- Home
- A-Z Publications
- Current Molecular Pharmacology
- Issue Home
Current Molecular Pharmacology - Current Issue
Volume 17, Issue 1, 2024
- Pharmacology
-
-
-
Mitochondria-targeted Uncouplers Decrease Inflammatory Reactions in Endothelial Cells by Enhancing Methylation of the ICAM1 Gene Promoter
Authors: Liudmila A. Zinovkina, Ciara I. Makievskaya, Ivan I. Galkin and Roman A. ZinovkinIntroductionThe study aimed to investigate the effects of low concentrations of mitochondrial uncouplers in endothelial cells on the CpG dinucleotide methylation of the ICAM1 gene promoter. The excessive inflammatory response in the endothelium is responsible for the development of many cardiovascular diseases. Mitochondria are important regulators of endothelial cell functions. Mild uncoupling of oxidative phosphorylation and respiration in endothelial mitochondria exerts a long lasting anti-inflammatory effect. However, the detailed mechanism of the anti-inflammatory activity of mitochondrial uncouplers remains unclear.We hypothesized that mild mitochondrial uncoupling leads to epigenetic changes in genomic DNA contributing to the anti-inflammatory response.
MethodsWe studied the long-term effects of mitochondria-targeted compounds with the uncoupler’s activities: the antioxidant plastoquinonyl-decyl-triphenylphosphonium (SkQ1), dodecyl-triphenylphosphonium (C12TPP), and 2,4-dinitrophenol (DNP). The mRNA expression of the intercellular adhesion molecule 1 (ICAM1), a marker of inflammatory activation of endothelial cells, was measured by RT-qPCR. Cytosine methylation in the CpG sites of the ICAM1 gene promoter was estimated by bisulfite sequencing of individual clones.
ResultsIt was found that downregulation of ICAM1 expression caused by DNP and C12TPP was accompanied by an increase in the methylation of CpG sites in the ICAM1 gene promoter. None of the compounds affected intracellular or intramitochondrial ATP levels.
ConclusionLow concentrations of mitochondrial oxidative phosphorylation uncouplers are able to increase methylation of ICAM1 gene promoter, which corresponds to the observed decrease in the levels of mRNA of this gene. Thus, the change in methylation of the ICAM1 gene promoter may underlie the mechanism of decreased ICAM1 expression caused by mild mitochondrial depolarization. Mitochondrial uncouplers may be exploited as possible therapeutic candidates to treat excessive inflammation in endothelium, by changing the methylation status of genomic DNA.
-
-
-
-
Grp94 Inhibitor HCP1 Suppressed the Replication of SVA in BHK-21 Cells and PK-15 Cells
Authors: Shuo Wang, XiaoLing Cui, Ren Hui, Wen Yao, BaoXiang Zhao, Jun Li and JunYing MiaoBackgroundGlucoregulatory protein 94 (Grp94) is necessary for the post-viral life cycle and plays a quality control role in viral proteins, but the role of Grp94 in regulating viral replication in host cells is not well known. Therefore, finding a compound that can regulate Grp94 will help us to study the mechanism of viral replication. Previously, we synthesized a coumarin pyrazoline derivative HCP1 that is an effective inhibitor of Grp94. We suppose that HCP1 may inhibit viral replication.
ObjectiveThis study aimed to investigate the effect of HCP1 on the replication ability of Senecavirus A (SVA), so as to provide a target and a leading compound for revealing the pathogenic mechanism of the virus and developing antiviral drugs.
MethodsRat cell lines BHK-21 and porcine cell lines PK-15 were infected with SVA, and the infected cells were treated with different concentrations of HCP1. The cell viability (CCK-8), virus titer (TCID50), autophagy level, and Grp94 expression were measured.
ResultsThe results showed that a low concentration of HCP1 decreased viral titer and viral load in BHK-21 and PK-15 cells, and 5μM HCP1 significantly decreased the expression of SVA VP2 protein. In addition, SVA infection can lead to an increased level of autophagy, and HCP1 can inhibit host cell autophagy caused by SVA infection, thereby inhibiting viral replication and infection.
ConclusionThese findings reveal that Grp94 is a key factor in controlling SVA replication, and its inhibitor HCP1 suppresses SVA replication by inhibiting the increase of Grp94 protein level and autophagy induced by SVA. This study will contribute to the development of a new class of small-molecule antiviral drugs.
-
-
-
Differential Kat3 Coactivator Usage Regulates Brain Metabolism and Neuronal Differentiation
IntroductionOur previous work has demonstrated significant effects on the oxidative stress response, mitochondrial function, and oxidative phosphorylation in the livers and intestines of p300 S89A knockin (S89AKI) mice. We now show that this mutation is also associated with brain metabolic defects and neuronal differentiation.
