Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

For an extended period, lipid-based drugs have been employed to enhance the effectiveness of medications. Nevertheless, the notion of using lipids as carriers for drugs remains a fascinating concept. Lipid-based drug delivery systems (LBDDS) represent a cutting-edge technology aimed at tackling the challenges associated with bioavailability and solubility of drugs that are not readily soluble in water.

The primary objective of lipid-based medicine formulation is to increase its bioavailability. The use of lipids in medicine administration is a feasible concept even if it is no longer new. LBDDS is one of the newest techniques for resolving problems with low water-soluble medication solubility and bioavailability. Pharmaceuticals may be marketed successfully formulated using these formulations for parenteral, pulmonary, topical, or oral administration.

This article functions as a comprehensive review of existing literature on LBDDS. It involves a thorough investigation across various databases, including PubMed, Scopus, and Web of Science, with the aim of identifying relevant research studies.

LBDDS are an effective method for making poorly soluble medications (BCS Classes II & IV) more soluble and more bioavailable. This review article aims to draw attention to the importance of distinguishing between SMEDDS and SNEDDS, as well as the roles played by the many components that are needed for creating LBDDS. It also provides motivation and guts to expand the use of LBDDS on a pilot and industrial scale.

Medication delivery systems based on lipids provide a wide range of possible applications by improving the bioavailability of some poorly soluble medicines and enabling the creation of physiologically well-tolerated medication formulations. Comprehending the physicochemical properties of molecules, fatty excipients, and gastrointestinal digestion is crucial for the creation of these systems. In conclusion, these delivery methods seem to have a bright future.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873290199240424062503
2024-04-29
2025-06-17
Loading full text...

Full text loading...

References

  1. ZishanM. ZeeshanA. FaisalS. Vesicular drug delivery system used for liver diseases.World J PharmSci.2017542835
    [Google Scholar]
  2. ThakurA RoyA ChatterjeeS ChakrabortyP BhattacharyaK MahataPP Recent trends in targeted drug delivery. NaskarS SM GroupUSA20152910.13140/RG.2.1.2443.9762
    [Google Scholar]
  3. KumarA. NautiyalU. KaurC. GoelV. PiarchandN. Targeted drug delivery system: current and novel approach.Int J Pharm Res.201752448454
    [Google Scholar]
  4. AkhtarM. JamshaidM. ZamanM. MirzaA.Z. Bilayer tablets: A developing novel drug delivery system.J. Drug Deliv. Sci. Technol.20206010207910.1016/j.jddst.2020.102079
    [Google Scholar]
  5. KwonI.K. LeeS.C. HanB. ParkK. Analysis on the current status of targeted drug delivery to tumors.J. Control. Release2012164210811410.1016/j.jconrel.2012.07.01022800574
    [Google Scholar]
  6. YooJ. ParkC. YiG. LeeD. KooH. Active targeting strategies using biological ligands for nanoparticle drug delivery systems.Cancers201911564010.3390/cancers1105064031072061
    [Google Scholar]
  7. AliY. AlqudahA. AhmadS. Abd HamidS. FarooqU. Macromolecules as targeted drugs delivery vehicles: an overview.Des. Monomers Polym.2019221919710.1080/15685551.2019.159168131007637
    [Google Scholar]
  8. MishraN. PantP. PorwalA. JaiswalJ. SamadM.A. TiwariS. Targeted drug delivery: a review.Am J PharmTech Res.20166119447208
    [Google Scholar]
  9. FahmyT.M. FongP.M. GoyalA. SaltzmanW.M. Targeted for drug delivery.Mater. Today200588182610.1016/S1369‑7021(05)71033‑6
    [Google Scholar]
  10. BenyettouF. MotteL. Nanomedicine: towards the “magic bullet” science.J. Bioanal. Biomed.201682
    [Google Scholar]
  11. ValentP GronerB Paul EhrlichSU Paul ehrlich (1854-1915) and his contributions to the foundation and birth of translational medicineJ Innate Immun20168211112010.1159/00044352626845587
