Skip to content
2000
image of Nanotechnology Based Herbal Drug Delivery System: Current Insights and Future Prospects

Abstract

Herbal medicines, integral to human history, remain vital in developing countries owing to the high costs of synthetic drugs, with 80% of the population relying on traditional practices. There has been an escalating focus within the scientific community on the exploration of phytoconstituents. This growing interest is due to the diverse benefits offered by herbal or plant-based ingredients. Despite the dominance of allopathic treatments, medicinal plants are still widely used but face challenges like poor absorption and low bioavailability. Many plant-derived pharmacologically active compounds, such as tannins, flavonoids, and terpenoids, show poor solubility in water. This low solubility, amalgamated with their inability to efficiently cross lipid-cell membranes due to their large molecular size, considerably hinders their absorption. These factors lead to declined efficacy and lower bioavailability of these compounds. Nanotechnology enhances the effectiveness of medicinal plants through strategies such as polymeric nanoparticles (NPs), solid lipid nanoparticles (SLNPs) and liposomes, improving solubility, protection and controlled release. These advances revolutionize drug delivery, surging the bioavailability and therapeutic value of herbal formulations. Nanomedicine employs NPs and nanorobots for enhanced bioavailability, solubility and targeted delivery, despite challenges like understanding working principles, potential toxicity and production scalability. Innovations in biopolymer-based systems, including chitosan and alginate NPs and advanced delivery systems like dendrimers and inorganic NPs, show significant potential. NPs have been effectively utilized to improve the pharmacokinetic and pharmacodynamic properties of various drugs. By integrating biotechnological systems and phytosomes, the bioavailability and bioactivity of herbal drug formulations can be significantly enhanced. The future of nanomedicine is promising, with ongoing research enhancing therapy precision and effectiveness and reducing adverse effects, making continued exploration in this field highly worthwhile.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873349580241113081309
2024-11-18
2025-01-13
Loading full text...

Full text loading...

References

  1. Dhara A. Nayak A. Introduction to lifestyle diseases and role of herbal medicines. Role of Herbal Medicines Springer Singapore Dhara A.K. Mandal S.C. 1 11 2024 10.1007/978‑981‑99‑7703‑1_1
    [Google Scholar]
  2. Bonifácio B.V. Silva P.B. Ramos M.A. Negri K.M. Bauab T.M. Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int. J. Nanomedicine 2014 9 1 15 24363556
    [Google Scholar]
  3. Souza-Moreira T.M. Salgado H.R.N. Pietro R.C.L.R. Brazil in the context of quality control of medicinal plants. Rev. Bras. Farmacogn. 2010 20 3 435 440 10.1590/S0102‑695X2010000300023
    [Google Scholar]
  4. Costa E.M.M.B. Barbosa A.S. Arruda T.A. Oliveira P.T. Dametto F.R. Carvalho R.A. Melo M.D. in vitro study of the antimicrobial action of plant extracts against Enterococcus faecalis J. Bras. Patol. Med. Lab. 2010 46 3 175 180 10.1590/S1676‑24442010000300004
    [Google Scholar]
  5. Verma S. Singh S. Current and future status of herbal medicines. Vet. World 2008 2 2 347 10.5455/vetworld.2008.347‑350
    [Google Scholar]
  6. Mazzolin L.P. Nasser A.L.M. Moraes T.M. Santos R.C. Nishijima C.M. Santos F.V. Varanda E.A. Bauab T.M. da Rocha L.R.M. Di Stasi L.C. Vilegas W. Hiruma-Lima C.A. Qualea parviflora Mart.: An integrative study to validate the gastroprotective, antidiarrheal, antihemorragic and mutagenic action. J. Ethnopharmacol. 2010 127 2 508 514 10.1016/j.jep.2009.10.005 19833186
    [Google Scholar]
  7. Kluczynik C.E.N. Souza J.H.d. Palmeira J.D. Ferreira S.B. Antunes R.M.P. Arruda T.A.d. Morais M.R. Catão R.M.R. Sensitivity profile of Salmonella sp. from aquatic environment to commercial antimicrobials and hydroalcoholic extracts of medicinal plants. Rev. Bras. Anal. Clin. 2010 42 4 141 144
    [Google Scholar]
  8. Kesarwani K. Gupta R. Mukerjee A. Bioavailability enhancers of herbal origin: An overview. Asian Pac. J. Trop. Biomed. 2013 3 4 253 266 10.1016/S2221‑1691(13)60060‑X 23620848
    [Google Scholar]
  9. Holmberg K. Handbook of Applied Surface and Colloid Chemistry John Wiley 2002
    [Google Scholar]
  10. Ajazuddin Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia 2010 81 7 680 689 10.1016/j.fitote.2010.05.001 20471457
    [Google Scholar]
  11. Sharma S. Shrestha B. Bhuyan N.R. Majumdar S. Chowdhury S. Mazumder R. Chemometric method development for the determination of naringin and verapamil. Bull. Natl. Res. Cent. 2024 48 1 13 10.1186/s42269‑024‑01169‑3
    [Google Scholar]
  12. Grill A. Johnston N. Sadhukha T. Panyam J. A review of select recent patents on novel nanocarriers. Recent Pat. Drug Deliv. Formul. 2009 3 2 137 142 10.2174/187221109788452276 19519573
    [Google Scholar]
  13. Venugopal J. Prabhakaran M. Low S. Choon A. Deepika G. Giri Dev V. Ramakrishna S. Continuous nanostructures for the controlled release of drugs. Curr. Pharm. Des. 2009 15 15 1799 1808 10.2174/138161209788186344 19442191
    [Google Scholar]
  14. Chorilli M. Brizante A.C. Rodrigues C.A. Salgado H.R.N. Pombo-Nascimento E. Ventura D.M. General aspects of transdermal drug delivery systems. Rev. Bras. Farm. 2007 88 7 13
    [Google Scholar]
  15. Lee R.W. Shenoy D.B. Sheel R. Chapter 2 - Micellar nanoparticles: Applications for topical and passive transdermal drug delivery. Handbook of Non-Invasive Drug Delivery Systems William Andrew 2010 37 58 10.1016/B978‑0‑8155‑2025‑2.10002‑2
    [Google Scholar]
  16. Yadav A. Ghune M. Jain D.K. Nano-medicine based drug delivery system. J. Adv. Pharm. Educ. Res. 2011 1 201 213
    [Google Scholar]
  17. Singh R. Tiwari S. Tawaniya J. Review on nanotechnology with several aspects. Int. J. Res. Comput. Eng. Electron. 2013 2 1 8
    [Google Scholar]
  18. Ghosh V. Saranya S. Mukherjee A. Chandrasekaran N. Antibacterial microemulsion prevents sepsis and triggers healing of wound in wistar rats. Colloids Surf. B Biointerfaces 2013 105 152 157 10.1016/j.colsurfb.2013.01.009 23357738
    [Google Scholar]
