS Open20231110008710.1016/j.jciso.2023.100087
    [Google Scholar]
  47. AkhterS. JainG. AhmadF. Investigation of nanoemulsion system for transdermal delivery of domperidone: Ex-vivo and in vivo studies.Curr. Nanosci.20084438139010.2174/157341308786306071
    [Google Scholar]
  48. BabootaS. ShakeelF. AhujaA. AliJ. ShafiqS. Design, development and evaluation of novel nanoemulsion formulations for transdermal potential of celecoxib.Acta Pharm.200757331533210.2478/v10007‑007‑0025‑517878111
    [Google Scholar]
  49. AhmadN. KhalidM.S. Al RamadhanA.M. Preparation of melatonin novel-mucoadhesive nanoemulsion used in the treatment of depression.Polym. Bull.20238078093813210.1007/s00289‑022‑04436‑3
    [Google Scholar]
  50. ZającM. KotyńskaJ. ZambrowskiG. Exposure to polystyrene nanoparticles leads to changes in the zeta potential of bacterial cells.Sci. Rep.2023131955210.1038/s41598‑023‑36603‑537308531
    [Google Scholar]
  51. GurpreetK. SinghS.K. Review of nanoemulsion formulation and characterization techniques.Indian J. Pharm. Sci.201880510.4172/pharmaceutical‑sciences.1000422
    [Google Scholar]
  52. PourmadadiM. AhmadiM. YazdianF. Synthesis of a novel pH-responsive Fe3O4/chitosan/agarose double nanoemulsion as a promising nanocarrier with sustained release of curcumin to treat MCF-7 cell line.Int. J. Biol. Macromol.202323512378610.1016/j.ijbiomac.2023.12378636828092
    [Google Scholar]
  53. GeorgeM.Y. El-DeranyM.O. AhmedY. Design and evaluation of chrysin-loaded nanoemulsion against lithium/pilocarpine-induced status epilepticus in rats; emphasis on formulation, neuronal excitotoxicity, oxidative stress, microglia polarization, and AMPK/SIRT-1/PGC-1α pathway.Expert Opin. Drug Deliv.202320115917410.1080/17425247.2023.215383136446395
    [Google Scholar]
  54. GostyńskaA. CzernielJ. KuźmińskaJ. Honokiol-loaded nanoemulsion for glioblastoma treatment: Statistical optimization, physicochemical characterization, and an in vitro toxicity assay.Pharmaceutics202315244810.3390/pharmaceutics1502044836839769
    [Google Scholar]
  55. AliM.S. AlamM.S. AlamN. SiddiquiM.R. Preparation, characterization and stability study of dutasteride loaded nanoemulsion for treatment of benign prostatic hypertrophy.Iran. J. Pharm. Res.20141341125114025587300
    [Google Scholar]
  56. AlamM.S. AliM.S. AlamM.I. AnwerT. SafhiM.M.A. Stability testing of beclomethasone dipropionate nanoemulsion.Trop. J. Pharm. Res.2015141152010.4314/tjpr.v14i1.3
    [Google Scholar]
  57. ShaikhN.M. Vijayendra SwamyS.M. NarsingN.S. KulkarniK.B. Formulation and evaluation of nanoemulsion for topical application.J. Drug Deliv. Ther.201994-s37037510.22270/jddt.v9i4‑s.3301
    [Google Scholar]
  58. SinghP. KaurG. SinghA. Physical, morphological and storage stability of clove oil nanoemulsion based delivery system.Food Sci. Technol. Int.202329215616710.1177/1082013221106947034939458
    [Google Scholar]
  59. WaniT.A. MasoodiF.A. JafariS.M. McClementsD.J. Safety of nanoemulsions and their regulatory status. In: Nanoemulsions.Elsevier2018613628
    [Google Scholar]
  60. MahdiZ.H. MaraieN.K. Overview on Nanoemulsion as a recently developed approach in Drug Nanoformulation.Res J Pharma Technol201912115554556010.5958/0974‑360X.2019.00963.6
    [Google Scholar]
  61. RomesN.B. Abdul WahabR. Abdul HamidM. OyewusiH.A. HudaN. KobunR. Thermodynamic stability, in-vitro permeability, and in-silico molecular modeling of the optimal Elaeis guineensis leaves extract water-in-oil nanoemulsion.Sci. Rep.20211112085110.1038/s41598‑021‑00409‑034675286
    [Google Scholar]
  62. SinghY. MeherJ.G. RavalK. Nanoemulsion: Concepts, development and applications in drug delivery.J. Control. Release2017252284910.1016/j.jconrel.2017.03.00828279798
    [Google Scholar]
