Skip to content
2000
image of Fortifying SNEDDS with Hybrid Technologies: Present and Future Prospects

Abstract

Self-nano-emulsifying drug delivery systems (SNEDDS) have gained attention in recent years as an effective approach for improving the solubility and oral bioavailability of poorly water-soluble drugs. However, there have been reports of drawbacks such as low drug loading, limited stability and variability in absorption. Various technologies have been investigated in conjunction with SNEDDS to alleviate such issues such as polymers being used to improve stability and drug loading; phospholipid complexes used to improve absorption and reduce inter and intra- subject variability; SNEDDS for drug targeting improves the targeting of drugs to specific site reducing the dosage required for action. 3D printing is used to create personalized and precise dosages; supersaturated SNEDDS is used to increase drug concentration; and solid SNEDDS are used to improve storage stability and patient compliance. The amalgamation of SNEDDS with these technologies has demonstrated promising results with regard to the improvement of medication delivery and has control over SNEDDS limitations. The present review elucidates the application of blended technologies with SNEDDS and the future potential for such drug delivery.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873314206241023034855
2024-10-31
2025-02-19
Loading full text...

Full text loading...

References

  1. Kawabata Y. Wada K. Nakatani M. Yamada S. Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. International Journal of Pharmaceutics. Elsevier B.V. 2011 Vol. 420 1 10
    [Google Scholar]
  2. Jain S. Patel N. Lin S. Solubility and dissolution enhancement strategies: Current understanding and recent trends. Drug Development and Industrial Pharmacy. Informa Healthcare 2015 Vol. 41 875 887
    [Google Scholar]
  3. McClements D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 2012 8 6 1719 1729 10.1039/C2SM06903B
    [Google Scholar]
  4. Basalious E.B. Shawky N. Badr-Eldin S.M. SNEDDS containing bioenhancers for improvement of dissolution and oral absorption of lacidipine. I: Development and optimization. Int. J. Pharm. 2010 391 1-2 203 211 10.1016/j.ijpharm.2010.03.008 20214965
    [Google Scholar]
  5. Xue X. Cao M. Ren L. Qian Y. Chen G. Preparation and optimization of rivaroxaban by self-nanoemulsifying drug delivery system (SNEDDS) for enhanced oral bioavailability and no food effect. AAPS Pharm. Sci. Tech. 2018 19 4 1847 1859 10.1208/s12249‑018‑0991‑6 29637496
    [Google Scholar]
  6. Okawa S. Sumimoto Y. Masuda K. Ogawara K ichi, Maruyama M, Higaki K. Improvement of lipid solubility and oral bioavailability of a poorly water- and poorly lipid-soluble drug, rebamipide, by utilizing its counter ion and SNEDDS preparation. Eur. J. Pharm. Sci. 2021 159 105721 10.1016/j.ejps.2021.105721 33482317
    [Google Scholar]
  7. Mohsin K. Alamri R. Ahmad A. Raish M. Alanazi F.K. Hussain M.D. Development of self-nanoemulsifying drug delivery systems for the enhancement of solubility and oral bioavailability of fenofibrate, a poorly water-soluble drug. Int. J. Nanomedicine 2016 11 2829 2838 27366063
    [Google Scholar]
  8. Sumimoto Y. Okawa S. Inoue T. Masuda K. Maruyama M. Higaki K. Extensive improvement of oral bioavailability of mebendazole, a brick dust, by polymer-containing SNEDDS preparation: Disruption of high crystallinity by utilizing its counter ion. Eur. J. Pharm. Biopharm. 2022 172 213 227 10.1016/j.ejpb.2022.02.002 35134511
    [Google Scholar]
  9. Yousry C. Zikry P.M. Basalious E.B. El-Gazayerly O.N. Self-nanoemulsifying system optimization for higher terconazole solubilization and non-irritant ocular administration. Adv. Pharm. Bull. 2020 10 3 389 398 10.34172/apb.2020.047 32665897
    [Google Scholar]
  10. ElKasabgy N.A. Ocular supersaturated self-nanoemulsifying drug delivery systems (S-SNEDDS) to enhance econazole nitrate bioavailability. Int. J. Pharm. 2014 460 1-2 33 44 10.1016/j.ijpharm.2013.10.044 24184217
    [Google Scholar]
  11. Salawi A. Self-emulsifying drug delivery systems: A novel approach to deliver drugs. Drug Delivery Taylor and Francis Ltd. 2022 Vol. 29 1811 1823
    [Google Scholar]
  12. Rathore C. Hemrajani C. Sharma A.K. Gupta P.K. Jha N.K. Aljabali A.A.A. Gupta G. Singh S.K. Yang J.C. Dwivedi R.P. Dua K. Chellappan D.K. Negi P. Tambuwala M.M. Self-nanoemulsifying drug delivery system (SNEDDS) mediated improved oral bioavailability of thymoquinone: optimization, characterization, pharmacokinetic, and hepatotoxicity studies. Drug Deliv. Transl. Res. 2023 13 1 292 307 10.1007/s13346‑022‑01193‑8 35831776
    [Google Scholar]
  13. Kuche K. Bhargavi N. Dora C.P. Jain S. Drug-phospholipid complex—a go through strategy for enhanced oral bioavailability. AAPS Pharm. Sci. Tech. 2019 20 2 43 10.1208/s12249‑018‑1252‑4 30610392
    [Google Scholar]
  14. Rehman F.U. Shah K.U. Shah S.U. Khan I.U. Khan G.M. Khan A. From nanoemulsions to self-nanoemulsions, with recent advances in self-nanoemulsifying drug delivery systems (SNEDDS). Expert Opinion on Drug Delivery. Taylor and Francis Ltd 2017 14 1325 1340
    [Google Scholar]
  15. Singh G. Pai R.S. Trans -resveratrol self-nano-emulsifying drug delivery system (SNEDDS) with enhanced bioavailability potential: optimization, pharmacokinetics and in situ single pass intestinal perfusion (SPIP) studies. Drug Deliv. 2015 22 4 522 530 10.3109/10717544.2014.885616 24512464
    [Google Scholar]
  16. Kurita K. Controlled functionalization of the polysaccharide chitin. Progr. Poly. Sci. 2001 26 9 1921 1971 10.1016/S0079‑6700(01)00007‑7