  19. Rajendran R. Radhai R. Kotresh T.M. Csiszar E. Development of antimicrobial cotton fabrics using herb loaded nanoparticles. Carbohydr. Polym. 2013 91 2 613 617 10.1016/j.carbpol.2012.08.064 23121954
    [Google Scholar]
  20. Bhattacharya S. Phytosomes: The new technology for enhancement of bioavailability of botanicals and nutraceuticals. Int. J. Health Res. 2009 2 3 225 232 10.4314/ijhr.v2i3.47905
    [Google Scholar]
  21. Su Y.L. Fu Z.Y. Zhang J.Y. Wang W.M. Wang H. Wang Y.C. Zhang Q.J. Microencapsulation of Radix Salvia miltiorrhiza nanoparticles by spray-drying. Powder Technol. 2008 184 1 114 121 10.1016/j.powtec.2007.08.014
    [Google Scholar]
  22. Kapoor D.U. Garg R. Maheshwari R. Gaur M. Sharma D. Prajapati B.G. Advancing psoriasis drug delivery through topical liposomes. Z. Naturforsch. C J. Biosci. 2024 10.1515/znc‑2024‑0118 39037729
    [Google Scholar]
  23. Kapoor D.U. Gaur M. Parihar A. Prajapati B.G. Singh S. Patel R.J. Phosphatidylcholine (PCL) fortified nano-phytopharmaceuticals for improvement of therapeutic efficacy. EXCLI J. 2023 22 880 903 38317861 10.17179/excli2023‑6345
    [Google Scholar]
  24. Prajapati B.G. Pandey V. Sharma S. Patel S. Shah D.P. Kapoor D.U. Carbon nanodots: An illuminating paradigm in production, characterization, and oncological targeting methodologies - A review. Bionanoscience 2024 10.1007/s12668‑024‑01567‑x
    [Google Scholar]
  25. Sivamaruthi B.S. Kapoor D.U. Kukkar R.R. Gaur M. Elossaily G.M. Prajapati B.G. Chaiyasut C. Mesoporous silica nanoparticles: Types, synthesis, role in the treatment of alzheimer’s disease, and other applications. Pharmaceutics 2023 15 12 2666 10.3390/pharmaceutics15122666 38140007
    [Google Scholar]
  26. Kolenyak dos Santos F. Helena Oyafuso M. Priscila Kiill C. Palmira Daflon-Gremiao M. Chorilli M. Nanotechnology-based drug delivery systems for treatment of hyperproliferative skin diseases - A review. Curr. Nanosci. 2013 9 159 167
    [Google Scholar]
  27. Obeid M.A. Al Qaraghuli M.M. Alsaadi M. Alzahrani A.R. Niwasabutra K. Ferro V.A. Delivering natural products and biotherapeutics to improve drug efficacy. Ther. Deliv. 2017 8 11 947 956 10.4155/tde‑2017‑0060 29061102
    [Google Scholar]
  28. Miele E. Spinelli G.P. Miele E. Di Fabrizio E. Ferretti E. Tomao S. Gulino A. Nanoparticle-based delivery of small interfering RNA: Challenges for cancer therapy. Int. J. Nanomedicine 2012 7 3637 3657 22915840
    [Google Scholar]
  29. Kapoor D.U. Rani D. Gupta M.M. Sharma D. Nanotherapeutics for reversal of multidrug resistance in chemotherapy with metal nanocomposites. Metal Nanocomposites in Nanotherapeutics for Oxidative Stress-Induced Metabolic Disorders CRC Press 2024 349 371
    [Google Scholar]
  30. Patra J.K. Das G. Fraceto L.F. Campos E.V.R. Rodriguez-Torres M.P. Acosta-Torres L.S. Diaz-Torres L.A. Grillo R. Swamy M.K. Sharma S. Habtemariam S. Shin H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018 16 1 71 10.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  31. McNamara K. Tofail S.A.M. Nanosystems: the use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Phys. Chem. Chem. Phys. 2015 17 42 27981 27995 10.1039/C5CP00831J 26024211
    [Google Scholar]
  32. Saadeh Y. Vyas D. Nanorobotic applications in medicine: Current proposals and designs. Am. J. Robot. Surg. 2014 1 1 4 11 10.1166/ajrs.2014.1010 26361635
    [Google Scholar]
  33. Oliveira O.N. Iost R.M. Siqueira J.R. Crespilho F.N. Caseli L. Nanomaterials for diagnosis: Challenges and applications in smart devices based on molecular recognition. ACS Appl. Mater. Interfaces 2014 6 17 14745 14766 10.1021/am5015056 24968359
    [Google Scholar]
  34. de Jong W.H. Borm P.J.A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine 2008 3 2 133 149 10.2147/IJN.S596 18686775
    [Google Scholar]
  35. Holzinger M. Le Goff A. Cosnier S. Nanomaterials for biosensing applications: A review. Front Chem. 2014 2 63 10.3389/fchem.2014.00063 25221775
    [Google Scholar]
  36. Golovin Y.I. Gribanovsky S.L. Golovin D.Y. Klyachko N.L. Majouga A.G. Master А.M. Sokolsky M. Kabanov A.V. Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields. J. Control. Release 2015 219 43 60 10.1016/j.jconrel.2015.09.038 26407671
    [Google Scholar]
  37. Mirza A.Z. Siddiqui F.A. Nanomedicine and drug delivery: A mini review. Int. Nano Lett. 2014 4 1 94 10.1007/s40089‑014‑0094‑7
    [Google Scholar]
  38. Lu H. Wang J. Wang T. Zhong J. Bao Y. Hao H. Recent progress on nanostructures for drug delivery applications. J. Nanomater. 2016 2016 1 12 10.1155/2016/5762431
    [Google Scholar]
  39. Bhattacharya S. Prajapati B.G. Ali N. Mohany M. Aboul-Soud M.A.M. Khan R. Therapeutic potential of methotrexate-loaded superparamagnetic iron oxide nanoparticles coated with poly (lactic-co-glycolic acid) and polyethylene glycol against breast cancer: development, characterization, and comprehensive in vitro investigation. ACS Omega 2023 8 30 27634 27649 10.1021/acsomega.3c03430 37546601
    [Google Scholar]
  40. Chen F. Ehlerding E.B. Cai W. Theranostic Nanoparticles. J. Nucl. Med. 2014 55 12 1919 1922 10.2967/jnumed.114.146019 25413134
    [Google Scholar]
  41. Swierczewska M. Han H.S. Kim K. Park J.H. Lee S. Polysaccharide-based nanoparticles for theranostic nanomedicine. Adv. Drug Deliv. Rev. 2016 99 Pt A 70 84 10.1016/j.addr.2015.11.015 26639578
    [Google Scholar]
  42. Chen K. Chen X. Design and development of molecular imaging probes. Curr. Top. Med. Chem. 2010 10 12 1227 1236 10.2174/156802610791384225 20388106
    [Google Scholar]
  43. Sathiyabama M. Boomija R.V. Muthukumar S. Gandhi M. Salma S. Prinsha T.K. Rengasamy B. Green synthesis of chitosan nanoparticles using tea extract and its antimicrobial activity against economically important phytopathogens of rice. Sci. Rep. 2024 14 1 7381 10.1038/s41598‑024‑58066‑y 38548964
    [Google Scholar]
  44. Lee C.M. Jang D. Kim J. Cheong S.J. Kim E.M. Jeong M.H. Kim S.H. Kim D.W. Lim S.T. Sohn M.H. Jeong Y.Y. Jeong H.J. Oleyl-chitosan nanoparticles based on a dual probe for optical/MR imaging in vivo. Bioconjug. Chem. 2011 22 2 186 192 10.1021/bc100241a 21243999
    [Google Scholar]
  45. Yang S.J. Lin F.H. Tsai H.M. Lin C.F. Chin H.C. Wong J.M. Shieh M.J. Alginate-folic acid-modified chitosan nanoparticles for photodynamic detection of intestinal neoplasms. Biomaterials 2011 32 8 2174 2182 10.1016/j.biomaterials.2010.11.039 21163518
    [Google Scholar]