    [Google Scholar]
  12. GradmannC. Magic bullets and moving targets: antibiotic resistance and experimental chemotherapy, 1900-1940.Dynamis201131230532110.4321/S0211‑9536201100020000322332461
    [Google Scholar]
  13. BarzM. Complexity and simplification in the development of nanomedicines.Nanomedicine201510203093309710.2217/nnm.15.14626446374
    [Google Scholar]
  14. BaeY.H. ParkK. Targeted drug delivery to tumors: Myths, reality and possibility.J. Control. Relea.2011153319820510.1016/j.jconrel.2011.06.00121663778
    [Google Scholar]
  15. RaniK. PaliwalS.A. Review on targeted drug delivery: its entire focus on advanced therapeutics and diagnostics.Sch J. App Sci.201421C328331
    [Google Scholar]
  16. GujralS KhatriS. A review on basic concept of drug targeting and drug carrier system.Int. J. Adv. Pharm. Biol. Chem.201321130136
    [Google Scholar]
  17. MahajanHS PatilSB GattaniSG KuchekarBS Targeted drug delivery systems.Pharma Times20073921921
    [Google Scholar]
  18. VyasS.P. KharR.K. Targeted & controlled drug delivery: novel carrier systems.New Delhi, IndiaCBS publishers & distributors2004594
    [Google Scholar]
  19. ManishG. VimuktaS. Targeted drug delivery system: a review.Res J Chem Sci.201112135138
    [Google Scholar]
  20. BhargavE. MadhuriN. RameshK. ManneA. RaviV. Targeted drug delivery – a review.World J. Pharm. Pharm. Sci.201331150169
    [Google Scholar]
  21. AfzalO. AltamimiA.S.A. NadeemM.S. AlzareaS.I. AlmalkiW.H. TariqA. MubeenB. MurtazaB.N. IftikharS. RiazN. KazmiI. Nanoparticles in drug delivery: from history to therapeutic applications.Nanomaterials20221224449410.3390/nano1224449436558344
    [Google Scholar]
  22. JacobS. NairA.B. ShahJ. GuptaS. BodduS.H.S. SreeharshaN. JosephA. ShinuP. MorsyM.A. Lipid nanoparticles as a promising drug delivery carrier for topical ocular therapy-an overview on recent.Pharmaceutics202214353310.3390/pharmaceutics1403053335335909
    [Google Scholar]
  23. Mohammadi-SamaniS. GhasemiyehP. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages.Res. Pharm. Sci.201813428830310.4103/1735‑5362.23515630065762
    [Google Scholar]
  24. UnerM. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems.Pharmazie200661537538616724531
    [Google Scholar]
  25. MüllerR.H. RadtkeM. WissingS.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations.Adv. Drug Deliv. Rev.200254Suppl. 1S131S15510.1016/S0169‑409X(02)00118‑712460720
    [Google Scholar]
  26. KimB.Y.S. RutkaJ.T. ChanW.C.W. Nanomedicine.N. Engl. J. Med.2010363252434244310.1056/NEJMra091227321158659
    [Google Scholar]
  27. AllenT.M. CullisP.R. Drug delivery systems: entering the mainstream.Science200430356651818182210.1126/science.109583315031496
    [Google Scholar]
  28. KhaterD. NsairatH. OdehF. SalehM. JaberA. AlshaerW. Al BawabA. MubarakM.S. Design, preparation, and characterization of effective dermal and transdermal lipid nanoparticles: a review.Cosmetics2021823910.3390/cosmetics8020039
    [Google Scholar]
  29. YezhelyevM.V. GaoX. XingY. Al-HajjA. NieS. O’ReganR.M. Emerging use of nanoparticles in diagnosis and treatment of breast cancer.Lancet Oncol.20067865766710.1016/S1470‑2045(06)70793‑816887483
    [Google Scholar]
  30. NsairatH. KhaterD. OdehF. Al-AdailehF. Al-TaherS. JaberA.M. AlshaerW. Al BawabA. MubarakM.S. Lipid nanostructures for targeting brain cancer.Heliyon202179e0799410.1016/j.heliyon.2021.e0799434632135
    [Google Scholar]
  31. CeliaC. PaolinoD. SantosH.A. Advanced nanosystems for clinical translation.Adv. Ther.202141200021510.1002/adtp.202000215
    [Google Scholar]
  32. HaleyB. FrenkelE. Nanoparticles for drug delivery in cancer treatment.Urol. Oncol.2008261576410.1016/j.urolonc.2007.03.01518190833
    [Google Scholar]
  33. DoaneT.L. BurdaC. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy.Chem. Soc. Rev.20124172885291110.1039/c2cs15260f22286540
    [Google Scholar]
  34. PeerD. KarpJ.M. HongS. FarokhzadO.C. MargalitR. LangerR. Nanocarriers as an emerging platform for cancer therapy.Nat. Nanotechnol.200721275176010.1038/nnano.2007.38718654426