    [Google Scholar]
  17. Bernkop-Schnürch A. Dünnhaupt S. Chitosan-based drug delivery systems. Eur. J. Pharm. Biopharm. 2012 81 3 463 469 10.1016/j.ejpb.2012.04.007 22561955
    [Google Scholar]
  18. Sakloetsakun D. Dünnhaupt S. Barthelmes J. Perera G. Bernkop-Schnürch A. Combining two technologies: Multifunctional polymers and self-nanoemulsifying drug delivery system (SNEDDS) for oral insulin administration. Int. J. Biol. Macromol. 2013 61 363 372 10.1016/j.ijbiomac.2013.08.002 23933302
    [Google Scholar]
  19. Porter CJH Kaukonen AM Taillardat-Bertschinger A Boyd BJ O’connor JM Edwards GA Use of in vitro lipid digestion data to explain the in vivo performance of triglyceride-based oral lipid formulations of poorly water-soluble drugs: Studies with halofantrine. J Pharm Sci 2004 93 5 1110 1121 10.1002/jps.20039 15067688
    [Google Scholar]
  20. Bevernage J. Forier T. Brouwers J. Tack J. Annaert P. Augustijns P. Excipient-mediated supersaturation stabilization in human intestinal fluids. Mol. Pharm. 2011 8 2 564 570 10.1021/mp100377m 21268663
    [Google Scholar]
  21. Balakrishnan P. Lee B.J. Oh D.H. Kim J.O. Hong M.J. Jee J.P. Kim J.A. Yoo B.K. Woo J.S. Yong C.S. Choi H.G. Enhanced oral bioavailability of dexibuprofen by a novel solid Self-emulsifying drug delivery system (SEDDS). Eur. J. Pharm. Biopharm. 2009 72 3 539 545 10.1016/j.ejpb.2009.03.001 19298857
    [Google Scholar]
  22. Shafiq S. Shakeel F. Talegaonkar S. Ahmad F.J. Khar R.K. Ali M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur. J. Pharm. Biopharm. 2007 66 2 227 243 10.1016/j.ejpb.2006.10.014 17127045
    [Google Scholar]
  23. Parveen R. Baboota S. Ali J. Ahuja A. Vasudev S.S. Ahmad S. Oil based nanocarrier for improved oral delivery of silymarin: in vitro and in vivo studies. Int. J. Pharm. 2011 413 1-2 245 253 10.1016/j.ijpharm.2011.04.041 21549187
    [Google Scholar]
  24. Jeyaraj S. Shivaji G. Jeyaraj S.D. Vengatesan A. Effect of combined supplementation of fish oil with garlic pearls on the serum lipid profile in hypercholesterolemic subjects. Indian Heart J. 2005 57 4 327 331 16350679
    [Google Scholar]
  25. Eilertsen K.E. Mæhre H.K. Cludts K. Olsen J.O. Hoylaerts M.F. Dietary enrichment of apolipoprotein E-deficient mice with extra virgin olive oil in combination with seal oil inhibits atherogenesis. Lipids Health Dis. 2011 10 1 41 10.1186/1476‑511X‑10‑41 21371300
    [Google Scholar]
  26. Krstić M. Popović M. Dobričić V. Ibrić S. Influence of solid drug delivery system formulation on poorly water-soluble drug dissolution and permeability. Molecules 2015 20 8 14684 14698 10.3390/molecules200814684 26287134
    [Google Scholar]
  27. Gupta S. Kesarla R. Omri A. Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharm. 2013 2013 1 16 10.1155/2013/848043 24459591
    [Google Scholar]
  28. Kang J.H. Oh D.H. Oh Y.K. Yong C.S. Choi H.G. Effects of solid carriers on the crystalline properties, dissolution and bioavailability of flurbiprofen in solid self-nanoemulsifying drug delivery system (solid SNEDDS). Eur. J. Pharm. Biopharm. 2012 80 2 289 297 10.1016/j.ejpb.2011.11.005 22119666
    [Google Scholar]
  29. Ahmed T.A. Alotaibi H.A. Alharbi W.S. Safo M.K. El-Say K.M. Development of 3D-printed, liquisolid and directly compressed glimepiride tablets, loaded with black seed oil self-nanoemulsifying drug delivery system: in vitro and in vivo characterization. Pharmaceuticals 2022 15 1 68 10.3390/ph15010068 35056126
    [Google Scholar]
  30. Algahtani M.S. Mohammed A.A. Ahmad J. Abdullah M.M. Saleh E. 3D printing of dapagliflozin containing self-nanoemulsifying tablets: Formulation design and in vitro characterization. Pharmaceutics 2021 13 7 993 10.3390/pharmaceutics13070993 34209066
    [Google Scholar]
  31. Kulkarni V.R. Kazi M. Shahba A.A.W. Radhanpuri A. Maniruzzaman M. Three-dimensional printing of a container tablet: A new paradigm for multi-drug-containing bioactive self-nanoemulsifying drug-delivery systems (Bio-SNEDDSs). Pharmaceutics 2022 14 5 1082 10.3390/pharmaceutics14051082 35631668
    [Google Scholar]
  32. Chatzitaki A.T. Tsongas K. Tzimtzimis E.K. Tzetzis D. Bouropoulos N. Barmpalexis P. Eleftheriadis G.K. Fatouros D.G. 3D printing of patient-tailored SNEDDS-based suppositories of lidocaine. J. Drug Deliv. Sci. Technol. 2021 61 102292 10.1016/j.jddst.2020.102292
    [Google Scholar]
  33. Seo Y.G. Kim D.H. Ramasamy T. Kim J.H. Marasini N. Oh Y.K. Kim D.W. Kim J.K. Yong C.S. Kim J.O. Choi H.G. Development of docetaxel-loaded solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced chemotherapeutic effect. Int. J. Pharm. 2013 452 1-2 412 420 10.1016/j.ijpharm.2013.05.034 23707964
    [Google Scholar]
  34. Saifullah S. Kanwal T. Ullah S. Kawish M. Habib S.M. Ali I. Munir A. Imran M. Shah M.R. Design and development of lipid modified chitosan containing muco-adhesive self-emulsifying drug delivery systems for cefixime oral delivery. Chem. Phys. Lipids 2021 235 105052 10.1016/j.chemphyslip.2021.105052 33482099
    [Google Scholar]
  35. Wang Z. Sun J. Wang Y. Liu X. Liu Y. Fu Q. Meng P. He Z. Solid self-emulsifying nitrendipine pellets: Preparation and in vitro/in vivo evaluation. Int. J. Pharm. 2010 383 1-2 1 6 10.1016/j.ijpharm.2009.08.014 19698771
    [Google Scholar]
  36. Abo Enin H.A. Abdel-Bar H.M. Solid super saturated self-nanoemulsifying drug delivery system (sat-SNEDDS) as a promising alternative to conventional SNEDDS for improvement rosuvastatin calcium oral bioavailability. Expert Opin. Drug Deliv. 2016 13 11 1513 1521 10.1080/17425247.2016.1224845 27564321
    [Google Scholar]