  46. Lapčík L. Lapčík L. De Smedt S. Demeester J. Chabreček P. Hyaluronan: Preparation, structure, properties, and applications. Chem. Rev. 1998 98 8 2663 2684 10.1021/cr941199z 11848975
    [Google Scholar]
  47. Kim H. Kim Y. Kim I.H. Kim K. Choi Y. ROS-responsive activatable photosensitizing agent for imaging and photodynamic therapy of activated macrophages. Theranostics 2014 4 1 1 11 10.7150/thno.7101 24396511
    [Google Scholar]
  48. Wang G. Gao S. Tian R. Miller-Kleinhenz J. Qin Z. Liu T. Li L. Zhang F. Ma Q. Zhu L. Theranostic hyaluronic acid–iron micellar nanoparticles for magnetic-field-enhanced in vivo cancer chemotherapy. ChemMedChem 2018 13 1 78 86 10.1002/cmdc.201700515 29086481
    [Google Scholar]
  49. Choi K.Y. Chung H. Min K.H. Yoon H.Y. Kim K. Park J.H. Kwon I.C. Jeong S.Y. Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 2010 31 1 106 114 10.1016/j.biomaterials.2009.09.030 19783037
    [Google Scholar]
  50. Choi K.Y. Jeon E.J. Yoon H.Y. Lee B.S. Na J.H. Min K.H. Kim S.Y. Myung S.J. Lee S. Chen X. Kwon I.C. Choi K. Jeong S.Y. Kim K. Park J.H. Theranostic nanoparticles based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer. Biomaterials 2012 33 26 6186 6193 10.1016/j.biomaterials.2012.05.029 22687759
    [Google Scholar]
  51. Chowdhury S. Chakraborty S. Maity M. Hasnain M.S. Nayak A.K. Chapter 7 - Biocomposites of alginates in drug delivery. Alginates in Drug Delivery Academic Press 2020 153 185 10.1016/B978‑0‑12‑817640‑5.00007‑8
    [Google Scholar]
  52. Lee K.Y. Mooney D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012 37 1 106 126 10.1016/j.progpolymsci.2011.06.003 22125349
    [Google Scholar]
  53. Baghbani F. Moztarzadeh F. Mohandesi J.A. Yazdian F. Mokhtari-Dizaji M. Novel alginate-stabilized doxorubicin-loaded nanodroplets for ultrasounic theranosis of breast cancer. Int. J. Biol. Macromol. 2016 93 Pt A 512 519 10.1016/j.ijbiomac.2016.09.008 27601134
    [Google Scholar]
  54. Podgórna K. Szczepanowicz K. Piotrowski M. Gajdošová M. Štěpánek F. Warszyński P. Gadolinium alginate nanogels for theranostic applications. Colloids Surf. B Biointerfaces 2017 153 183 189 10.1016/j.colsurfb.2017.02.026 28242371
    [Google Scholar]
  55. Moscovici M. Present and future medical applications of microbial exopolysaccharides. Front. Microbiol. 2015 6 1012 10.3389/fmicb.2015.01012 26483763
    [Google Scholar]
  56. Ding C. Li Z. A review of drug release mechanisms from nanocarrier systems. Mater. Sci. Eng. C 2017 76 1440 1453 10.1016/j.msec.2017.03.130 28482511
    [Google Scholar]
  57. Hong S.P. Kang S.H. Kim D.K. Kang B.S. Paramagnetic Gd2O3sub> nanoparticle-based targeting theranostic agent for C6 rat glioma cell. J. Nanomater. 2016 2016 1 10 10.1155/2016/7617894
    [Google Scholar]
  58. Mignani S. El Kazzouli S. Bousmina M. Majoral J.P. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: A concise overview. Adv. Drug Deliv. Rev. 2013 65 10 1316 1330 10.1016/j.addr.2013.01.001 23415951
    [Google Scholar]
  59. Lounnas V. Ritschel T. Kelder J. McGuire R. Bywater R.P. Foloppe N. Current progress in structure-based rational drug design marks a new mindset in drug discovery. Comput. Struct. Biotechnol. J. 2013 5 6 e201302011 10.5936/csbj.201302011 24688704
    [Google Scholar]
  60. Mavromoustakos T. Durdagi S. Koukoulitsa C. Simcic M. Papadopoulos M.G. Hodoscek M. Grdadolnik S.G. Strategies in the rational drug design. Curr. Med. Chem. 2011 18 17 2517 2530 10.2174/092986711795933731 21568895
    [Google Scholar]
  61. Chen G. Roy I. Yang C. Prasad P.N. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 2016 116 5 2826 2885 10.1021/acs.chemrev.5b00148 26799741
    [Google Scholar]
  62. Pelaz B. Alexiou C. Alvarez-Puebla R.A. Alves F. Andrews A.M. Ashraf S. Balogh L.P. Ballerini L. Bestetti A. Brendel C. Bosi S. Carril M. Chan W.C.W. Chen C. Chen X. Chen X. Cheng Z. Cui D. Du J. Dullin C. Escudero A. Feliu N. Gao M. George M. Gogotsi Y. Grünweller A. Gu Z. Halas N.J. Hampp N. Hartmann R.K. Hersam M.C. Hunziker P. Jian J. Jiang X. Jungebluth P. Kadhiresan P. Kataoka K. Khademhosseini A. Kopeček J. Kotov N.A. Krug H.F. Lee D.S. Lehr C.M. Leong K.W. Liang X.J. Ling Lim M. Liz-Marzán L.M. Ma X. Macchiarini P. Meng H. Möhwald H. Mulvaney P. Nel A.E. Nie S. Nordlander P. Okano T. Oliveira J. Park T.H. Penner R.M. Prato M. Puntes V. Rotello V.M. Samarakoon A. Schaak R.E. Shen Y. Sjöqvist S. Skirtach A.G. Soliman M.G. Stevens M.M. Sung H.W. Tang B.Z. Tietze R. Udugama B.N. VanEpps J.S. Weil T. Weiss P.S. Willner I. Wu Y. Yang L. Yue Z. Zhang Q. Zhang Q. Zhang X.E. Zhao Y. Zhou X. Parak W.J. Diverse applications of nanomedicine. ACS Nano 2017 11 3 2313 2381 10.1021/acsnano.6b06040 28290206
    [Google Scholar]
  63. Mattos B.D. Rojas O.J. Magalhães W.L.E. Biogenic silica nanoparticles loaded with neem bark extract as green, slow-release biocide. J. Clean. Prod. 2017 142 4206 4213 10.1016/j.jclepro.2016.11.183
    [Google Scholar]
  64. Kinnear C. Moore T.L. Rodriguez-Lorenzo L. Rothen-Rutishauser B. Petri-Fink A. Form follows function: Nanoparticle shape and its implications for nanomedicine. Chem. Rev. 2017 117 17 11476 11521 10.1021/acs.chemrev.7b00194 28862437
    [Google Scholar]
  65. Wong P.T. Choi S.K. Mechanisms of drug release in nanotherapeutic delivery systems. Chem. Rev. 2015 115 9 3388 3432 10.1021/cr5004634 25914945
    [Google Scholar]
  66. Siepmann F. Herrmann S. Winter G. Siepmann J. A novel mathematical model quantifying drug release from lipid implants. J. Control. Release 2008 128 3 233 240 10.1016/j.jconrel.2008.03.009 18442866
    [Google Scholar]
  67. Lee J.H. Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem. Eng. Sci. 2015 125 75 84 10.1016/j.ces.2014.08.046 25684779
    [Google Scholar]
  68. Kamaly N. Yameen B. Wu J. Farokhzad O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev. 2016 116 4 2602 2663 10.1021/acs.chemrev.5b00346 26854975
    [Google Scholar]
  69. Torchilin V. Multifunctional nanocarriers. Adv. Drug Deliv. Rev. 2006 58 14 1532 1555 10.1016/j.addr.2006.09.009 17092599
    [Google Scholar]
  70. Pelaz B. del Pino P. Maffre P. Hartmann R. Gallego M. Rivera-Fernández S. de la Fuente J.M. Nienhaus G.U. Parak W.J. Surface functionalization of nanoparticles with polyethylene glycol: Effects on protein adsorption and cellular uptake. ACS Nano 2015 9 7 6996 7008 10.1021/acsnano.5b01326 26079146
    [Google Scholar]