    [Google Scholar]
  35. AlshaerW. HillaireauH. FattalE. Aptamer-guided nanomedicines for anticancer drug delivery.Adv. Drug Deliv. Rev.201813412213710.1016/j.addr.2018.09.01130267743
    [Google Scholar]
  36. SunT. ZhangY.S. PangB. HyunD.C. YangM. XiaY. Engineered nanoparticles for drug delivery in cancer therapy.Angew. Chem. Int. Ed.20145346123201236410.1002/anie.20140303625294565
    [Google Scholar]
  37. JhaS. SharmaP.K. MalviyaR. Liposomal drug delivery system for cancer therapy: advancement and patents.Recent Pat. Drug Deliv. Formul.201610317718310.2174/187221131066616100415575727712569
    [Google Scholar]
  38. SercombeL. VeeratiT. MoheimaniF. WuS.Y. SoodA.K. HuaS. Advances and challenges of liposome assisted drug delivery.Front. Pharmacol.2015628610.3389/fphar.2015.0028626648870
    [Google Scholar]
  39. NobleG.T. StefanickJ.F. AshleyJ.D. KiziltepeT. BilgicerB. Ligand-targeted liposome design: Challenges and fundamental considerations.Trends Biotechnol.2014321324510.1016/j.tibtech.2013.09.00724210498
    [Google Scholar]
  40. HafnerA. LovrićJ. LakošG.P. PepićI. Nanotherapeutics in the EU: an overview on current state and future directions.Int. J. Nanomedicine201491005102324600222
    [Google Scholar]
  41. McClementsD.J. RaoJ. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity.Crit. Rev. Food Sci. Nutr.201151428533010.1080/10408398.2011.55955821432697
    [Google Scholar]
  42. NsairatH KhaterD SayedU OdehF Al BawabA AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  43. ChenT. GongT. ZhaoT. FuY. ZhangZ. GongT. A comparison study between lycobetaine-loaded nanoemulsion and liposome using nRGD as therapeutic adjuvant for lung cancer therapy.Eur. J. Pharm. Sci.201811129330210.1016/j.ejps.2017.09.04128966099
    [Google Scholar]
  44. FathiS. OyelereA.K. Liposomal drug delivery systems for targeted cancer therapy: Is active targeting the best choice?Future Med. Chem.20168172091211210.4155/fmc‑2016‑013527774793
    [Google Scholar]
  45. BulbakeU. DoppalapudiS. KommineniN. KhanW. Liposomal formulations in clinical use: An updated review.Pharmaceutics2017941210.3390/pharmaceutics902001228346375
    [Google Scholar]
  46. AkbarzadehA. Rezaei-SadabadyR. DavaranS. JooS.W. ZarghamiN. HanifehpourY. SamieiM. KouhiM. Nejati-KoshkiK. Liposome: classification, preparation, and applications.Nanoscale Res. Lett.20138110210.1186/1556‑276X‑8‑10223432972
    [Google Scholar]
  47. EbrahimS. PeymanG.A. LeeP.J. Applications of liposomes in ophthalmology.Surv. Ophthalmol.200550216718210.1016/j.survophthal.2004.12.00615749307
    [Google Scholar]
  48. HeH. LuY. QiJ. ZhuQ. ChenZ. WuW. Adapting liposomes for oral drug delivery.Acta Pharm. Sin. B201991364810.1016/j.apsb.2018.06.00530766776
    [Google Scholar]
  49. MehtaP.P. GhoshalD. PawarA.P. KadamS.S. Dhapte-PawarV.S. Recent advances in inhalable liposomes for treatment of pulmonary diseases: Concept to clinical stance.J. Drug Deliv. Sci. Technol.20205610150910.1016/j.jddst.2020.101509
    [Google Scholar]
  50. PierreM.B.R. dos Santos Miranda CostaI. Liposomal systems as drug delivery vehicles for dermal and transdermal applications.Arch. Dermatol. Res.2011303960762110.1007/s00403‑011‑1166‑421805180
    [Google Scholar]
  51. BarenholzY.C. Doxil® - The first FDA-approved nano-drug: Lessons learned.J. Control. Release2012160211713410.1016/j.jconrel.2012.03.02022484195
    [Google Scholar]
  52. CeveniniA. CeliaC. OrrùS. SarnataroD. RaiaM. MolloV. LocatelliM. ImperliniE. PelusoN. PeltriniR. De RosaE. ParodiA. Del VecchioL. Di MarzioL. FrestaM. NettiP.A. ShenH. LiuX. TasciottiE. SalvatoreF. Liposomeembedding silicon microparticle for oxaliplatin delivery in tumor chemotherapy.Pharmaceutics202012655910.3390/pharmaceutics1206055932560359
    [Google Scholar]
  53. KiruiD.K. CeliaC. MolinaroR. BansalS.S. CoscoD. FrestaM. ShenH. FerrariM. Mild hyperthermia enhances transport of liposomal gemcitabine and improves in vivo therapeutic response.Adv. Healthc. Mater.2015471092110310.1002/adhm.20140073825721343