  37. Qi X. Wang L. Zhu J. Hu Z. Zhang J. Self-double-emulsifying drug delivery system (SDEDDS): A new way for oral delivery of drugs with high solubility and low permeability. Int. J. Pharm. 2011 409 1-2 245 251 10.1016/j.ijpharm.2011.02.047 21356300
    [Google Scholar]
  38. Alexander A. Ajazuddin Patel R.J. Saraf S. Saraf S. Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. J. Control. Release 2016 241 110 124 10.1016/j.jconrel.2016.09.017 27663228
    [Google Scholar]
  39. Avachat A.M. Patel V.G. Self nanoemulsifying drug delivery system of stabilized ellagic acid–phospholipid complex with improved dissolution and permeability. Saudi Pharm. J. 2015 23 3 276 289 10.1016/j.jsps.2014.11.001 26106276
    [Google Scholar]
  40. Buya A.B. Beloqui A. Memvanga P.B. Préat V. Self-nano-emulsifying drug-delivery systems: from the development to the current applications and challenges in oral drug delivery. Pharmaceutics 2020 12 12 1194 10.3390/pharmaceutics12121194 33317067
    [Google Scholar]
  41. Abdel Aziz O.A. Abo Dena A.S. El-Sherbiny I.M. Self-nanoemulsifying systems for drug delivery therapeutics. Advanced Nanoformulations. Elsevier 2023 81 95 10.1016/B978‑0‑323‑85785‑7.00012‑7
    [Google Scholar]
  42. Angelico R. Ceglie A. Sacco P. Colafemmina G. Ripoli M. Mangia A. Phytoliposomes as nanoshuttles for water-insoluble silybin–phospholipid complex. Int. J. Pharm. 2014 471 1-2 173 181 10.1016/j.ijpharm.2014.05.026 24858381
    [Google Scholar]
  43. Federico A. Dallio M. DI Fabio G. Zarrelli A. Zappavigna S. Stiuso P. Tuccillo C. Caraglia M. Loguercio C. Silybin-phosphatidylcholine complex protects human gastric and liver cells from oxidative stress. in vivo 2015 29 5 569 575 26359416
    [Google Scholar]
  44. Barzaghi N. Crema F. Gatti G. Pifferi G. Perucca E. Pharmacokinetic studies on IdB 1016, a silybin-phosphatidylcholine complex, in healthy human subjects. Eur. J. Drug Metab. Pharmacokinet. 1990 15 4 333 338 10.1007/BF03190223 2088770
    [Google Scholar]
  45. Qiu X.L. Fan Z.R. Liu Y.Y. Wang D.F. Wang S.X. Li C.X. Preparation and evaluation of a self-nanoemulsifying drug delivery system loaded with heparin phospholipid complex. Int. J. Mol. Sci. 2021 22 8 4077 10.3390/ijms22084077 33920853
    [Google Scholar]
  46. Jiao Y. Ubrich N. Hoffart V. Marchand-Arvier M. Vigneron C. Hoffman M. Maincent P. Anticoagulant activity of heparin following oral administration of heparin-loaded microparticles in rabbits. J. Pharm. Sci. 2002 91 3 760 768 10.1002/jps.10097 11920761
    [Google Scholar]
  47. Soltani Y. Goodarzi N. Mahjub R. Preparation and characterization of self nano-emulsifying drug delivery system (SNEDDS) for oral delivery of heparin using hydrophobic complexation by cationic polymer of β-cyclodextrin. Drug Dev. Ind. Pharm. 2017 43 11 1899 1907 10.1080/03639045.2017.1353522 28685625
    [Google Scholar]
  48. Ruan J. Liu J. Zhu D. Gong T. Yang F. Hao X. Zhang Z. Preparation and evaluation of self-nanoemulsified drug delivery systems (SNEDDSs) of matrine based on drug–phospholipid complex technique. Int. J. Pharm. 2010 386 1-2 282 290 10.1016/j.ijpharm.2009.11.026 19961910
    [Google Scholar]
  49. Gonze M.D. Salartash K. Sternbergh W.C. III Baughman R.A. Leone-Bay A. Money S.R. Orally administered unfractionated heparin with carrier agent is therapeutic for deep venous thrombosis. Circulation 2000 101 22 2658 2661 10.1161/01.CIR.101.22.2658 10840020
    [Google Scholar]
  50. Zhang J. Li J. Ju Y. Fu Y. Gong T. Zhang Z. Mechanism of enhanced oral absorption of morin by phospholipid complex based self-nanoemulsifying drug delivery system. Mol. Pharm. 2015 12 2 504 513 10.1021/mp5005806 25536306
    [Google Scholar]
  51. Zhang J. Peng Q. Shi S. Zhang Q. Sun X. Gong T. Zhang Z. Preparation, characterization, and in vivo evaluation of a self-nanoemulsifying drug delivery system (SNEDDS) loaded with morin-phospholipid complex. Int. J. Nanomedicine 2011 6 Dec 3405 3414 22267925
    [Google Scholar]
  52. Ahmad J. Kohli K. Mir S.R. Amin S. Formulation of self-nanoemulsifying drug delivery system for telmisartan with improved dissolution and oral bioavailability. J. Dispers. Sci. Technol. 2011 32 7 958 968 10.1080/01932691.2010.488511
    [Google Scholar]
  53. Park E.J. Choi S.A. Min K.A. Jee J.P. Jin S.G. Cho K.H. Development of alectinib-suspended SNEDDS for enhanced solubility and dissolution. Pharmaceutics 2022 14 8 1694 10.3390/pharmaceutics14081694 36015320
    [Google Scholar]
  54. Zhou Y.Q. Yang Z.L. Xu L. Li P. Hu Y.Z. Akebia saponin D, a saponin component from Dipsacus asper Wall, protects PC 12 cells against amyloid-β induced cytotoxicity. Cell Biol. Int. 2009 33 10 1102 1110 10.1016/j.cellbi.2009.06.028 19615455
    [Google Scholar]
  55. Li P. Peng J. Li Y. Gong L. Lv Y. Liu H. Zhang T. Yang S. Liu H. Li J. Liu L. Pharmacokinetics, bioavailability, excretion and metabolism studies of akebia saponin D in rats: Causes of the ultra-low oral bioavailability and metabolic pathway. Front. Pharmacol. 2021 12 621003 10.3389/fphar.2021.621003 33935711
    [Google Scholar]
  56. Zhou Y. Li W. Chen L. Ma S. Ping L. Yang Z. Enhancement of intestinal absorption of akebia saponin D by borneol and probenecid in situ and in vitro. Environ. Toxicol. Pharmacol. 2010 29 3 229 234 10.1016/j.etap.2010.01.004 21787607
    [Google Scholar]
  57. Han M. Fu S. Gao J.Q. Fang X.L. Evaluation of intestinal absorption of ginsenoside Rg1 incorporated in microemulison using parallel artificial membrane permeability assay. Biol. Pharm. Bull. 2009 32 6 1069 1074 10.1248/bpb.32.1069 19483317
    [Google Scholar]