  71. Almalik A. Benabdelkamel H. Masood A. Alanazi I.O. Alradwan I. Majrashi M.A. Alfadda A.A. Alghamdi W.M. Alrabiah H. Tirelli N. Alhasan A.H. Hyaluronic acid coated chitosan nanoparticles reduced the immunogenicity of the formed protein corona. Sci. Rep. 2017 7 1 10542 10.1038/s41598‑017‑10836‑7 28874846
    [Google Scholar]
  72. Martens T.F. Remaut K. Deschout H. Engbersen J.F. Hennink W.E. van Steenbergen M.J. Demeester J. De Smedt S.C. Braeckmans K. Coating nanocarriers with hyaluronic acid facilitates intravitreal drug delivery for retinal gene therapy. J. Control Release 202 83 92 2015 10.1016/j.jconrel.2015.01.030
    [Google Scholar]
  73. Müller J. Bauer K.N. Prozeller D. Simon J. Mailänder V. Wurm F.R. Winzen S. Landfester K. Coating nanoparticles with tunable surfactants facilitates control over the protein corona. Biomaterials 2017 115 1 8 10.1016/j.biomaterials.2016.11.015 27871002
    [Google Scholar]
  74. Gao H. Yang Z. Zhang S. Cao S. Shen S. Pang Z. Jiang X. Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci. Rep. 2013 3 1 2534 10.1038/srep02534 23982586
    [Google Scholar]
  75. Jain A. Jain S.K. Ligand-appended BBB-targeted nanocarriers (LABTNs). Crit. Rev. Ther. Drug Carrier Syst. 2015 32 2 149 180 10.1615/CritRevTherDrugCarrierSyst.2015010903 25955883
    [Google Scholar]
  76. Anirudhan T.S. Nair A.S. Temperature and ultrasound sensitive gatekeepers for the controlled release of chemotherapeutic drugs from mesoporous silica nanoparticles. J. Mater. Chem. B Mater. Biol. Med. 2018 6 3 428 439 10.1039/C7TB02292A 32254522
    [Google Scholar]
  77. Al-Ahmady Z. Kostarelos K. Chemical components for the design of temperature-responsive vesicles as cancer therapeutics. Chem. Rev. 2016 116 6 3883 3918 10.1021/acs.chemrev.5b00578 26934630
    [Google Scholar]
  78. Zhang Z. Zhang D. Wei L. Wang X. Xu Y. Li H.W. Ma M. Chen B. Xiao L. Temperature responsive fluorescent polymer nanoparticles (TRFNPs) for cellular imaging and controlled releasing of drug to living cells. Colloids Surf. B Biointerfaces 2017 159 905 912 10.1016/j.colsurfb.2017.08.060 28898952
    [Google Scholar]
  79. Bai Y. Xie F.Y. Tian W. Controlled self-assembly of thermo-responsive amphiphilic H-shaped polymer for adjustable drug release. Chin. J. Polym. Sci. 2018 36 3 406 416 10.1007/s10118‑018‑2086‑y
    [Google Scholar]
  80. Guo Y. Zhang Y. Ma J. Li Q. Li Y. Zhou X. Zhao D. Song H. Chen Q. Zhu X. Light/magnetic hyperthermia triggered drug released from multi-functional thermo-sensitive magnetoliposomes for precise cancer synergetic theranostics. J. Control Release 272 145 158 2018 10.1016/j.jconrel.2017.04.028 28442407
    [Google Scholar]
  81. Hervault A. Thanh N.T.K. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale 2014 6 20 11553 11573 10.1039/C4NR03482A 25212238
    [Google Scholar]
  82. Mathiyazhakan M. Wiraja C. Xu C. A concise review of gold nanoparticles-based photo-responsive liposomes for controlled drug delivery. Nano-Micro Lett. 2018 10 1 10 10.1007/s40820‑017‑0166‑0 30393659
    [Google Scholar]
  83. Xu L. Qiu L. Sheng Y. Sun Y. Deng L. Li X. Bradley M. Zhang R. Biodegradable pH-responsive hydrogels for controlled dual-drug release. J. Mater. Chem. B Mater. Biol. Med. 2018 6 3 510 517 10.1039/C7TB01851G 32254530
    [Google Scholar]
  84. Ma G. Lin W. Yuan Z. Wu J. Qian H. Xu L. Chen S. Development of ionic strength/pH/enzyme triple-responsive zwitterionic hydrogel of the mixed 1-glutamic acid and 1-lysine polypeptide for site-specific drug delivery. J. Mater. Chem. B Mater. Biol. Med. 2017 5 5 935 943 10.1039/C6TB02407F 32263871
    [Google Scholar]
  85. Grillo R. Gallo J. Stroppa D.G. Carbó-Argibay E. Lima R. Fraceto L.F. Bañobre-López M. Sub-micrometer magnetic nanocomposites: Insights into the effect of magnetic nanoparticles interactions on the optimization of SAR and MRI performance. ACS Appl. Mater. Interfaces 2016 8 39 25777 25787 10.1021/acsami.6b08663 27595772
    [Google Scholar]
  86. Alonso J. Khurshid H. Devkota J. Nemati Z. Khadka N.K. Srikanth H. Pan J. Phan M.H. Superparamagnetic nanoparticles encapsulated in lipid vesicles for advanced magnetic hyperthermia and biodetection. J. Appl. Phys. 2016 119 8 083904 10.1063/1.4942618
    [Google Scholar]
  87. Ulbrich K. Holá K. Šubr V. Bakandritsos A. Tuček J. Zbořil R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 2016 116 9 5338 5431 10.1021/acs.chemrev.5b00589 27109701
    [Google Scholar]
  88. Chen C.W. Syu W.J. Huang T.C. Lee Y.C. Hsiao J.K. Huang K.Y. Yu H.P. Liao M.Y. Lai P.S. Encapsulation of Au/Fe3O4 nanoparticles into a polymer nanoarchitecture with combined near infrared-triggered chemo-photothermal therapy based on intracellular secondary protein understanding. J. Mater. Chem. B Mater. Biol. Med. 2017 5 29 5774 5782 10.1039/C7TB00944E 32264211
    [Google Scholar]
  89. Jahangirian H. Ghasemian lemraski E. Webster T.J. Rafiee-Moghaddam R. Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: Green nanomedicine. Int. J. Nanomedicine 2017 12 2957 2978 10.2147/IJN.S127683 28442906
    [Google Scholar]
  90. Portero A. Remuñán-López C. Criado M.T. Alonso M.J. Reacetylated chitosan microspheres for controlled delivery of anti-microbial agents to the gastric mucosa. J. Microencapsul. 2002 19 6 797 809 10.1080/0265204021000022761 12569028
    [Google Scholar]
  91. Artursson P. Lindmark T. Davis S.S. Illum L. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm. Res. 1994 11 9 1358 1361 10.1023/A:1018967116988 7816770
    [Google Scholar]
  92. Fernández-Urrusuno R. Calvo P. Remuñán-López C. Vila-Jato J.L. José Alonso M. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm. Res. 1999 16 10 1576 1581 10.1023/A:1018908705446 10554100
    [Google Scholar]
  93. De Campos A.M. Sánchez A. Alonso M.J. Chitosan nanoparticles: A new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int. J. Pharm. 2001 224 1-2 159 168 10.1016/S0378‑5173(01)00760‑8 11472825
    [Google Scholar]
  94. Al-Qadi S. Grenha A. Carrión-Recio D. Seijo B. Remuñán-López C. Microencapsulated chitosan nanoparticles for pulmonary protein delivery: in vivo evaluation of insulin-loaded formulations. J. Control Release 157 3 2012 383 390 10.1016/j.jconrel.2011.08.008 21864592
    [Google Scholar]
  95. Silva M. Calado R. Marto J. Bettencourt A. Almeida A. Gonçalves L. Chitosan nanoparticles as a mucoadhesive drug delivery system for ocular administration. Mar. Drugs 2017 15 12 370 10.3390/md15120370 29194378