    [Google Scholar]
  54. KuentzM. Drug absorption modeling as a tool to define the strategy in clinical formulation development.AAPS J.200810347347910.1208/s12248‑008‑9054‑318751901
    [Google Scholar]
  55. KuentzM. NickS. ParrottN. RöthlisbergerD. A strategy for preclinical formulation development using GastroPlus™ as pharmacokinetic simulation tool and a statistical screening design applied to a dog study.Eur. J. Pharm. Sci.2006271919910.1016/j.ejps.2005.08.01116219449
    [Google Scholar]
  56. GibsonL. Lipid-based excipients for oral drug delivery.Drug. Pharmaceut. Sci.200717033
    [Google Scholar]
  57. MichaelsenM.H. WasanK.M. SivakO. MüllertzA. RadesT. The effect of digestion and drug load on halofantrine absorption from self-nanoemulsifying drug delivery system (SNEDDS).AAPS J.201618118018610.1208/s12248‑015‑9832‑726486790
    [Google Scholar]
  58. ThomasN. HolmR. GarmerM. KarlssonJ.J. MüllertzA. RadesT. Supersaturated self-nanoemulsifying drug delivery systems (Super-SNEDDS) enhance the bioavailability of the poorly water-soluble drug simvastatin in dogs.AAPS J.201315121922710.1208/s12248‑012‑9433‑723180162
    [Google Scholar]
  59. HolmR. Bridging the gaps between academic research and industrial product developments of lipid-based formulations.Adv. Dru. Deliv. Revi.2019142118127
    [Google Scholar]
  60. TarrB.D. YalkowskyS.H. Enhanced intestinal absorption of cyclosporine in rats through the reduction of emulsion droplet size.Pharm. Res.198961404310.1023/A:10158435177622717516
    [Google Scholar]
  61. SinghB BandopadhyayS KapilR SinghR KatareO. Self-emulsifying drug delivery systems (SEDDS): Formulation development, characterization, and applications.Crit Rev Ther Drug Carrier Syst200926542752110.1615/critrevtherdrugcarriersyst.v26.i5.1020136631
    [Google Scholar]
  62. SahooS.K. LabhasetwarV. Nanotech approaches to drug delivery and imaging.Drug Discov. Today20038241112112010.1016/S1359‑6446(03)02903‑914678737
    [Google Scholar]
  63. HattoriY. HuS. OnishiH. Effects of cationic lipids in cationic liposomes and disaccharides in the freeze-drying of siRNA lipoplexes on gene silencing in cells by reverse transfection.J. Liposome Res.202030323524510.1080/08982104.2019.163064331185779
    [Google Scholar]
  64. ScheffelU. RhodesB.A. NatarajanT.K. WagnerH.N.Jr Albumin microspheres for study of the reticuloendothelial system.J. Nucl. Med.19721374985035033902
    [Google Scholar]
  65. JumaaM. MüllerB.W. Lipid emulsions as a novel system to reduce the hemolytic activity of lytic agents: Mechanism of the protective effect.Eur. J. Pharm. Sci.20009328529010.1016/S0928‑0987(99)00071‑810594386
    [Google Scholar]
  66. CavalliR. CaputoO. GascoM.R. Solid lipospheres of doxorubicin and idarubicin.Int. J. Pharm.1993891R9R1210.1016/0378‑5173(93)90313‑5
    [Google Scholar]
  67. GascoM.R. Method for producing solid lipid microspheres having a narrow size distribution.US5250236A1993
  68. MullerR.H. RungeS.A. Solid lipid nanoparticles (SLN) for controlled drug delivery.Submicron emulsions in drug targeting and delivery. BenitaS. AmsterdamHarwood Academic Publishers1998219234
    [Google Scholar]
  69. JenningV. GyslerA. Schäfer-KortingM. GohlaS.H. Vitamin A loaded solid lipid nanoparticles for topical use: Occlusive properties and drug targeting to the upper skin.Eur. J. Pharm. Biopharm.200049321121810.1016/S0939‑6411(99)00075‑210799811
    [Google Scholar]
  70. MüllerR.H. RadtkeM. WissingS.A. Nanostructured lipid matrices for improved microencapsulation of drugs.Int. J. Pharm.20022421-212112810.1016/S0378‑5173(02)00180‑112176234
    [Google Scholar]
  71. RadtkeM. MullerR.H. Comparison of structural properties of solid lipid nanoparticles (SLN) versus other lipid particles.Proceedings of the int symp control rel bioact mater2000309310
    [Google Scholar]
  72. CustodioJ.M. WuC.Y. BenetL.Z. Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption.Adv. Drug Deliv. Rev.200860671773310.1016/j.addr.2007.08.04318199522
    [Google Scholar]