Methodsp300 S89A edited P19 cells, and S89AKI mice demonstrated metabolic and neuronal differentiation defects based on proteomic, cell biological and PET imaging studies.
ResultsThe metabolic and differentiation defects associated with the p300 S89A knockin mutation could be corrected both in vitro and in vivo utilizing the small molecule CBP/beta-catenin antagonist ICG-001.
ConclusionRebalancing the equilibrium between CBP/β-catenin versus p300/β-catenin associated transcription, utilizing the small molecule CBP/beta-catenin antagonist ICG-001, enhances mitochondrial oxidative phosphorylation, metabolic function, and neuronal differentiation and may be able to ameliorate the cognitive decline seen in neurodegenerative disorders, including Alzheimer’s Disease.
-
-
-
Antiarrhythmic Potential of Epicardial Botulinum Toxin Injection for Suppression of Postoperative Atrial Fibrillation
More LessFollowing heart surgery, postoperative atrial fibrillation (AF) is the most prevalent kind of secondary AF and the most frequent adverse event. Postoperative AF is related to a number of unfavorable cardiac outcomes, such as heart failure, stroke, and death. However, the pharmacological treatment for postoperative AF is only relatively efficient and is frequently linked to detrimental complications, including symptomatic bradycardia with atrioventricular block due to rate control drugs and elevated hemorrhage hazard attributable to the administration of anticoagulants. Ablation procedures also result in the irreversible damage of cardiac anatomic structures, which may have long-term negative implications on heart performance. As a result, there is an unmet demand for treatments that can minimize the incidence of postoperative AF in an effective and safe manner. Botulinum toxin is an established neurotoxin that has progressively gained use in every medical science domain. It hinders the propagation of impulses across nerve fibers without causing immediate damage to the cardiac tissue. The transient feature of botulinum toxin action and the eventual restoration of the autonomic nervous system transmission are undeniably advantageous and may render botulinum toxin a potential and feasible treatment approach for postoperative AF.
-
-
-
Physalin B Reduces Tau Phosphorylation and Cell Apoptosis in HEK293 Cells by Activating FoxO1
Authors: Wei Zhang, Yating Shi, Mingti Lv, Yimin Zhang, Wei Ren, Ruling Shi, Hecheng Wang and Linlin ShanBackgroundPhysalin B (PB) is one of the main active compounds of Solanaceae plants, with a wide range of biological activities. PB reportedly has the potential to treat Alzheimer’s disease (AD).
ObjectiveIn this study, we investigated the effect of PB on Tau phosphorylation and cell apoptosis using Tau-expressing HEK293 cells (HEK293/Tau) as a cellular model.
MethodsThe optimum concentration of PB to treat HEK293/Tau cells was determined using the CCK-8 assay. Additionally, the expression of FoxO1, Tau-5, p-Tau (T231, S262, and S404), ERK, p-ERK, GSK-3β, and p-GSK-3β was detected using western blotting to determine the effect of PB on Tau phosphorylation. The apoptosis rate was detected using flow cytometry, and the expression of Bax and Bcl-2 was detected using western blotting and verified using real-time quantitative polymerase chain reaction (RT-qPCR). Moreover, cells were transfected with FoxO1 siRNA to downregulate FoxO1 expression, and the expression of the above-mentioned proteins was detected to verify the effect of PB on Tau phosphorylation and cell apoptosis.
ResultsAfter 24 h of PB treatment, the phosphorylation levels of Tau at S404, S262, and T231 sites decreased significantly, and the activities of GSK-3β and ERK were inhibited. PB also reduced cell apoptosis by reducing the expression of Bax and increasing the expression of Bcl-2. In addition, PB decreased Tau phosphorylation and cell apoptosis by upregulating FoxO1.
ConclusionThe natural compound PB exhibited a protective effect in the AD cell model by increasing FoxO1 expression and reducing Tau phosphorylation and cell apoptosis.
-
-
-
Hepatic Ischemia-reperfusion Injury: Protective Approaches and Treatment
Authors: Kuldeep Singh, Jeetendra Kumar Gupta, Shivendra Kuma, Anurag, Soumyadip Mukherjee and Aman PatelIschemia and reperfusion damage to the liver is one of the major causes of hepatic dysfunction and liver failure after a liver transplant. The start of hepatic ischemia-reperfusion damage is linked to metabolic acidosis, Kupffer cells, neutrophils, excessive calcium, and changes in the permeability of the mitochondrial membrane. Hypoxia activates Kupffer cells, resulting in the production of reactive oxygen species (ROS). These ROS when accumulated, causes apoptosis and necrosis, as well as activate immune and inflammatory responses that involve many cells and signalling molecules. Numerous antioxidant compounds have been researched to lessen oxidative stress and thus serve as potential compounds to deal the ischemia-reperfusion damage. This article confers a deep understanding of the protective effects of some effective therapies, including hepatoprotective agents, attenuation of an increase in xanthine oxidase activity, and administration of antioxidants like N-acetylcysteine, superoxide dismutase (SOD), and ornithine.