    [Google Scholar]
  96. Pistone S. Goycoolea F.M. Young A. Smistad G. Hiorth M. Formulation of polysaccharide-based nanoparticles for local administration into the oral cavity. Eur. J. Pharm. Sci. 96 381 389 2017 10.1016/j.ejps.2016.10.012 27721043
    [Google Scholar]
  97. Liu S. Yang S. Ho P.C. Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J. Pharm. Sci. 2018 13 1 72 81 10.1016/j.ajps.2017.09.001 32104380
    [Google Scholar]
  98. Jain A. Jain S.K. Optimization of chitosan nanoparticles for colon tumors using experimental design methodology. Artif. Cells Nanomed. Biotechnol. 2016 44 8 1917 1926 10.3109/21691401.2015.1111236 26678861
    [Google Scholar]
  99. Azarmi R. Ashjaran A. Nourbakhsh S. Talebian A. Plant extract delivery and antibacterial properties of nano bacterial cellulose in the presence of dendrimer, chitosan, and herbal materials. J. Ind. Text. 2022 52 15280837221121977 10.1177/15280837221121977
    [Google Scholar]
  100. Sosnik A. Alginate particles as platform for drug delivery by the oral route: State-of-the-art. ISRN Pharm. 2014 2014 1 17 10.1155/2014/926157 25101184
    [Google Scholar]
  101. Patil N.H. Devarajan P.V. Insulin-loaded alginic acid nanoparticles for sublingual delivery. Drug Deliv. 2016 23 2 429 436 10.3109/10717544.2014.916769 24901208
    [Google Scholar]
  102. Haque S. Md S. Sahni J.K. Ali J. Baboota S. Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression. J. Psychiatr. Res. 2014 48 1 1 12 10.1016/j.jpsychires.2013.10.011 24231512
    [Google Scholar]
  103. Román J.V. Galán M.A. del Valle E.M.M. Preparation and preliminary evaluation of alginate crosslinked microcapsules as potential drug delivery system (DDS) for human lung cancer therapy. Biomed. Phys. Eng. Express 2016 2 3 035015 10.1088/2057‑1976/2/3/035015
    [Google Scholar]
  104. Garrait G. Beyssac E. Subirade M. Development of a novel drug delivery system: Chitosan nanoparticles entrapped in alginate microparticles. J. Microencapsul. 2014 31 4 363 372 10.3109/02652048.2013.858792 24697173
    [Google Scholar]
  105. Costa J.R. Silva N.C. Sarmento B. Pintado M. Potential chitosan-coated alginate nanoparticles for ocular delivery of daptomycin. Eur. J. Clin. Microbiol. Infect. Dis. 34 2015 6 1255 1262 10.1007/s10096‑015‑2344‑7 25754770
    [Google Scholar]
  106. Priyadarshini R. Nandi G. Changder A. Chowdhury S. Chakraborty S. Ghosh L.K. Gastroretentive extended release of metformin from methacrylamide-g-gellan and tamarind seed gum composite matrix. Carbohydr. Polym. 2016 137 100 110 10.1016/j.carbpol.2015.10.054 26686110
    [Google Scholar]
  107. Laffleur F. Michalek M. Modified xanthan gum for buccal delivery - A promising approach in treating sialorrhea. Int. J. Biol. Macromol. 2017 102 1250 1256 10.1016/j.ijbiomac.2017.04.123 28487193
    [Google Scholar]
  108. Huang J. Deng Y. Ren J. Chen G. Wang G. Wang F. Wu X. Novel in situ forming hydrogel based on xanthan and chitosan re-gelifying in liquids for local drug delivery. Carbohydr. Polym. 2018 186 54 63 10.1016/j.carbpol.2018.01.025 29456009
    [Google Scholar]
  109. Menzel C. Jelkmann M. Laffleur F. Bernkop-Schnürch A. Nasal drug delivery: Design of a novel mucoadhesive and in situ gelling polymer. Int. J. Pharm. 2017 517 1-2 196 202 10.1016/j.ijpharm.2016.11.055 27890621
    [Google Scholar]
  110. Sun B. Zhang M. Shen J. He Z. Fatehi P. Ni Y. Applications of cellulose-based materials in sustained drug delivery systems. Curr. Med. Chem. 2019 26 14 2485 2501 10.2174/0929867324666170705143308 28685683
    [Google Scholar]
  111. Abo-Elseoud W.S. Hassan M.L. Sabaa M.W. Basha M. Hassan E.A. Fadel S.M. Chitosan nanoparticles/cellulose nanocrystals nanocomposites as a carrier system for the controlled release of repaglinide. Int. J. Biol. Macromol. 2018 111 604 613 10.1016/j.ijbiomac.2018.01.044 29325745
    [Google Scholar]
  112. Agarwal T. Narayana S.N.G.H. Pal K. Pramanik K. Giri S. Banerjee I. Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery. Int. J. Biol. Macromol. 2015 75 409 417 10.1016/j.ijbiomac.2014.12.052 25680962
    [Google Scholar]
  113. Hansen K. Kim G. Desai K.G.H. Patel H. Olsen K.F. Curtis-Fisk J. Tocce E. Jordan S. Schwendeman S.P. Feasibility investigation of cellulose polymers for mucoadhesive nasal drug delivery applications. Mol. Pharm. 2015 12 8 2732 2741 10.1021/acs.molpharmaceut.5b00264 26097994
    [Google Scholar]
  114. Bozzuto G. Molinari A. Liposomes as nanomedical devices. Int. J. Nanomedicine 2015 10 975 999 10.2147/IJN.S68861 25678787
    [Google Scholar]
  115. Sercombe L. Veerati T. Moheimani F. Wu S.Y. Sood A.K. Hua S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015 6 286 10.3389/fphar.2015.00286 26648870
    [Google Scholar]
  116. Kotla N.G. Chandrasekar B. Rooney P. Sivaraman G. Larrañaga A. Krishna K.V. Pandit A. Rochev Y. Biomimetic lipid-based nanosystems for enhanced dermal delivery of drugs and bioactive agents. ACS Biomater. Sci. Eng. 2017 3 7 1262 1272 10.1021/acsbiomaterials.6b00681 33440514
    [Google Scholar]
  117. Attia M.F. Anton N. Wallyn J. Omran Z. Vandamme T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol. 2019 71 8 1185 1198 10.1111/jphp.13098 31049986
    [Google Scholar]
  118. Akbarzadeh A. Rezaei-Sadabady R. Davaran S. Joo S.W. Zarghami N. Hanifehpour Y. Samiei M. Kouhi M. Nejati-Koshki K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013 8 1 102 10.1186/1556‑276X‑8‑102 23432972
    [Google Scholar]
  119. Prasad R. Jyothi V.G.S. Kommineni N. Bulusu R.T. Mendes B.B. Lovell J.F. Conde J. Biomimetic ghost nanomedicine-based optotheranostics for cancer. Nano Lett. 2024 24 27 8217 8231 10.1021/acs.nanolett.4c01534 38848540
    [Google Scholar]
  120. Dimov N. Kastner E. Hussain M. Perrie Y. Szita N. Formation and purification of tailored liposomes for drug delivery using a module-based micro continuous-flow system. Sci. Rep. 2017 7 1 12045 10.1038/s41598‑017‑11533‑1 28935923
    [Google Scholar]
  121. Zylberberg C. Matosevic S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016 23 9 3319 3329 10.1080/10717544.2016.1177136 27145899
    [Google Scholar]
  122. Sapsford K.E. Algar W.R. Berti L. Gemmill K.B. Casey B.J. Oh E. Stewart M.H. Medintz I.L. Functionalizing nanoparticles with biological molecules: Developing chemistries that facilitate nanotechnology. Chem. Rev. 2013 113 3 1904 2074 10.1021/cr300143v 23432378