  73. ChaudharyU. NagaichN. GulatiV. SharmaK. KhosaR.L. Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: A recent review.J. Adv. Pharm. Educ. Res.201223267
    [Google Scholar]
  74. KohliK. ChopraS. DharD. AroraS. KharR.K. Self-emulsifying drug delivery systems: An approach to enhance oral bioavailability.Drug Discov. Today20101521-2295896510.1016/j.drudis.2010.08.00720727418
    [Google Scholar]
  75. KawabataY. WadaK. NakataniM. YamadaS. OnoueS. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications.Int. J. Pharm.2011420111010.1016/j.ijpharm.2011.08.03221884771
    [Google Scholar]
  76. LoftssonT. BrewsterM.E. MassonM. Role of cyclodextrins in improving oral drug delivery.Am. J. Drug Deliv.20042426127510.2165/00137696‑200402040‑00006
    [Google Scholar]
  77. MurdandeaS.B. GumkowskiaM.J. Development of a self-emulsifying formulation that reduces the food effect for torcetrapib: an overview.Int. J. Pharm.2008511522
    [Google Scholar]
  78. ParulJ. GeetaA. AmanpreetK. Bioavailability enhancement of poorly soluble drugs by SMEDDS: A review.J. Drug Deliv. Ther.2013398109
    [Google Scholar]
  79. SaroyS. BabyD.A. SabithaM. Current trends in lipid based delivery systems and its applications in drug delivery.Asian J. Pharm. Clin. Res.2012549
    [Google Scholar]
  80. NanjwadeB.K. PatelD.J. UdhaniR.A. ManviF.V. Functions of lipids for enhancement of oral bioavailability of poorly water-soluble drugs.Sci. Pharm.201179470572710.3797/scipharm.1105‑0922145101
    [Google Scholar]
  81. PoutonC.W. PorterC.J.H. Formulation of lipid-based delivery systems for oral administration: Materials, methods and strategies.Adv. Drug Deliv. Rev.200860662563710.1016/j.addr.2007.10.01018068260
    [Google Scholar]
  82. PoutonC.W. Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification system.Eur. J. Pharm. Sci.2006293-427828710.1016/j.ejps.2006.04.01616815001
    [Google Scholar]
  83. JanninV. MusakhanianJ. MarchaudD. Approaches for the development of solid and semi-solid lipid-based formulations.Adv. Drug Deliv. Rev.200860673474610.1016/j.addr.2007.09.00618045728
    [Google Scholar]
  84. RajeshB.V. ReddyT.K. SrikanthG. MallikarjunV. NivethithaiP. Lipid based self-emulsifying drug delivery system (SEDDS) for poorly water-soluble drugs: a review.J. Glob. Pharma Technol.201024755
    [Google Scholar]
  85. GuptaR.N. GuptaR. SinghR.G. Enhancement of oral bioavailability of lipophilic drugs from self-microemulsifying drug delivery systems (SMEDDS).Int J Drug Dev Res.200911018
    [Google Scholar]
  86. MohsinK. ShahbaA.A. AlanaziF.K. Lipid based self-emulsifying formulations for poorly water soluble drugs- an excellent opportunity.Ind J Pharm Educ Res.2012468896
    [Google Scholar]
  87. GaoP. MorozowichW. Development of supersaturatable self-emulsifying drug delivery system formulations for improving the oral absorption of poorly soluble drugs.Expert Opin. Drug Deliv.2006319711010.1517/17425247.3.1.9716370943
    [Google Scholar]
  88. LinJ.H. ChenW. KingJ. The effect of dosage form on oral absorption of L-365, 260, a potent CCK receptor antagonist in dogs.Pharm. Res.19918272
    [Google Scholar]
  89. SiekmannB WestesenK Investigations on solid lipid nanoparticles prepared by precipitation in o/w emulsions.Eur J Pharm Biopharm199643104109
    [Google Scholar]
  90. WestesenK BunjesH KochMHJ Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential.J Cont. Rel.1997482-3223236
    [Google Scholar]
  91. SchwarzC. FreitasC. MehnertW. MuÈllerR.H. Sterilisation and physical stability of drug-free and etomidate-loaded solid lipid nanoparticles.Proc. Int. Sympo. Cont. Rel. Bioact. Mater.199522766767
    [Google Scholar]
  92. SchwarzC. LipidnanopartikelF. Herstellung, Charakterisierung, Arzneistof®nkorporation und freisetzung, Sterilisation und lyophilisation.Free University of Berlin1995
    [Google Scholar]
  93. JenningV. Schäfer-KortingM. GohlaS. Vitamin A-loaded solid lipid nanoparticles for topical use: Drug release properties.J. Cont. Rel.2000662-311512610.1016/S0168‑3659(99)00223‑010742573