  58. Li F. Shen J. Bi J. Tian H. Jin Y. Wang Y. Yang X. Yang Z. Kou J. Preparation and evaluation of a self-nanoemulsifying drug delivery system loaded with Akebia saponin D–phospholipid complex. Int. J. Nanomedicine 2016 11 4919 4929 10.2147/IJN.S108765 27713630
    [Google Scholar]
  59. Kontogiannidou E. Meikopoulos T. Virgiliou C. Bouropoulos N. Gika H. Vizirianakis I.S. Müllertz A. Fatouros D.G. Towards the development of self-nano-emulsifying drug delivery systems (SNEDDS) containing trimethyl chitosan for the oral delivery of amphotericin B: in vitro assessment and cytocompatibility studies. J. Drug Deliv. Sci. Technol. 2020 56 101524 10.1016/j.jddst.2020.101524
    [Google Scholar]
  60. Chen X. Liang X. Zhao G. Zeng Q. Dong W. Ou L. Zhang H. Jiang Q. Liao Z. Improvement of the bioavailability of curcumin by a supersaturatable self nanoemulsifying drug delivery system with incorporation of a hydrophilic polymer: in vitro and in vivo characterisation. J. Pharm. Pharmacol. 2021 73 5 641 652 10.1093/jpp/rgaa073 33772289
    [Google Scholar]
  61. Dash R.N. Mohammed H. Humaira T. Reddy A.V. Solid supersaturatable self-nanoemulsifying drug delivery systems for improved dissolution, absorption and pharmacodynamic effects of glipizide. J. Drug Deliv. Sci. Technol. 2015 28 28 36 10.1016/j.jddst.2015.05.004
    [Google Scholar]
  62. Walker K. Hyaluronic Acid In: StatPearls Treasure Island (FL) StatPearls Publishing 2023 1 6
    [Google Scholar]
  63. Batool A. Arshad R. Razzaq S. Nousheen K. Kiani M.H. Shahnaz G. Formulation and evaluation of hyaluronic acid-based mucoadhesive self nanoemulsifying drug delivery system (SNEDDS) of tamoxifen for targeting breast cancer. Int. J. Biol. Macromol. 2020 152 503 515 10.1016/j.ijbiomac.2020.02.275 32112841
    [Google Scholar]
  64. Arshad R. Tabish T.A. Kiani M.H. Ibrahim I.M. Shahnaz G. Rahdar A. Kang M. Pandey S. A hyaluronic acid functionalized self-nano-emulsifying drug delivery system (SNEDDS) for enhancement in ciprofloxacin targeted delivery against intracellular infection. Nanomaterials 2021 11 5 1086 10.3390/nano11051086 33922241
    [Google Scholar]
  65. Li S. Liang N. Yan P. Kawashima Y. Sun S. Inclusion complex based on N-acetyl-L-cysteine and arginine modified hydroxypropyl-β-cyclodextrin for oral insulin delivery. Carbohydr. Polym. 2021 252 117202 10.1016/j.carbpol.2020.117202 33183638
    [Google Scholar]
  66. Xia N. Wan W. Zhu S. Liu Q. Preparation of crystalline nanocellulose/hydroxypropyl β cyclodextrin/carboxymethyl cellulose polyelectrolyte complexes and their controlled release of neohesperidin-copper (II) in vitro. Int. J. Biol. Macromol. 2020 163 1518 1528 10.1016/j.ijbiomac.2020.07.272 32771507
    [Google Scholar]
  67. Kim J.S. Choi Y.J. Woo M.R. Cheon S. Ji S.H. Im D. ud Din F. Kim J.O. Youn Y.S. Oh K.T. Lim S.J. Jin S.G. Choi H.G. New potential application of hydroxypropyl-β-cyclodextrin in solid self-nanoemulsifying drug delivery system and solid dispersion. Carbohydr. Polym. 2021 271 118433 10.1016/j.carbpol.2021.118433 34364573
    [Google Scholar]
  68. Lei Y. Qi J. Nie S. Hu F. Pan W. Lu Y. Wu W. Solid self-nanoemulsifying cyclosporine A pellets prepared by fluid-bed coating: Stability and bioavailability study. J. Biomed. Nanotechnol. 2012 8 3 515 521 10.1166/jbn.2012.1400 22764422
    [Google Scholar]
  69. Alshadidi A. Shahba A.A.W. Sales I. Rashid M.A. Kazi M. Combined curcumin and lansoprazole-loaded bioactive solid self-nanoemulsifying drug delivery systems (Bio-SSNEDDS). Pharmaceutics 2021 14 1 2 10.3390/pharmaceutics14010002 35056898
    [Google Scholar]
  70. Rao S.V.R. Yajurvedi K. Shao J. Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of protein drugs. Int. J. Pharm. 2008 362 1-2 16 19 10.1016/j.ijpharm.2008.05.015 18650037
    [Google Scholar]
  71. Krstić M. Medarević Đ. Đuriš J. Ibrić S. Self-nanoemulsifying drug delivery systems (SNEDDS) and self-microemulsifying drug delivery systems (SMEDDS) as lipid nanocarriers for improving dissolution rate and bioavailability of poorly soluble drugs. Lipid Nanocarriers for Drug Targeting. Elsevier 2018 473 508 10.1016/B978‑0‑12‑813687‑4.00012‑8
    [Google Scholar]
  72. Nora G.I. Venkatasubramanian R. Strindberg S. Siqueira-Jørgensen S.D. Pagano L. Romanski F.S. Swarnakar N.K. Rades T. Müllertz A. Combining lipid based drug delivery and amorphous solid dispersions for improved oral drug absorption of a poorly water-soluble drug. J. Control. Release 2022 349 206 212 10.1016/j.jconrel.2022.06.057 35787914
    [Google Scholar]
  73. Sopyan I Gozali D Megantara S Wahyuningrum R Sunan Ks I. Review: An efforts to increase the solubility and dissolution of active pharmaceutical ingredients. Int. J. Appl. Pharma. 2022 7 22 27 10.22159/ijap.2022v14i1.43431
    [Google Scholar]
  74. Nasr A. Gardouh A. Ghorab M. Novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for oral delivery of olmesartan medoxomil: Design, formulation, pharmacokinetic and bioavailability evaluation. Pharmaceutics 2016 8 3 20 10.3390/pharmaceutics8030020 27355963
    [Google Scholar]
  75. Porter C.J.H. Trevaskis N.L. Charman W.N. Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov. 2007 6 3 231 248 10.1038/nrd2197 17330072
    [Google Scholar]
  76. Parhi R. Swain S. Transdermal evaporation drug delivery system: Concept to commercial products. Adv. Pharm. Bull. 2018 8 4 535 550 10.15171/apb.2018.063 30607327
    [Google Scholar]
  77. Bevernage J. Brouwers J. Clarysse S. Vertzoni M. Tack J. Annaert P. Augustijns P. Drug supersaturation in simulated and human intestinal fluids representing different nutritional states. J. Pharm. Sci. 2010 99 11 4525 4534 10.1002/jps.22154 20845451