    [Google Scholar]
  123. Zhang L. Gu F.X. Chan J.M. Wang A.Z. Langer R.S. Farokhzad O.C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther. 2008 83 5 761 769 10.1038/sj.clpt.6100400 17957183
    [Google Scholar]
  124. Miyata K. Christie R.J. Kataoka K. Polymeric micelles for nano-scale drug delivery. React. Funct. Polym. 2011 71 3 227 234 10.1016/j.reactfunctpolym.2010.10.009
    [Google Scholar]
  125. Xu W. Ling P. Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J. Drug Deliv. 2013 2013 1 15 10.1155/2013/340315 23936656
    [Google Scholar]
  126. Kulthe S.S. Choudhari Y.M. Inamdar N.N. Mourya V. Polymeric micelles: Authoritative aspects for drug delivery. Des. Monomers Polym. 2012 15 5 465 521 10.1080/1385772X.2012.688328
    [Google Scholar]
  127. Inamdar N. Mourya V.K. Polymeric micelles: General considerations and their applications. Indian J. Pharma. Educ. Res. 2011 45 128 138
    [Google Scholar]
  128. Wakaskar R.R. Polymeric micelles for drug delivery. Int. J. Drug Dev. Res. 9 3 1 2 2017
    [Google Scholar]
  129. Mandal A. Bisht R. Rupenthal I.D. Mitra A.K. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J. Control Release 248 96 116 2017 10.1016/j.jconrel.2017.01.012 28087407
    [Google Scholar]
  130. Li Q. Lai K.L. Chan P.S. Leung S.C. Li H.Y. Fang Y. To K.K.W. Choi C.H.J. Gao Q.Y. Lee T.W.Y. Micellar delivery of dasatinib for the inhibition of pathologic cellular processes of the retinal pigment epithelium. Colloids Surf. B Biointerfaces 2016 140 278 286 10.1016/j.colsurfb.2015.12.053 26764115
    [Google Scholar]
  131. Kesharwani P. Xie L. Banerjee S. Mao G. Padhye S. Sarkar F.H. Iyer A.K. Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids Surf. B Biointerfaces 2015 136 413 423 10.1016/j.colsurfb.2015.09.043 26440757
    [Google Scholar]
  132. Zhu J. Shi X. Dendrimer-based nanodevices for targeted drug delivery applications. J. Mater. Chem. B Mater. Biol. Med. 2013 1 34 4199 4211 10.1039/c3tb20724b 32261015
    [Google Scholar]
  133. Pandita D. Madaan K. Kumar S. Poonia N. Lather V. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci. 2014 6 3 139 150 10.4103/0975‑7406.130965 25035633
    [Google Scholar]
  134. Noriega-Luna B. Godínez L.A. Rodríguez F.J. Rodríguez A. Zaldívar-Lelo de Larrea G. Sosa-Ferreyra C.F. Mercado-Curiel R.F. Manríquez J. Bustos E. Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J. Nanomater. 2014 2014 1 507273 10.1155/2014/507273
    [Google Scholar]
  135. Jain K. Gupta U. Jain N.K. Dendronized nanoconjugates of lysine and folate for treatment of cancer. Eur. J. Pharm. Biopharm. 2014 87 3 500 509 10.1016/j.ejpb.2014.03.015 24698808
    [Google Scholar]
  136. Kaur A. Jain K. Mehra N.K. Jain N.K. Development and characterization of surface engineered PPI dendrimers for targeted drug delivery. Artif. Cells Nanomed. Biotechnol. 2017 45 3 414 425 10.3109/21691401.2016.1160912 27027686
    [Google Scholar]
  137. Choi S.J. Lee J.K. Jeong J. Choy J.H. Toxicity evaluation of inorganic nanoparticles: Considerations and challenges. Mol. Cell. Toxicol. 2013 9 3 205 210 10.1007/s13273‑013‑0026‑z
    [Google Scholar]
  138. Prusty K. Swain S.K. Nano silver decorated polyacrylamide/dextran nanohydrogels hybrid composites for drug delivery applications. Mater. Sci. Eng. C 2018 85 130 141 10.1016/j.msec.2017.11.028 29407141
    [Google Scholar]
  139. Marcu A. Pop S. Dumitrache F. Mocanu M. Niculite C.M. Gherghiceanu M. Lungu C.P. Fleaca C. Ianchis R. Barbut A. Grigoriu C. Morjan I. Magnetic iron oxide nanoparticles as drug delivery system in breast cancer. Appl. Surf. Sci. 2013 281 60 65 10.1016/j.apsusc.2013.02.072
    [Google Scholar]
  140. Junyaprasert V.B. Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J. Pharm. Sci. 2015 10 1 13 23 10.1016/j.ajps.2014.08.005
    [Google Scholar]
  141. Ai S. Li Y. Zheng H. Zhang M. Tao J. Liu W. Peng L. Wang Z. Wang Y. Collision of herbal medicine and nanotechnology: A bibliometric analysis of herbal nanoparticles from 2004 to 2023. J. Nanobiotechnology 2024 22 1 140 10.1186/s12951‑024‑02426‑3 38556857
    [Google Scholar]
  142. Ni R. Zhao J. Liu Q. Liang Z. Muenster U. Mao S. Nanocrystals embedded in chitosan-based respirable swellable microparticles as dry powder for sustained pulmonary drug delivery. Eur. J. Pharm. Sci. 99 137 146 2017 10.1016/j.ejps.2016.12.013 27988327
    [Google Scholar]
  143. McNamara K. Tofail S.A.M. Nanoparticles in biomedical applications. Adv. Phys. X 2017 2 1 54 88 10.1080/23746149.2016.1254570
    [Google Scholar]
  144. Kudr J. Haddad Y. Richtera L. Heger Z. Cernak M. Adam V. Zitka O. Magnetic nanoparticles: From design and synthesis to real world applications. Nanomaterials (Basel) 2017 7 9 243 10.3390/nano7090243 28850089
    [Google Scholar]
  145. Volkov Y. Quantum dots in nanomedicine: Recent trends, advances and unresolved issues. Biochem. Biophys. Res. Commun. 2015 468 3 419 427 10.1016/j.bbrc.2015.07.039 26168726
    [Google Scholar]
  146. Liu J. Lau S.K. Varma V.A. Moffitt R.A. Caldwell M. Liu T. Young A.N. Petros J.A. Osunkoya A.O. Krogstad T. Leyland-Jones B. Wang M.D. Nie S. Molecular mapping of tumor heterogeneity on clinical tissue specimens with multiplexed quantum dots. ACS Nano 2010 4 5 2755 2765 10.1021/nn100213v 20377268
    [Google Scholar]
  147. Xu G. Zeng S. Zhang B. Swihart M.T. Yong K.T. Prasad P.N. New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem. Rev. 2016 116 19 12234 12327 10.1021/acs.chemrev.6b00290 27657177
    [Google Scholar]
  148. Shi Y. Pramanik A. Tchounwou C. Pedraza F. Crouch R.A. Chavva S.R. Vangara A. Sinha S.S. Jones S. Sardar D. Hawker C. Ray P.C. Multifunctional biocompatible graphene oxide quantum dots decorated magnetic nanoplatform for efficient capture and two-photon imaging of rare tumor cells. ACS Appl. Mater. Interfaces 2015 7 20 10935 10943 10.1021/acsami.5b02199 25939643
    [Google Scholar]
  149. Han H.S. Niemeyer E. Huang Y. Kamoun W.S. Martin J.D. Bhaumik J. Chen Y. Roberge S. Cui J. Martin M.R. Fukumura D. Jain R.K. Bawendi M.G. Duda D.G. Quantum dot/antibody conjugates for in vivo cytometric imaging in mice. Proc. Natl. Acad. Sci. USA 2015 112 5 1350 1355 10.1073/pnas.1421632111 25605916
    [Google Scholar]
  150. So M.K. Xu C. Loening A.M. Gambhir S.S. Rao J. Self-illuminating quantum dot conjugates for in vivo imaging. Nat. Biotechnol. 2006 24 3 339 343 10.1038/nbt1188 16501578
    [Google Scholar]