    [Google Scholar]
  94. JenningV. als TraÈgersystem FLN. fuÈr die dermale Applikation von retinol.Free University of Berlin1999
    [Google Scholar]
  95. DinglerA. Feste Lipid-Nanopartikel als kolloidale WirkstofftraÈgersysteme zur dermalen ApplikationFree University of Berlin1998
    [Google Scholar]
  96. RungeS.A. Lipid-NanopartikelF. Lipid-Nanopartikel F (SLN) als kolloidaler ArzneistofftraÈger fuÈr Cyclosporin A.Free University of Berlin1998
    [Google Scholar]
  97. PenklerL Pharmaceutical cyclosporin formulation with improved biopharmaceutical properties, improved physical quality and greater stability, and method for producing said formulationWO 99/567331999
  98. WestesenK SiekmannB KochMHJ Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction.Int J Pharm1993931-3189199
    [Google Scholar]
  99. BunjesH WestesenK KochMHJ Crystallization tendency and polymorphic transitions in triglyceride nanoparticles.Int J Pharm19961291-215917310.1016/0378‑5173(95)04286‑5
    [Google Scholar]
  100. JenningV. MäderK. GohlaS.H. Solid lipid nanoparticles (SLN™) based on binary mixtures of liquid and solid lipids: a 1H-NMR study.Int. J. Pharm.20002051-2152110.1016/S0378‑5173(00)00462‑211000538
    [Google Scholar]
  101. CavalliR PeiraE CaputoO GascoMR Solid lipid nanoparticles as carriers of hydrocortisone and progesterone complexes with b- cyclodextrins.Int J Pharm19991821596910.1016/S0378‑5173(99)00066‑6
    [Google Scholar]
  102. zur MühlenA SchwarzC MehnertW. Solid lipid nanoparticles (SLN) for controlled drug delivery ± drug release and release mechanism.Eur J Pharm Biopharm1998452149155
    [Google Scholar]
  103. GartiN. SatoK. Crystallization and polymorphism of fats and fatty acids.New York, BaselMarcel Dekker199814
    [Google Scholar]
  104. AnselmoA.C. ZhangM. KumarS. VogusD.R. MenegattiS. HelgesonM.E. MitragotriS. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting.ACS Nano2015933169317710.1021/acsnano.5b0014725715979
    [Google Scholar]
  105. SykesE.A. DaiQ. SarsonsC.D. ChenJ. RocheleauJ.V. HwangD.M. ZhengG. CrambD.T. RinkerK.D. ChanW.C.W. Tailoring nanoparticle designs to target cancer based on tumor pathophysiology.Proc. Natl. Acad. Sci.20161139E1142E115110.1073/pnas.152126511326884153
    [Google Scholar]
  106. TheekB. GremseF. KunjachanS. FokongS. PolaR. PecharM. DeckersR. StormG. EhlingJ. KiesslingF. LammersT. Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging.J. Cont. Rel.2014182838910.1016/j.jconrel.2014.03.00724631862
    [Google Scholar]
  107. HansenA.E. PetersenA.L. HenriksenJ.R. BoerresenB. RasmussenP. ElemaD.R. RosenschöldP.M. KristensenA.T. KjærA. AndresenT.L. Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes.ACS Nano2015976985699510.1021/acsnano.5b0132426022907
    [Google Scholar]
  108. MillerM.A. GaddeS. PfirschkeC. EngblomC. SprachmanM.M. KohlerR.H. YangK.S. LaughneyA.M. WojtkiewiczG. KamalyN. BhonagiriS. PittetM.J. FarokhzadO.C. WeisslederR. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle.Sci. Transl. Med.20157314314ra18310.1126/scitranslmed.aac652226582898
    [Google Scholar]
  109. LeeH. ShieldsA.F. SiegelB.A. MillerK.D. KropI. MaC.X. LoRussoP.M. MunsterP.N. CampbellK. GaddyD.F. LeonardS.C. GerettiE. BlockerS.J. KirpotinD.B. MoyoV. WickhamT.J. HendriksB.S. 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer.Clin. Cancer Res.201723154190420210.1158/1078‑0432.CCR‑16‑319328298546
    [Google Scholar]
  110. van VlerkenL.E. DuanZ. LittleS.R. SeidenM.V. AmijiM.M. Biodistribution and pharmacokinetic analysis of Paclitaxel and ceramide administered in multifunctional polymer-blend nanoparticles in drug resistant breast cancer model.Mol. Pharm.20085451652610.1021/mp800030k18616278
    [Google Scholar]
  111. CuiY. ZhangM. ZengF. JinH. XuQ. HuangY. Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy.ACS Appl. Mater. Interfaces2016847321593216910.1021/acsami.6b1017527808492
    [Google Scholar]