    [Google Scholar]
  78. Ng K.W. Penetration enhancement of topical formulations. Pharmaceutics 2018 10 2 51 10.3390/pharmaceutics10020051 29673184
    [Google Scholar]
  79. Derry S. Moore R.A. Gaskell H. McIntyre M. Wiffen P.J. Topical NSAIDs for acute musculoskeletal pain in adults. Cochrane Libr. 2015 2019 5 CD007402 10.1002/14651858.CD007402.pub3 26068955
    [Google Scholar]
  80. Cuiné J.F. McEvoy C.L. Charman W.N. Pouton C.W. Edwards G.A. Benameur H. Porter C.J.H. Evaluation of the impact of surfactant digestion on the bioavailability of danazol after oral administration of lipidic self-emulsifying formulations to dogs. J. Pharm. Sci. 2008 97 2 995 1012 10.1002/jps.21246 18064698
    [Google Scholar]
  81. Lu W. Luo H. Zhu Z. Wu Y. Luo J. Wang H. Preparation and the biopharmaceutical evaluation for the metered dose transdermal spray of dexketoprofen. J. Drug Deliv. 2014 2014 1 12 10.1155/2014/697434 24660066
    [Google Scholar]
  82. Dobson J. Magnetic nanoparticles for drug delivery. Drug Dev. Res. 2006 67 1 55 60 10.1002/ddr.20067
    [Google Scholar]
  83. Karunaratne D.N. Ariyarathna I.R. Welideniya D. Siriwardhana A. Gunasekera D. Karunaratne V. Nanotechnological strategies to improve water solubility of commercially available drugs. Curr. Nanomed. 2017 7 2 10.2174/2468187307666161227171349
    [Google Scholar]
  84. Khodadadi E. Mahjoub S. Arabi M.S. Najafzadehvarzi H. Nasirian V. Fabrication and evaluation of aptamer-conjugated paclitaxel-loaded magnetic nanoparticles for targeted therapy on breast cancer cells. Mol. Biol. Rep. 2021 48 3 2105 2116 10.1007/s11033‑021‑06199‑y 33635469
    [Google Scholar]
  85. Akbarzadeh A. Samiei M. Joo S.W. Anzaby M. Hanifehpour Y. Nasrabadi H.T. Davaran S. Synthesis, characterization and in vitro studies of doxorubicin-loaded magnetic nanoparticles grafted to smart copolymers on A549 lung cancer cell line. J. Nanobiotechnology 2012 10 1 46 10.1186/1477‑3155‑10‑46 23244711
    [Google Scholar]
  86. Schneider-Futschik E.K. Reyes-Ortega F. Advantages and disadvantages of using magnetic nanoparticles for the treatment of complicated ocular disorders. Pharmaceutics 2021 13 8 1157 10.3390/pharmaceutics13081157 34452117
    [Google Scholar]
  87. Kumar A. Jena P.K. Behera S. Lockey R.F. Mohapatra S. Mohapatra S. Multifunctional magnetic nanoparticles for targeted delivery. Nanomedicine 2010 6 1 64 69 10.1016/j.nano.2009.04.002 19446653
    [Google Scholar]
  88. Wang J. Zhang Y. Aghda N.H. Pillai A.R. Thakkar R. Nokhodchi A. Maniruzzaman M. Emerging 3D printing technologies for drug delivery devices: Current status and future perspective. Adv. Drug Deliv. Rev. 2021 174 294 316 10.1016/j.addr.2021.04.019 33895212
    [Google Scholar]
  89. Vaz V.M. Kumar L. 3D printing as a promising tool in personalized medicine. AAPS Pharm. Sci. Tech. 2021 22 1 49 10.1208/s12249‑020‑01905‑8 33458797
    [Google Scholar]
  90. FDA, CDER. Highlights of prescribing information. 2021 Available from: www.fda.gov/medwatch
  91. Everett Hayley Triastek receives FDA IND clearance for 3D printed drug to treat rheumatoid arthritis. 3D printing industry (3DPI) 2021 Available from: https://3dprintingindustry.com/news/triastek-receives-fda-ind-clearance-for-3d-printed-drug-to-treat-rheumatoid-arthritis-184159/
  92. Vogenberg F.R. Isaacson Barash C. Pursel M. Personalized medicine: part 1: Evolution and development into theranostics. P&T 2010 35 10 560 576 21037908
    [Google Scholar]
  93. Lesko L.J. Personalized medicine: Elusive dream or imminent reality? Clin. Pharmacol. Ther. 2007 81 6 807 816 10.1038/sj.clpt.6100204 17505496
    [Google Scholar]
  94. Pouton C.W. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur. J. Pharm. Sci. 2000 11 Suppl. 2 S93 S98 10.1016/S0928‑0987(00)00167‑6 11033431
    [Google Scholar]
  95. Shahba A.A.W. Mohsin K. Alanazi F.K. Novel self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of cinnarizine: Design, optimization, and in-vitro assessment. AAPS Pharm. Sci. Tech. 2012 13 3 967 977 10.1208/s12249‑012‑9821‑4 22760454
    [Google Scholar]
  96. Tran T.N. Bayer I.S. Heredia-Guerrero J.A. Frugone M. Lagomarsino M. Maggio F. Athanassiou A. Cocoa shell waste biofilaments for 3D printing applications. Macromol. Mater. Eng. 2017 302 11 1700219 10.1002/mame.201700219
    [Google Scholar]
  97. Zhao D.X. Cai X. Shou G.Z. Gu Y.Q. Wang P.X. Study on the preparation of bamboo plastic composite intend for additive manufacturing. Key Eng. Mater. 2015 667 250 258 10.4028/www.scientific.net/KEM.667.250
    [Google Scholar]
  98. Kazi M. Alqahtani A. Ahmad A. Noman O.M. Aldughaim M.S. Alqahtani A.S. Alanazi F.K. Development and optimization of sitagliptin and dapagliflozin loaded oral self-nanoemulsifying formulation against type 2 diabetes mellitus. Drug Deliv. 2021 28 1 100 114 10.1080/10717544.2020.1859001 33345632
    [Google Scholar]
  99. Badian M. Korn A. Lehr K.H. Malerczyk V. Waldhäusl W. Absolute bioavailability of glimepiride (Amaryl) after oral administration. Drug Metabol. Drug Interact. 1994 11 4 331 340 10.1515/DMDI.1994.11.4.331 12369756
    [Google Scholar]
  100. Shoaei-Hagh P. Kamelan Kafi F. Najafi S. Zamanzadeh M. Heidari Bakavoli A. Ramezani J. A randomized, <scp>double-blind</scp>, <scp>placebo-controlled</scp>, clinical trial to evaluate the benefits of <scp> Nigella sativa </scp> seeds oil in reducing cardiovascular risks in hypertensive patients. Phytother. Res. 2021 35 8 4388 4400 10.1002/ptr.7140 33957004
    [Google Scholar]