-
-
-
Pathophysiology, Current Therapeutic Options, Vaccine Candidates, and Drug Targets for Human Brucellosis
Authors: Manisha Pritam and Rajnish KumarBrucellosis is an infectious disease caused by different species of Brucella bacteria. It is also known as Malta fever, one of the neglected diseases that can cause infection in both animals and humans. Although human-to-human infection is rare, it can spread through the inhalation of airborne agents, and if left untreated, it can lead to serious health complications. In this review, we aim to highlight the pathophysiology, prevention, epidemiology, mitigation, cure, targets for drug development, and vaccine development against human brucellosis. Human brucellosis is mainly caused by consuming unpasteurized milk or dairy products, uncooked meat, and contact with infected animals. Human brucellosis outbreaks are mainly associated with developing and low- to middle-income countries. Brucella is present all over the world, and only some of the regions are at high risk, including Asia, Africa, Eastern Europe, Mexico, South and Central America, the Caribbean, the Mediterranean Basin, and the Middle East. Because of intracellular survival, inhibition of apoptosis, and immune evasion, Brucella can survive and multiply inside the host cell, which can cause chronic disease. By using proteomics approaches, several new drug targets were reported for human brucellosis that can be used for the development of novel drugs. We can also develop an efficient vaccine against human brucellosis by exploring previously reported vaccine candidates against animal brucellosis. The information provided through this review will facilitate research to control and cure human brucellosis and its complicated symptoms.
-
-
-
CD73 Blockade Alleviated Hepatic Fibrosis via Inhibiting Hepatic Stellate Cells Proliferation and Activation
Authors: Lan Yang, Zhao-Wei Gao, Xia-nan Wu, Chong Liu, Juan Zhang, Hui-Zhong Zhang and Ke DongBackgroundLiver fibrosis is associated with the activation of hepatic stellate cells (HSCs). Inhibition of HSCs activation is a strategy for alleviating hepatic fibrogenesis. CD73 is involved in liver disease development, while the mechanism remains unclear.
ObjectiveThis study aimed to investigate the effect of CD73 targeting inhibition on liver fibrosis.
MethodsIntraperitoneal injection of CCl4 was used to induce liver fibrosis in mice models. Adenosine 5′-(α, β-methylene) diphosphate sodium salt (APCP) was used for CD73 blockade. The siRNA was used to induce CD73 knockdown in HSCs. LX2 and HSC-T6 were used to investigate the role of CD73 in HSCs activation in vitro.
ResultsThe results showed that APCP treatment could alleviate hepatic fibrosis. In fibrotic liver tissues, CD73 exhibited a positive correlation with markers of HSCs activation. Furthermore, APCP treatment and CD73 knockdown could inhibit HSCs (LX2 and HSC-T6) activation and proliferation. By using RNA sequencing of liver tissues from control, CCl4-mice, and APCP-treated mice, 851 genes that were significantly changed in CCl4 mice (vs. control) were reversed by APCP treatment. These genes were mainly enriched in cell division-associated biological processes. Moreover, we found that CD73 might be associated with autophagy in HSCs. In fibrotic liver tissues and HSCs, ATG5 and Beclin1 expression could be downregulated by CD73 knockdown and APCP treatment.
ConclusionThis study demonstrated the effects and mechanism of CD73 in HSCs activation and proliferation, which presents the therapeutical potential of CD73 blockage for liver fibrosis.
-
-
-
The Targeted Therapies for Osteosarcoma via Six Major Pathways
Authors: Shuxing Wang, Quanlei Ren, Guoqing Li, Xiaoxuan Zhao, Xing Zhao and Zhen ZhangOsteosarcoma is the most common primary bone malignancy and has a high tendency of local invasion. Although a lot of studies have focused on chemotherapy and combination chemotherapy regimens in recent years, still, there is no particularly perfect regimen for the treatment of relapsed or metastatic OS, and the prognosis is still relatively poor. As a new therapeutic method, targeted therapy provides a new scheme for patients with osteosarcoma and has a wide application prospect. This article reviews the latest progress of targeted therapy for osteosarcoma, and summarizes the research on the corresponding targets of osteosarcoma through six major pathways. These studies can pave the way for new treatments for osteosarcoma patients who need them.