  112. PeerD. MargalitR. Tumor-targeted hyaluronan nanoliposomes increase the antitumor activity of liposomal Doxorubicin in syngeneic and human xenograft mouse tumor models.Neoplasia20046434335310.1593/neo.0346015256056
    [Google Scholar]
  113. ShiJ. XiaoZ. KamalyN. FarokhzadO.C. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation.Acc. Chem. Res.201144101123113410.1021/ar200054n21692448
    [Google Scholar]
  114. XuR. ZhangG. MaiJ. DengX. Segura-IbarraV. WuS. ShenJ. LiuH. HuZ. ChenL. HuangY. KoayE. HuangY. LiuJ. EnsorJ.E. BlancoE. LiuX. FerrariM. ShenH. An injectable nanoparticle generator enhances delivery of cancer therapeutics.Nat. Biotechnol.201634441441810.1038/nbt.350626974511
    [Google Scholar]
  115. LevyO. BrennenW.N. HanE. RosenD.M. MusabeyezuJ. SafaeeH. RanganathS. NgaiJ. HeineltM. MiltonY. WangH. BhagchandaniS.H. JoshiN. BhowmickN. DenmeadeS.R. IsaacsJ.T. KarpJ.M. A prodrug-doped cellular Trojan Horse for the potential treatment of prostate cancer.Biomaterials20169114015010.1016/j.biomaterials.2016.03.02327019026
    [Google Scholar]
  116. HuangB. AbrahamW.D. ZhengY. Bustamante LópezS.C. LuoS.S. IrvineD.J. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells.Sci. Transl. Med.20157291291ra9410.1126/scitranslmed.aaa544726062846
    [Google Scholar]
  117. BertrandN. WuJ. XuX. KamalyN. FarokhzadO.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology.Adv. Drug Deliv. Rev.20146622510.1016/j.addr.2013.11.00924270007
    [Google Scholar]
  118. FarokhzadO.C. LangerR. Impact of nanotechnology on drug delivery.ACS Nano200931162010.1021/nn900002m19206243
    [Google Scholar]
  119. KirpotinD.B. DrummondD.C. ShaoY. ShalabyM.R. HongK. NielsenU.B. MarksJ.D. BenzC.C. ParkJ.W. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models.Cancer Res.200666136732674010.1158/0008‑5472.CAN‑05‑419916818648
    [Google Scholar]
  120. SchmidtM.M. WittrupK.D. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting.Mol. Cancer Ther.20098102861287110.1158/1535‑7163.MCT‑09‑019519825804
    [Google Scholar]
  121. SahayG. AlakhovaD.Y. KabanovA.V. Endocytosis of nanomedicines.J. Control. Release2010145318219510.1016/j.jconrel.2010.01.03620226220
    [Google Scholar]
  122. SahayG. QuerbesW. AlabiC. EltoukhyA. SarkarS. ZurenkoC. KaragiannisE. LoveK. ChenD. ZoncuR. BuganimY. SchroederA. LangerR. AndersonD.G. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling.Nat. Biotechnol.201331765365810.1038/nbt.261423792629
    [Google Scholar]
  123. GilleronJ. QuerbesW. ZeigererA. BorodovskyA. MarsicoG. SchubertU. ManygoatsK. SeifertS. AndreeC. StöterM. Epstein-BarashH. ZhangL. KotelianskyV. FitzgeraldK. FavaE. BickleM. KalaidzidisY. AkincA. MaierM. ZerialM. Image-based analysis of lipid nanoparticle–mediated siRNA delivery, intracellular trafficking and endosomal escape.Nat. Biotechnol.201331763864610.1038/nbt.261223792630
    [Google Scholar]
  124. MeachamC.E. MorrisonS.J. Tumour heterogeneity and cancer cell plasticity.Nature2013501746732833710.1038/nature1262424048065
    [Google Scholar]
  125. StuchberyR. KurganovsN. McCoyP. NelsonC. HayesV. CorcoranN. HovensC. Target acquired: progress and promise of targeted therapeutics in the treatment of prostate cancer.Curr. Cancer Drug Targ.201515539440510.2174/156800961566615041611345325882061
    [Google Scholar]
  126. KedmiR. VeigaN. RamishettiS. GoldsmithM. RosenblumD. DammesN. Hazan-HalevyI. NaharyL. Leviatan-Ben-AryeS. HarlevM. BehlkeM. BenharI. LiebermanJ. PeerD. A modular platform for targeted RNAi therapeutics.Nat. Nanotechnol.201813321421910.1038/s41565‑017‑0043‑529379205
    [Google Scholar]
  127. BertrandN. LerouxJ.C. The journey of a drug-carrier in the body: An anatomo-physiological perspective.J. Control. Release2012161215216310.1016/j.jconrel.2011.09.09822001607
    [Google Scholar]
  128. MahmoudiM. BertrandN. ZopeH. FarokhzadO.C. Emerging understanding of the protein corona at the nano-bio interfaces.Nano Today201611681783210.1016/j.nantod.2016.10.005
    [Google Scholar]
  129. CaraccioloG. FarokhzadO.C. MahmoudiM. Biological identity of nanoparticles in vivo : Clinical implications of the protein corona.Trends Biotechnol.201735325726410.1016/j.tibtech.2016.08.01127663778