  101. Eleftheriadis G.K. Monou P.K. Bouropoulos N. Boetker J. Rantanen J. Jacobsen J. Vizirianakis I.S. Fatouros D.G. Fabrication of mucoadhesive buccal films for local administration of ketoprofen and lidocaine hydrochloride by combining fused deposition modeling and inkjet printing. J. Pharm. Sci. 2020 109 9 2757 2766 10.1016/j.xphs.2020.05.022 32497597
    [Google Scholar]
  102. Ehtezazi T. Algellay M. Islam Y. Roberts M. Dempster N.M. Sarker S.D. The application of 3D printing in the formulation of multilayered fast dissolving oral films. J. Pharm. Sci. 2018 107 4 1076 1085 10.1016/j.xphs.2017.11.019 29208374
    [Google Scholar]
  103. Eleftheriadis G.K. Fatouros D.G. Haptic evaluation of 3D-printed braille-encoded intraoral films. Eur. J. Pharm. Sci. 2021 157 105605 10.1016/j.ejps.2020.105605 33091570
    [Google Scholar]
  104. Eleftheriadis G.K. Katsiotis C.S. Andreadis D.A. Tzetzis D. Ritzoulis C. Bouropoulos N. Kanellopoulou D. Andriotis e.g. Tsibouklis J. Fatouros D.G. Inkjet printing of a thermolabile model drug onto FDM-printed substrates: Formulation and evaluation. Drug Dev. Ind. Pharm. 2020 46 8 1253 1264 10.1080/03639045.2020.1788062 32597338
    [Google Scholar]
  105. Atef E. Belmonte A.A. Formulation and in vitro and in vivo characterization of a phenytoin self-emulsifying drug delivery system (SEDDS). Eur. J. Pharm. Sci. 2008 35 4 257 263 10.1016/j.ejps.2008.07.004 18706499
    [Google Scholar]
  106. Julianto T. Yuen K.H. Noor A.M. Improved bioavailability of vitamin E with a self emulsifying formulation. Int. J. Pharm. 2000 200 1 53 57 10.1016/S0378‑5173(00)00337‑9 10845685
    [Google Scholar]
  107. Koga K. Takarada N. Takada K. Nano-sized water-in-oil-in-water emulsion enhances intestinal absorption of calcein, a high solubility and low permeability compound. Eur. J. Pharm. Biopharm. 2010 74 2 223 232 10.1016/j.ejpb.2009.09.004 19755156
    [Google Scholar]
  108. Riboldi P. Gerosa M. Meroni P.L. Pidotimod: A reappraisal. Int. J. Immunopathol. Pharmacol. 2009 22 2 255 262 10.1177/039463200902200201 19505378
    [Google Scholar]
  109. Garti N. Double emulsions — scope, limitations and new achievements. Colloids Surf. A Physicochem. Eng. Asp. 1997 123-124 233 246 10.1016/S0927‑7757(96)03809‑5
    [Google Scholar]
  110. Zhao Y. Zhang J. Wang Q. Li J. Han B. Water-in-oil-in-water double nanoemulsion induced by CO 2. Phys. Chem. Chem. Phys. 2011 13 2 684 689 10.1039/C0CP00869A 21031206
    [Google Scholar]
  111. Shakeel F. Ramadan W. Transdermal delivery of anticancer drug caffeine from water-in-oil nanoemulsions. Colloids Surf. B Biointerfaces 2010 75 1 356 362 10.1016/j.colsurfb.2009.09.010 19783127
    [Google Scholar]
  112. Schultz H.B. Thomas N. Rao S. Prestidge C.A. Supersaturated silica-lipid hybrids (super-SLH): An improved solid-state lipid-based oral drug delivery system with enhanced drug loading. Eur. J. Pharm. Biopharm. 2018 125 13 20 10.1016/j.ejpb.2017.12.012 29277724
    [Google Scholar]
  113. Ateeq M.A.M. Aalhate M. Mahajan S. Kumar G.S. Sen S. Singh H. Self-nanoemulsifying drug delivery system (SNEDDS) of docetaxel and carvacrol synergizes the anticancer activity and enables safer toxicity profile: Optimization, and in-vitro, ex-vivo and in-vivo pharmacokinetic evaluation. Drug Deliv. Transl. Res. 2023 13 10 2614 2638 10.1007/s13346‑023‑01342‑7 37067745
    [Google Scholar]
  114. Kazi M. Al-Swairi M. Ahmad A. Raish M. Alanazi F.K. Badran M.M. Khan A.A. Alanazi A.M. Hussain M.D. Evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for poorly water-soluble talinolol: Preparation, in vitro and in vivo assessment. Front. Pharmacol. 2019 10 459 10.3389/fphar.2019.00459 31118895
    [Google Scholar]
  115. Shahba A.A. Tashish A.Y. Alanazi F.K. Kazi M. Combined self-nanoemulsifying and solid dispersion systems showed enhanced cinnarizine release in hypochlorhydria/achlorhydria dissolution model. Pharmaceutics 2021 13 5 627 10.3390/pharmaceutics13050627 33924928
    [Google Scholar]
  116. Gupta B. Mishra V. Gharat S. Momin M. Omri A. Cellulosic polymers for enhancing drug bioavailability in ocular drug delivery systems. Pharmaceuticals 2021 14 11 1201 10.3390/ph14111201 34832983
    [Google Scholar]
  117. Patel H. Palekar S. Patel A. Patel K. Ibrutinib amorphous solid dispersions with enhanced dissolution at colonic pH for the localized treatment of colorectal cancer. Int. J. Pharm. 2023 641 123056 10.1016/j.ijpharm.2023.123056 37207861
    [Google Scholar]
  118. Park H. Ha E.S. Kim M.S. Current status of supersaturable self-emulsifying drug delivery systems. Pharmaceutics 2020 12 4 365 10.3390/pharmaceutics12040365 32316199
    [Google Scholar]
  119. Tashish A. Shahba A. Alanazi F. Kazi M. Adsorbent precoating by lyophilization: A novel green solvent technique to enhance cinnarizine release from solid self-nanoemulsifying drug delivery systems (S-SNEDDS). Pharmaceutics 2022 15 1 134 10.3390/pharmaceutics15010134 36678766
    [Google Scholar]
  120. Gad S. International journal of biological & pharmaceutical research the effect of converting liquid valsartan snedds into solid snedds using different solid carriers on its performance. 2013 Available from: www.ijbpr.com
  121. Breitenbach J. Melt extrusion: From process to drug delivery technology. Eur. J. Pharm. Biopharm. 2002 54 2 107 117 10.1016/S0939‑6411(02)00061‑9 12191680
    [Google Scholar]
  122. Wilson M. Williams M.A. Jones D.S. Andrews G.P. Hot-melt extrusion technology and pharmaceutical application. Ther. Deliv. 2012 3 6 787 797 10.4155/tde.12.26 22838073
    [Google Scholar]
  123. Follonier N. Doelker E. Cole E.T. Evaluation of hot-melt extrusion as a new technique for the production of polymer-based pellets for sustained release capsules containing high loadings of freely soluble drugs. Drug Dev. Ind. Pharm. 1994 20 8 1323 1339 10.3109/03639049409038373