  151. Zheng F.F. Zhang P.H. Xi Y. Chen J.J. Li L.L. Zhu J.J. Aptamer/graphene quantum dots nanocomposite capped fluorescent mesoporous silica nanoparticles for intracellular drug delivery and real-time monitoring of drug release. Anal. Chem. 2015 87 23 11739 11745 10.1021/acs.analchem.5b03131 26524192
    [Google Scholar]
  152. Huang C.L. Huang C.C. Mai F.D. Yen C.L. Tzing S.H. Hsieh H.T. Ling Y.C. Chang J.Y. Application of paramagnetic graphene quantum dots as a platform for simultaneous dual-modality bioimaging and tumor-targeted drug delivery. J. Mater. Chem. B Mater. Biol. Med. 2015 3 4 651 664 10.1039/C4TB01650E 32262348
    [Google Scholar]
  153. Olerile L.D. Liu Y. Zhang B. Wang T. Mu S. Zhang J. Selotlegeng L. Zhang N. Near-infrared mediated quantum dots and paclitaxel co-loaded nanostructured lipid carriers for cancer theragnostic. Colloids Surf. B Biointerfaces 2017 150 121 130 10.1016/j.colsurfb.2016.11.032 27907859
    [Google Scholar]
  154. Cai X. Luo Y. Zhang W. Du D. Lin Y. pH-sensitive ZnO quantum dots–doxorubicin nanoparticles for lung cancer targeted drug delivery. ACS Appl. Mater. Interfaces 2016 8 34 22442 22450 10.1021/acsami.6b04933 27463610
    [Google Scholar]
  155. Balaji A.B. Pakalapati H. Khalid M. Rashmi W. Siddiqui H. Natural and synthetic biocompatible and biodegradable polymers. Biodegradable and Biocompatible Polymer Composites Woodhead Publishing Duxford 2018 3 32 10.1016/B978‑0‑08‑100970‑3.00001‑8
    [Google Scholar]
  156. Bassas M. Follonier S. Pusnik M. Zinn M. 2 - Natural polymers: A source of inspiration. Bioresorbable Polymers for Biomedical Applications Woodhead Publishing 2017 31 64 10.1016/B978‑0‑08‑100262‑9.00002‑1
    [Google Scholar]
  157. Lohcharoenkal W. Wang L. Chen Y.C. Rojanasakul Y. Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Res. Int. 2014 2014 1 12 10.1155/2014/180549 24772414
    [Google Scholar]
  158. Liu Z. Jiao Y. Wang Y. Zhou C. Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev. 2008 60 15 1650 1662 10.1016/j.addr.2008.09.001 18848591
    [Google Scholar]
  159. Chakraborty P. Kar K. Mazumder K. Mondal A. Advancement of nanoparticles in tissue engineering. Nanostructured Materials for Tissue Engineering Elsevier 2023 55 89 10.1016/B978‑0‑323‑95134‑0.00002‑X
    [Google Scholar]
  160. Pertici G. Introduction to bioresorbable polymers for biomedical applications. Bioresorbable Polymers for Biomedical Applications Woodhead Publishing 2017 3 29 10.1016/B978‑0‑08‑100262‑9.00001‑X
    [Google Scholar]
  161. Yu Z. Yu M. Zhang Z. Hong G. Xiong Q. Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear. Nanoscale Res. Lett. 2014 9 1 343 10.1186/1556‑276X‑9‑343 25114637
    [Google Scholar]
  162. Patil S. Mhaiskar A. Mundhada D. A review on novel drug delivery system: A recent trend. Int. J. Curr. Pharma. Clin. Res. 2016 6 89 93
    [Google Scholar]
  163. Mbah C.C. Builders P.F. Attama A.A. Nanovesicular carriers as alternative drug delivery systems: ethosomes in focus. Expert Opin. Drug Deliv. 2014 11 1 45 59 10.1517/17425247.2013.860130 24294974
    [Google Scholar]
  164. Bhagwat R.R. Vaidhya I.S. Novel drug delivery systems: An overview. Int. J. Pharm. Sci. Res. 2013 4 970
    [Google Scholar]
  165. Laffleur F. Keckeis V. Advances in drug delivery systems: Work in progress still needed? Int. J. Pharm. 2020 590 119912 10.1016/j.ijpharm.2020.119912 32971178
    [Google Scholar]
  166. Khan R. Irchhaiya R. Niosomes: A potential tool for novel drug delivery. J. Pharm. Investig. 2016 46 3 195 204 10.1007/s40005‑016‑0249‑9
    [Google Scholar]
  167. Liu D. Yang F. Xiong F. Gu N. The smart drug delivery system and its clinical potential. Theranostics 2016 6 9 1306 1323 10.7150/thno.14858 27375781
    [Google Scholar]
  168. Dongare P.N. Motule A.S. Dubey M.R. More M.P. Patinge P.A. Bakal R.L. Manwar J.V. Recent development in novel drug delivery systems for delivery of herbal drugs: An updates. GSC Adv. Res. Rev. 8 2 8 18 2021 10.30574/gscarr.2021.8.2.0158
    [Google Scholar]
  169. Singh H. Sharma G. Recent development of novel drug delivery of herbal drugs. RPS Pharm. Pharmacol. Rep. 2023 2 rqad028 10.1093/rpsppr/rqad028
    [Google Scholar]
  170. Zielińska A. Carreiró F. Oliveira A.M. Neves A. Pires B. Venkatesh D.N. Durazzo A. Lucarini M. Eder P. Silva A.M. Santini A. Souto E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020 25 16 3731 10.3390/molecules25163731 32824172
    [Google Scholar]
  171. Soppimath K.S. Aminabhavi T.M. Kulkarni A.R. Rudzinski W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control Release 70 1-2 2001 1 20 10.1016/s0168‑3659(00)00339‑4 11166403
    [Google Scholar]
  172. Gelperina S. Kisich K. Iseman M.D. Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am. J. Respir. Crit. Care Med. 2005 172 12 1487 1490 10.1164/rccm.200504‑613PP 16151040
    [Google Scholar]
  173. Mughees M. Wajid S. Herbal based polymeric nanoparticles as a therapeutic remedy for breast cancer. Anticancer. Agents Med. Chem. 2021 21 4 433 444 10.2174/1871520620666200619171616 32560619
    [Google Scholar]
  174. Kar K. Mazumder K. Chakraborty P. Chowdhury S. Phenolics as shielding counterparts from plants to combat biotic stress mediated by microbes and nematodes. Plant Phenolics in Biotic Stress Management Springer Singapore Lone R. Khan S. Al-Sadi M.A 2024 149 171 10.1007/978‑981‑99‑3334‑1_6
    [Google Scholar]
  175. Khalil N.M. Phytosomes: A novel approach for delivery of herbal constituents. J Nutr Diet Probiotics 2018 1 180007
    [Google Scholar]
  176. Majumder S. Rashid M.H.A. Chowdhury S. Gupta B.K. Mandal S.C. Physicochemical and antioxidant assay of Ayurvedic formulations of Alternanthera philoxeroides. Int. Res. J. Pharm. 2016 7 5 20 23 10.7897/2230‑8407.07545
    [Google Scholar]
  177. Awasthi R. Kulkarni G.T. Pawar V.K. Phytosomes: An approach to increase the bioavailability of plant extracts. Int. J. Pharm. Pharm. Sci. 2011 3 1 3
    [Google Scholar]
  178. Tiwari G. Tiwari R. Sharma S. Ramachandran V. An Exploration of herbal extracts loaded phyto-phospholipid complexes (phytosomes) against polycystic ovarian syndrome: Formulation considerations. Pharm. Nanotechnol. 2023 11 1 44 55 10.2174/2211738510666220919125434 36121090
    [Google Scholar]
  179. Agrahari V. Agrahari V. Mitra A.K. Nanocarrier fabrication and macromolecule drug delivery: Challenges and opportunities. Ther. Deliv. 2016 7 4 257 278 10.4155/tde‑2015‑0012 27010987