    [Google Scholar]
  130. SalvatiA. PitekA.S. MonopoliM.P. PrapainopK. BombelliF.B. HristovD.R. KellyP.M. ÅbergC. MahonE. DawsonK.A. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface.Nat. Nanotechnol.20138213714310.1038/nnano.2012.23723334168
    [Google Scholar]
  131. KedmiR. Ben-ArieN. PeerD. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation.Biomaterials201031266867687510.1016/j.biomaterials.2010.05.02720541799
    [Google Scholar]
  132. WalkeyC.D. OlsenJ.B. GuoH. EmiliA. ChanW.C.W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake.J. Am. Chem. Soc.201213442139214710.1021/ja208433822191645
    [Google Scholar]
  133. SchöttlerS. BeckerG. WinzenS. SteinbachT. MohrK. LandfesterK. MailänderV. WurmF.R. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers.Nat. Nanotechnol.201611437237710.1038/nnano.2015.33026878141
    [Google Scholar]
  134. DobrovolskaiaM.A. McNeilS.E. Immunological properties of engineered nanomaterials.Nat. Nanotechnol.20072846947810.1038/nnano.2007.22318654343
    [Google Scholar]
  135. SzebeniJ. MuggiaF. GabizonA. BarenholzY. Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: Prediction and prevention.Adv. Drug Deliv. Rev.201163121020103010.1016/j.addr.2011.06.01721787819
    [Google Scholar]
  136. RodriguezP.L. HaradaT. ChristianD.A. PantanoD.A. TsaiR.K. DischerD.E. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles.Science2013339612297197510.1126/science.122956823430657
    [Google Scholar]
  137. ParodiA. QuattrocchiN. van de VenA.L. ChiappiniC. EvangelopoulosM. MartinezJ.O. BrownB.S. KhaledS.Z. YazdiI.K. EnzoM.V. IsenhartL. FerrariM. TasciottiE. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions.Nat. Nanotechnol.201381616810.1038/nnano.2012.21223241654
    [Google Scholar]
  138. FarokhzadO.C. Platelet mimicry.Nature20155267571474810.1038/nature1521826375011
    [Google Scholar]
  139. HuQ. SunW. QianC. WangC. BombaH.N. GuZ. Anticancer platelet-mimicking nanovehicles.Adv. Mater.201527447043705010.1002/adma.20150332326416431
    [Google Scholar]
  140. ErkocP CinayGE KizilelS Targeted drug delivery: overcoming barriers through the design of novel delivery vehicles.Rec. Tren. Targ. Dru. Deliv.SM GroupChapterSagar Naskar2015
    [Google Scholar]
  141. JinK.T. LuZ.B. ChenJ.Y. LiuY.Y. LanH.R. DongH.Y. YangF. ZhaoY-Y. ChenX-Y. Recent trends in nanocarrier-based targeted chemotherapy: selective delivery of anticancer drugs for effective lung, colon, cervical, and breast cancer treatment.J. Nanomater.2020202011410.1155/2020/9184284
    [Google Scholar]
  142. SindhwaniS. SyedA.M. NgaiJ. KingstonB.R. MaiorinoL. RothschildJ. MacMillanP. ZhangY. RajeshN.U. HoangT. WuJ.L.Y. WilhelmS. ZilmanA. GaddeS. SulaimanA. OuyangB. LinZ. WangL. EgebladM. ChanW.C.W. The entry of nanoparticles into solid tumours.Nat. Mater.202019556657510.1038/s41563‑019‑0566‑231932672
    [Google Scholar]
  143. HeB. SuiX. YuB. WangS. ShenY. CongH. Recent advances in drug delivery systems for enhancing drug penetration into tumors.Drug Deliv.20202711474149010.1080/10717544.2020.183110633100061
    [Google Scholar]
  144. MillsJ.K. NeedhamD. Targeted drug delivery.Exp Opin Ther Pat19999111499151310.1517/13543776.9.11.1499
    [Google Scholar]
  145. DevarajanP.V. JainS. Targeted drug delivery: concepts and design.New York Dordrecht London. Cham, HeidelbergSpringer201510.1007/978‑3‑319‑11355‑5
    [Google Scholar]
  146. KıvılcımO. HakanE. SemaÇ. Novel advances in targeted drug delivery.J. Drug Target.201726863364210.1080/1061186X.2017.140107629096554
    [Google Scholar]
  147. ScottR.C. CrabbeD. KrynskaB. AnsariR. KianiM.F. Aiming for the heart: targeted delivery of drugs to diseased cardiac tissue.Expert Opin. Drug Deliv.20085445947010.1517/17425247.5.4.45918426386
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873290199240424062503
Loading
/content/journals/cnanom/10.2174/0124681873290199240424062503
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test