    [Google Scholar]
  124. Gryczke A. Melt extrusion with eudragit solubility enhancement modified release. AAPS Pharm. Sci. Tech. 2006 17 56 67 10.1208/s12249‑015‑0357‑2
    [Google Scholar]
  125. Schmied F.P. Bernhardt A. Klein S. Preparation of solid self-nanoemulsifying drug delivery systems (S-SNEDDS) by co-extrusion of liquid SNEDDS and polymeric carriers—a new and promising formulation approach to improve the solubility of poorly water-soluble drugs. Pharmaceuticals 2022 15 9 1135 10.3390/ph15091135 36145356
    [Google Scholar]
  126. Bravo-Alfaro D.A. Muñoz-Correa M.O.F. Santos-Luna D. Toro-Vazquez J.F. Cano-Sarmiento C. García-Varela R. García H.S. Encapsulation of an insulin-modified phosphatidylcholine complex in a self-nanoemulsifying drug delivery system (SNEDDS) for oral insulin delivery. J. Drug Deliv. Sci. Technol. 2020 57 101622 10.1016/j.jddst.2020.101622
    [Google Scholar]
  127. Chen L. Lin X. Yao M. Teng H. Self-nanoemulsions loaded with dihydromyricetin: Insights to their formulation stability. Food Hydrocoll. 2020 108 105888 10.1016/j.foodhyd.2020.105888
    [Google Scholar]
  128. Singh A.P. Guo Y. Singh A. Xie W. Jiang P. Developments in encapsulation of insulin: Is oral delivery now possible? J. Pharma. Biopharma. Res. 2019 1 2 74 93 10.25082/JPBR.2019.02.005
    [Google Scholar]
  129. Kaur P. Singh S.K. Garg V. Gulati M. Vaidya Y. Optimization of spray drying process for formulation of solid dispersion containing polypeptide-k powder through quality by design approach. Powder Technol. 2015 284 1 11 10.1016/j.powtec.2015.06.034
    [Google Scholar]
  130. Kuncahyo I. Choiri S. Fudholi A. Solidification of meloxicam self-nano emulsifying drug delivery system formulation incorporated into soluble and insoluble carriers using freeze drying method. IOP Conference Series: Materials Science and Engineering Solo Paragon Hotel, Indonesia, 15–16 Oct 2018, Vol. 578, p. 012051. 10.1088/1757‑899X/578/1/012051
    [Google Scholar]
  131. Mahmoud E.A. Bendas E.R. Mohamed M.I. Preparation and evaluation of self-nanoemulsifying tablets of carvedilol. AAPS Pharm. Sci. Tech. 2009 10 1 183 192 10.1208/s12249‑009‑9192‑7 19238556
    [Google Scholar]
  132. Tong Y. Wang Y. Yang M. Yang J. Chen L. Chu X. Gao C. Jin Q. Gong W. Gao C. Systematic development of self- nanoemulsifying liquisolid tablets to improve the dissolution and oral bioavailability of an oily drug, vitamin K1. Pharmaceutics 2018 10 3 96 10.3390/pharmaceutics10030096 30021949
    [Google Scholar]
  133. Nokhodchi A. Aliakbar R. Desai S. Javadzadeh Y. Liquisolid compacts: The effect of cosolvent and HPMC on theophylline release. Colloids Surf. B Biointerfaces 2010 79 1 262 269 10.1016/j.colsurfb.2010.04.008 20451361
    [Google Scholar]
  134. Gong W. Wang Y. Sun L. Yang J. Shan L. Yang M. Gao C. WY; SL; YJ; SL; YM; GC. Development of itraconazole liquisolid compact: Effect of polyvinylpyrrolidone on the dissolution properties. Bentham Science Publishers. 2016 13 3 452 461 26882116
    [Google Scholar]
  135. Yadav VB Yadav A V Improvement of solubility and dissolution of indomethacin by liquisolid and compaction granulation technique. J. Pharm. Sci. & Res. 2009 1 1 6
    [Google Scholar]
  136. Lei Y. Lu Y. Qi J. Nie S. Hu F. Pan W. Wu W. Solid self-nanoemulsifying cyclosporin A pellets prepared by fluid-bed coating: Preparation, characterization and in vitro redispersibility. Int. J. Nanomedicine 2011 6 Apr 795 805 21589647
    [Google Scholar]
  137. Desai N.S. Nagarsenker M.S. Design and evaluation of self-nanoemulsifying pellets of repaglinide. AAPS Pharm. Sci. Tech. 2013 14 3 994 1003 10.1208/s12249‑013‑9990‑9 23775389
    [Google Scholar]
  138. Shahba A.A.W. Ahmed A.R. Alanazi F.K. Mohsin K. Abdel-Rahman S.I. Multi-layer self-nanoemulsifying pellets: An innovative drug delivery system for the poorly water-soluble drug cinnarizine. AAPS Pharm. Sci. Tech. 2018 19 5 2087 2102 10.1208/s12249‑018‑0990‑7 29696614
    [Google Scholar]
  139. Thomas N. Holm R. Müllertz A. Rades T. in vitro and in vivo performance of novel supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS). J. Control. Release 2012 160 1 25 32 10.1016/j.jconrel.2012.02.027 22405903
    [Google Scholar]
  140. Alhasani K.F. Kazi M. Abbas M. Shahba A.A. Alanazi F.K. Self-nanoemulsifying ramipril tablets: A novel delivery system for the enhancement of drug dissolution and stability. Int. J. Nanomedicine 2019 14 5435 5448 10.2147/IJN.S203311 31409997
    [Google Scholar]
  141. Altamimi M.A. Kazi M. Hadi Albgomi M. Ahad A. Raish M. Development and optimization of self-nanoemulsifying drug delivery systems (SNEDDS) for curcumin transdermal delivery: an anti-inflammatory exposure. Drug Dev. Ind. Pharm. 2019 45 7 1073 1078 10.1080/03639045.2019.1593440 30987466
    [Google Scholar]
  142. Kassem A.A. Marzouk M.A. Ammar A.A. Elosaily G.H. Preparation and in vitro evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) containing clotrimazole. Drug Discov. Ther. 2010 4 5 373 379 22491242
    [Google Scholar]
  143. Naseri N. Zakeri-Milani P. Hamishehkar H. Pilehvar-Soltanahmadi Y. Valizadeh H. Development, in vitro characterization, antitumor and aerosol performance evaluation of respirable prepared by self-nanoemulsification method. Drug Res. 2017 67 6 343 348 10.1055/s‑0043‑102404 28288490
    [Google Scholar]