  63. CossetinL.F. GarletQ.I. VelhoM.C. Development of nanoemulsions containing Lavandula dentata or Myristica fragrans essential oils: Influence of temperature and storage period on physical-chemical properties and chemical stability.Ind. Crops Prod.202116011311510.1016/j.indcrop.2020.113115
    [Google Scholar]
  64. KumarS. SinghN. DeviL.S. Neem oil and its nanoemulsion in sustainable food preservation and packaging: Current status and future prospects.J. Agric. Food Res.2022710025410.1016/j.jafr.2021.100254
    [Google Scholar]
  65. AnsarianE. AminzareM. Hassanzad AzarH. MehrasbiM.R. BimakrM. Nanoemulsion-based basil seed gum edible film containing resveratrol and clove essential oil: In vitro antioxidant properties and its effect on oxidative stability and sensory characteristic of camel meat during refrigeration storage.Meat Sci.202218510871610.1016/j.meatsci.2021.10871634839195
    [Google Scholar]
  66. LatifM.S. NawazA. AsmariM. UddinJ. UllahH. AhmadS. Formulation development and in vitro/in vivo characterization of methotrexate-loaded nanoemulsion gel formulations for enhanced topical delivery.Gels202291310.3390/gels901000336661771
    [Google Scholar]
  67. SahM.K. GautamB. PokhrelK.P. GhaniL. BhattaraiA. Quantification of the quercetin nanoemulsion technique using various parameters.Molecules2023286254010.3390/molecules2806254036985511
    [Google Scholar]
  68. ArbainN.H. BasriM. SalimN. WuiW.T. Abdul RahmanM.B. Development and characterization of aerosol nanoemulsion system encapsulating low water soluble quercetin for lung cancer treatment.Mater. Today Proc.20185S137S14210.1016/j.matpr.2018.08.055
    [Google Scholar]
  69. DraisH.K. HusseinA.A. Formulation and characterization of carvedilol nanoemulsion oral liquid dosage form.Int. J. Pharm. Pharm. Sci.2015712209216
    [Google Scholar]
  70. RanjaniS. KarunyaJR. HemalathaS. Differential actions of nanoparticles and nanoemulsion synthesized from Colletotrichum siamense on food borne pathogen.LWT2022 Feb 115511299510.1016/j.lwt.2021.112995
    [Google Scholar]
  71. HassanzadehH. RahbariM. GalaliY. HosseiniM. GhanbarzadehB. The garlic extract‐loaded nanoemulsion: Study of physicochemical, rheological, and antimicrobial properties and its application in mayonnaise.Food Sci. Nutr.20231173799381010.1002/fsn3.336537457174
    [Google Scholar]
  72. HaiderF. KhanB.A. KhanM.K. Formulation and evaluation of topical linezolid nanoemulsion for open incision wound in diabetic animal model.AAPS PharmSciTech202223512910.1208/s12249‑022‑02288‑835484340
    [Google Scholar]
  73. PrakashV. ParidaL. Characterization and rheological behavior of vitamin E nanoemulsions prepared by phase inversion composition technique.Results Eng.20231810117510.1016/j.rineng.2023.101175
    [Google Scholar]
  74. AhmedS. GullA. AlamM. AqilM. SultanaY. Ultrasonically tailored, chemically engineered and “QbD” enabled fabrication of agomelatine nanoemulsion; optimization, characterization, ex-vivo permeation and stability study.Ultrason. Sonochem.20184121322610.1016/j.ultsonch.2017.09.04229137746
    [Google Scholar]
  75. MehrotraS. SalwaA. KumarL. Implementation of quality by design in the formulation and development of nanocarrier-based drug delivery systems.Crit. Rev. Ther. Drug Carrier Syst.202340314610.1615/CritRevTherDrugCarrierSyst.202204292736749082
    [Google Scholar]
  76. BegS. KatareO.P. SinghB. Formulation by design approach for development of ultrafine self-nanoemulsifying systems of rosuvastatin calcium containing long-chain lipophiles for hyperlipidemia management.Colloids Surf. B Biointerfaces201715986987910.1016/j.colsurfb.2017.08.05028892871
    [Google Scholar]
  77. HosnyK.M. Development of saquinavir mesylate nanoemulsion-loaded transdermal films: two-step optimization of permeation parameters, characterization, and ex vivo and in vivo evaluation.Int. J. Nanomedicine2019148589860110.2147/IJN.S23074731802871