    [Google Scholar]
  180. Eloy J.O. Petrilli R. Trevizan L.N.F. Chorilli M. Immunoliposomes: A review on functionalization strategies and targets for drug delivery. Colloids Surf. B Biointerfaces 2017 159 454 467 10.1016/j.colsurfb.2017.07.085 28837895
    [Google Scholar]
  181. Gharib R. Greige-Gerges H. Fourmentin S. Charcosset C. Auezova L. Liposomes incorporating cyclodextrin-drug inclusion complexes: Current state of knowledge. Carbohydr. Polym. 2015 129 175 186 10.1016/j.carbpol.2015.04.048 26050903
    [Google Scholar]
  182. Shah S. Dhawan V. Holm R. Nagarsenker M.S. Perrie Y. Liposomes: Advancements and innovation in the manufacturing process. Adv. Drug Deliv. Rev. 2020 154-155 102 122 10.1016/j.addr.2020.07.002 32650041
    [Google Scholar]
  183. Shariare M.H. Rahman M. Lubna S.R. Roy R.S. Abedin J. Marzan A.L. Altamimi M.A. Ahamad S.R. Ahmad A. Alanazi F.K. Kazi M. Liposomal drug delivery of Aphanamixis polystachya leaf extracts and its neurobehavioral activity in mice model. Sci. Rep. 2020 10 1 6938 10.1038/s41598‑020‑63894‑9 32332809
    [Google Scholar]
  184. Manjunath K. Reddy J.S. Venkateswarlu V. Solid lipid nanoparticles as drug delivery systems. Methods Find. Exp. Clin. Pharmacol. 2005 27 2 127 144 10.1358/mf.2005.27.2.876286 15834465
    [Google Scholar]
  185. Mukherjee S. Ray S. Thakur R.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci. 2009 71 4 349 358 10.4103/0250‑474X.57282 20502539
    [Google Scholar]
  186. Vijayanand P. Jyothi V. Aditya N. Mounika A. Development and characterization of solid lipid nanoparticles containing herbal extract: in vivo antidepressant activity. J. Drug Deliv. 2018 2018 1 7 10.1155/2018/2908626 29973993
    [Google Scholar]
  187. Shinde S. Panchal K. Dhondwad M. Microemulsion: Novel drug delivery system. Int. J. Sci. Eng. Develop. Res. 2020 5 94 101
    [Google Scholar]
  188. Singh P.K. Iqubal M.K. Shukla V.K. Shuaib M. Microemulsions: Current trends in novel drug delivery systems. J. Pharm. Chem. Biol. Sci. 2014 1 39 51
    [Google Scholar]
  189. Kuropakornpong P. Itharat A. Ooraikul B. Loebenberg R. Davies N.M. Development and optimization of Benjakul microemulsion formulations for enhancing topical anti-inflammatory effect and delivery. Res. Pharm. Sci. 2022 17 2 111 122 10.4103/1735‑5362.335170 35280840
    [Google Scholar]
  190. Prasad B.S. Gupta V.R. Devanna N. Jayasurya K. Microspheres as drug delivery system - A review. J. Glob. Trends Pharm. Sci. 2014 5 1961 1972
    [Google Scholar]
  191. Raj H. Sharma S. Sharma A. Verma K.K. Chaudhary A. A novel drug delivery system: Review on microspheres. J. Drug Deliv. Ther. 2021 11 2-S 156 161 10.22270/jddt.v11i2‑S.4792
    [Google Scholar]
  192. Abrar A. Yousuf S. Dasan M.K. Formulation and evaluation of microsphere of antiulcer drug using Acacia nilotica gum. Int. J. Health Sci. (Qassim) 2020 14 2 10 17 32206055
    [Google Scholar]
  193. Kumar N. Dubey A. Mishra A. Tiwari P. Ethosomes: A novel approach in transdermal drug delivery system. Int. J. Pharm. Life Sci. 11 5 6598 6608 2020
    [Google Scholar]
  194. Barani M. Sangiovanni E. Angarano M. Rajizadeh M.A. Mehrabani M. Piazza S. Gangadharappa H.V. Pardakhty A. Mehrbani M. Dell’Agli M. Nematollahi M.H. Phytosomes as innovative delivery systems for phytochemicals: A comprehensive review of literature. Int. J. Nanomedicine 2021 16 6983 7022 10.2147/IJN.S318416 34703224
    [Google Scholar]
  195. Chowdhury S. Kar K. Mazumder R. Exploration of different strategies of nanoencapsulation of bioactive compounds and their ensuing approaches. Future J. Pharm. Sci. 2024 10 1 72 10.1186/s43094‑024‑00644‑y
    [Google Scholar]
  196. Ferrara F. Benedusi M. Sguizzato M. Cortesi R. Baldisserotto A. Buzzi R. Valacchi G. Esposito E. Ethosomes and transethosomes as cutaneous delivery systems for quercetin: A preliminary study on melanoma cells. Pharmaceutics 2022 14 5 1038 10.3390/pharmaceutics14051038 35631628
    [Google Scholar]
  197. Sharma D. Ali A.A.E. Aate J.R. Niosomes as novel drug delivery system. Pharmatutor 2018 6 3 58 65 10.29161/PT.v6.i3.2018.58
    [Google Scholar]
  198. Makeshwar K.B. Wasankar S.R. Niosome: A novel drug delivery system. Asian J. Pharma. Res. 2013 3 1 16 20
    [Google Scholar]
  199. Afereydoon S. Haghiralsadat F. Hamzian N. Shams A. Hemati M. Naghib S.M. Shabani M. Zandieh-doulabi B. Tofighi D. Multifunctional PEGylated niosomal nanoparticle-loaded herbal drugs as a novel nano-radiosensitizer and stimuli-sensitive nanocarrier for synergistic cancer therapy. Front. Bioeng. Biotechnol. 2022 10 917368 10.3389/fbioe.2022.917368 36046674
    [Google Scholar]
  200. Nimbalwar M.G. Gudalwar B.R. Panchale W.A. Wadekar A.B. Manwar J.V. Bakal R.L. An overview of characterizations and applications of proniosomal drug delivery system. GSC Adv. Res. Rev. 7 2 25 34 2021 10.30574/gscarr.2021.7.2.0095
    [Google Scholar]
  201. Yasam V.R. Jakki S.L. Natarajan J. Kuppusamy G. A review on novel vesicular drug delivery: Proniosomes. Drug Deliv. 2014 21 4 243 249 10.3109/10717544.2013.841783 24128089
    [Google Scholar]
  202. Pinzaru I. Tanase A. Enatescu V. Coricovac D. Bociort F. Marcovici I. Watz C. Vlaia L. Soica C. Dehelean C. Proniosomal gel for topical delivery of rutin: Preparation, physicochemical characterization and in vitro toxicological profile using 3D reconstructed human epidermis tissue and 2D cells. Antioxidants 2021 10 1 85 10.3390/antiox10010085 33435216
    [Google Scholar]
  203. Billiet T. Vandenhaute M. Schelfhout J. Van Vlierberghe S. Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 2012 33 26 6020 6041 10.1016/j.biomaterials.2012.04.050 22681979
    [Google Scholar]
  204. Bandawane A. Saudagar R. A review on novel drug delivery system: A recent trend. J. Drug Deliv. Ther. 2019 9 3 517 521 10.22270/jddt.v9i3.2610
    [Google Scholar]
  205. Connolly J.M. Davies K. Kazakeviciute A. Wheatley A.M. Dockery P. Keogh I. Olivo M. Non-invasive and label-free detection of oral squamous cell carcinoma using saliva surface-enhanced Raman spectroscopy and multivariate analysis. Nanomedicine 2016 12 6 1593 1601 10.1016/j.nano.2016.02.021 27015768
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873349580241113081309
Loading
/content/journals/cnanom/10.2174/0124681873349580241113081309
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test