  144. Ansari M.J. Alnakhli M. Al-Otaibi T. Meanazel O.A. Anwer M.K. Ahmed M.M. Alshahrani S.M. Alshetaili A. Aldawsari M.F. Alalaiwe A.S. Alanazi A.Z. Zahrani M.A. Ahmad N. Formulation and evaluation of self-nanoemulsifying drug delivery system of brigatinib: Improvement of solubility, in vitro release, ex-vivo permeation and anticancer activity. J. Drug Deliv. Sci. Technol. 2021 61 102204 10.1016/j.jddst.2020.102204
    [Google Scholar]
  145. Kiparissides C. Kammona O. Nanoscale carriers for targeted delivery of drugs and therapeutic biomolecules. Can. J. Chem. Eng. 2013 91 4 638 651 10.1002/cjce.21685
    [Google Scholar]
  146. Majumder J. Taratula O. Minko T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv. Drug Deliv. Rev. 2019 144 57 77 10.1016/j.addr.2019.07.010 31400350
    [Google Scholar]
  147. Arenas-Jal M. Suñé-Negre J.M. García-Montoya E. Coenzyme Q10 supplementation: Efficacy, safety, and formulation challenges. Compr. Rev. Food Sci. Food Saf. 2020 19 2 574 594 10.1111/1541‑4337.12539 33325173
    [Google Scholar]
  148. Beg S. Sandhu P.S. Batra R.S. Khurana R.K. Singh B. QbD-based systematic development of novel optimized solid self-nanoemulsifying drug delivery systems (SNEDDS) of lovastatin with enhanced biopharmaceutical performance. Drug Deliv. 2015 22 6 765 784 10.3109/10717544.2014.900154 24673611
    [Google Scholar]
  149. Qureshi K.A. Mohammed S.A.A. Khan O. Ali H.M. El-Readi M.Z. Mohammed H.A. Cinnamaldehyde-based self-nanoemulsion (CA-SNEDDS) accelerates wound healing and exerts antimicrobial, antioxidant, and anti-inflammatory effects in rats’ skin burn model. Molecules 2022 27 16 5225 10.3390/molecules27165225 36014463
    [Google Scholar]
  150. Bezerra-Souza A. Jesus J.A. Laurenti M.D. Lalatsa A. Serrano D.R. Passero L.F.D. Nanoemulsified butenafine for enhanced performance against experimental cutaneous leishmaniasis. J. Immunol. Res. 2021 2021 1 13 10.1155/2021/8828750 33880383
    [Google Scholar]
  151. Ahmad N. Khalid M.S. Khan M.F. Ullah Z. Beneficial effects of topical 6-gingerol loaded nanoemulsion gel for wound and inflammation management with their comparative dermatokinetic. J. Drug Deliv. Sci. Technol. 2023 80 104094 10.1016/j.jddst.2022.104094
    [Google Scholar]
  152. Souto E.B. Cano A. Martins-Gomes C. Coutinho T.E. Zielińska A. Silva A.M. Microemulsions and nanoemulsions in skin drug delivery. Bioengineering 2022 9 4 158 10.3390/bioengineering9040158 35447718
    [Google Scholar]
  153. Miastkowska M. Sikora E. Ogonowski J. Zielina M. Łudzik A. The kinetic study of isotretinoin release from nanoemulsion. Colloids Surf. A Physicochem. Eng. Asp. 2016 510 63 68 10.1016/j.colsurfa.2016.07.060
    [Google Scholar]
  154. Cetinel S. Montemagno C. Nanotechnology for the prevention and treatment of cataract. Asia Pac. J. Ophthalmol. 2015 4 6 381 387 10.1097/APO.0000000000000156 26716434
    [Google Scholar]
  155. Mohamed H.B. Abd El-Hamid B.N. Fathalla D. Fouad E.A. Current trends in pharmaceutical treatment of dry eye disease: A review. Eur. J. Pharm. Sci. 2022 175 106206 10.1016/j.ejps.2022.106206 35568107
    [Google Scholar]
  156. Abo El-Enin H.A. Ahmed M.F. Naguib I.A. El-Far S.W. Ghoneim M.M. Alsalahat I. Abdel-Bar H.M. Utilization of polymeric micelles as a lucrative platform for efficient brain deposition of olanzapine as an antischizophrenic drug via intranasal delivery. Pharmaceuticals 2022 15 2 249 10.3390/ph15020249 35215361
    [Google Scholar]
  157. Salcido A. Equilibrium Properties of the Cellular Automata Models for Traffic Flow in a Single Lane. Cellular Automata - Simplicity Behind Complexity. InTech 2011 1 6 10.5772/15371
    [Google Scholar]
  158. Coler B.S. Shynlova O. Boros-Rausch A. Lye S. McCartney S. Leimert K.B. Xu W. Chemtob S. Olson D. Li M. Huebner E. Curtin A. Kachikis A. Savitsky L. Paul J.W. Smith R. Adams Waldorf K.M. Landscape of preterm birth therapeutics and a path forward. J. Clin. Med. 2021 10 13 2912 10.3390/jcm10132912 34209869
    [Google Scholar]
  159. Garcia C.R. Malik M.H. Biswas S. Tam V.H. Rumbaugh K.P. Li W. Liu X. Nanoemulsion delivery systems for enhanced efficacy of antimicrobials and essential oils. Biomater. Sci. 2022 10 3 633 653 10.1039/D1BM01537K 34994371
    [Google Scholar]
  160. Chaudhary S. Aqil M. Sultana Y. Kalam M.A. Self-nanoemulsifying drug delivery system of nabumetone improved its oral bioavailability and anti-inflammatory effects in rat model. J. Drug Deliv. Sci. Technol. 2019 51 736 745 10.1016/j.jddst.2018.04.009
    [Google Scholar]
  161. Farooqui H. Upadhyay S. Upadhyay P. Transdermal patches approach towards self-nano-emulsifying drug delivery system (SNEDDS) using essential oil as penetration enhancer. Micro Nanosyst. 2022 14 4 314 340 10.2174/1876402914666220221105304
    [Google Scholar]
  162. Abdallah H.M. El-Bassossy H.M. El-Halawany A.M. Ahmed T.A. Mohamed G.A. Malebari A.M. Hassan N.A. Self-nanoemulsifying drug delivery system loaded with psiadia punctulata major metabolites for hypertensive emergencies: Effect on hemodynamics and cardiac conductance. Front. Pharmacol. 2021 12 681070 10.3389/fphar.2021.681070 34177590
    [Google Scholar]
  163. Gautam N. Kesavan K. Development of microemulsions for ocular delivery. Ther. Deliv. 2017 8 5 313 330 10.4155/tde‑2016‑0076 28361605
    [Google Scholar]
  164. Othman A.M.M. Shehata E.M.M. Elnaggar Y.S.R. Multifaceted implementation of nanotechnology in ameliorating therapeutic efficacy of soy phytoestrogens: Comprehensive review on the state of art. J. Drug Deliv. Sci. Technol. 2021 61 102269 10.1016/j.jddst.2020.102269
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873314206241023034855
Loading
/content/journals/cnanom/10.2174/0124681873314206241023034855
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test