    [Google Scholar]
  78. AboumaneiM.H. FayezH. Intra-articular formulation of colchicine loaded nanoemulsion systems for enhanced locoregional drug delivery: In vitro characterization, 99m Tc coupling and in vivo biodistribution studies.Drug Dev. Ind. Pharm.202147577077710.1080/03639045.2021.193486534032545
    [Google Scholar]
  79. PatelG.M. ShelatP.K. LalwaniA.N. QbD based development of proliposome of lopinavir for improved oral bioavailability.Eur. J. Pharm. Sci.2017108506110.1016/j.ejps.2016.08.05727586019
    [Google Scholar]
  80. GargB. KatareO.P. BegS. LohanS. SinghB. Systematic development of solid self-nanoemulsifying oily formulations (S-SNEOFs) for enhancing the oral bioavailability and intestinal lymphatic uptake of lopinavir.Colloids Surf. B Biointerfaces201614161162210.1016/j.colsurfb.2016.02.01226916320
    [Google Scholar]
  81. BegS. RahmanM. KohliK. Quality-by-design approach as a systematic tool for the development of nanopharmaceutical products.Drug Discov. Today201924371772510.1016/j.drudis.2018.12.00230557651
    [Google Scholar]
  82. BajwaN. NaryalS. MahalS. SinghP.A. BaldiA. Quality-by-design strategy for the development of arteether loaded solid self-micro emulsifying drug delivery systems.J. Drug Deliv. Sci. Technol.20227710370710.1016/j.jddst.2022.103707
    [Google Scholar]
  83. RanaH. PatelD. ThakkarV. GandhiT. Atovaquone smart lipid system: Design, statistical optimization, and in-vitro evaluation.Food Hydrocoll. Health20234100144
    [Google Scholar]
  84. DhawanS. NandaS. Implementation of Quality by Design (QbD) concept for the development of emulsion based nanotailored gel for improved antiphotoageing potential of Silymarin.J. Drug Deliv. Sci. Technol.20238110420110.1016/j.jddst.2023.104201
    [Google Scholar]
  85. PanigrahiK.C. JenaJ. JenaG.K. PatraC.N. RaoM.E.B. QBD-based systematic development of Bosentan SNEDDS: Formulation, characterization and pharmacokinetic assessment.J. Drug Deliv. Sci. Technol.201847314210.1016/j.jddst.2018.06.021
    [Google Scholar]
  86. PatelV.D. RathodV. HawareR.V. StagnerW.C. Optimized L-SNEDDS and spray-dried S-SNEDDS using a linked QbD-DM3 rational design for model compound ketoprofen.Int. J. Pharm.202363112249410.1016/j.ijpharm.2022.12249436528191
    [Google Scholar]
  87. DonthiM.R. SahaR.N. SinghviG. DubeyS.K. Dasatinib-loaded topical nano-emulgel for rheumatoid arthritis: Formulation design and optimization by QbD, in vitro, ex vivo, and in vivo evaluation.Pharmaceutics202315373610.3390/pharmaceutics1503073636986597
    [Google Scholar]
  88. BegS. SainiS. BandopadhyayS. KatareO.P. SinghB. QbD-driven development and evaluation of nanostructured lipid carriers (NLCs) of Olmesartan medoxomil employing multivariate statistical techniques.Drug Dev. Ind. Pharm.201844340742010.1080/03639045.2017.139545929048242
    [Google Scholar]
  89. CunhaS. CostaC.P. LoureiroJ.A. Double optimization of rivastigmine-loaded nanostructured lipid carriers (NLC) for nose-to-brain delivery using the Quality by Design (QbD) approach: Formulation variables and instrumental parameters.Pharmaceutics202012759910.3390/pharmaceutics1207059932605177
    [Google Scholar]
  90. NastitiC.M.R.R. PontoT. MohammedY. RobertsM.S. BensonH.A.E. Novel nanocarriers for targeted topical skin delivery of the antioxidant resveratrol.Pharmaceutics202012210810.3390/pharmaceutics1202010832013204
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873280769231217084737
Loading
/content/journals/cnanom/10.2174/0124681873280769231217084737
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): atovaquone; bioavailability; design expert; drug release kinetics; Nanoemulsion; QbD/QTPP
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test