-
-
-
SGLT2 Inhibitors and Diabetic Kidney Disease: Targeting Multiple and Interrelated Signaling Pathways for Renal Protection
More LessAlmost 20-40% of all patients suffering from diabetes mellitus experience chronic kidney disease, which is related to higher mortality (cardiovascular and all-cause). The implication of several pathophysiological mechanisms (hemodynamic, tubular, metabolic and inflammatory) in the pathogenesis of diabetic kidney disease generates an urgent need to develop multitarget therapeutic strategies to face its development and progression. SGLT2 inhibitors are undoubtedly a practice-changing drug class for individuals who experience type 2 diabetes and diabetic kidney disease. In vitro studies, exploratory research, sub-analyses of large randomized controlled trials, and investigation of several biomarkers have demonstrated that SGLT2 inhibitors achieved multiple beneficial activities, targeting several renal cellular and molecular pathways independent of their antihyperglycemic activity. These mainly include the reduction in intraglomerular pressure through the restoration of TGF, impacts on the renin-angiotensin-aldosterone system, improvement of renal hypoxia, adaptive metabolic alterations in substrate use/energy expenditure, improvement of mitochondrial dysfunction, and reduction of inflammation, oxidative stress and fibrosis. This manuscript thoroughly investigates the possible mechanisms that underlie their salutary renal effects in patients with diabetes, focusing on several pathways involved and the interplay between them. It also explores their upcoming role in ameliorating the evolution of chronic kidney disease in patients with diabetes.
-
-
-
Regulating miRNAs Expression by Resveratrol: Novel Insights based on Molecular Mechanism and Strategies for Cancer Therapy
Resveratrol, a polyphenolic phytoalexin found in a wide range of plants, including grapes, berries, and peanuts, is an extensively researched phytochemical with unique pharmacological capabilities and amazing potential to affect many targets in various cancers. Resveratrol's anti-cancer activities are due to its targeting of a variety of cellular and molecular mechanisms and crucial processes involved in cancer pathogenesis, such as the promotion of growth arrest, stimulation of apoptosis, suppression of cell proliferation, induction of autophagy, regulating oxidative stress and inflammation, and improving the influence of some of the other chemotherapeutic agents. MicroRNAs (miRNAs) are non-coding RNAs that modulate gene expression by degrading mRNA or inhibiting translation. MiRNAs serve critical roles in a wide range of biological activities, and disruption of miRNA expression is strongly linked to cancer progression. Recent research has shown that resveratrol has anti-proliferative and/or pro-apoptotic properties via modulating the miRNA network, which leads to the inhibition of tumor cell proliferation, the activation of apoptosis, or the increase of traditional cancer therapy effectiveness. As a result, employing resveratrol to target miRNAs will be a unique and potential anticancer approach. Here, we discuss the main advances in the modulation of miRNA expression by resveratrol, as well as the several miRNAs that may be influenced by resveratrol in different types of cancer and the significance of this natural drug as a promising strategy in cancer treatment.
-
-
-
Peptides for Dual Targeting of ErbB1 and ErbB2: Blocking EGFR Cell Signaling Transduction Pathways for Cancer Chemotherapy
Cancer is one of the most deadly diseases involving dysregulated cell proliferation. Chemotherapeutic drugs have serious drawbacks of nonspecific toxicity and drug resistance. Tyrosine kinases are a significant class of enzymes of protein kinases. The four members of the trans-membrane family of tyrosine kinase receptors known as the human epidermal growth factor receptors (EGFR), ErbB1/HER1, ErbB2/HER2/neu, ErbB3/HER3, and ErbB4/HER4, are overexpressed in many forms of cancer. These receptors are crucial for cell division, invasion, metastasis, angiogenesis, and uncontrolled activation of cancer cells. In this context, an attractive combination of anticancer drug targets is ErbB1 and ErbB2. Numerous cancer types exhibit overexpression of ErbB1 and ErbB2, which is linked to poor prognosis and causes resistance to ErbB1-targeted therapy. Further, it has been reported in recent years that the use of peptides as anticancer agents have the potential to circumvent the drawbacks of the currently used chemotherapeutic drugs. Among them, short peptides have several advantages when compared to small molecules. The present report reviews the importance of tyrosine kinases as targets for cancer, the role of peptides as therapeutic agents, and the investigations that have been carried out by earlier workers for targeting both ErbB1 and ErbB2 using therapeutic peptides.
-
-
-
E2F1 Reduces Sorafenib’s Sensitivity of Esophageal Carcinoma Cells via Modulating the miR-29c-3p/COL11A1 Signaling Axis
Authors: Zhifeng Ma, Ting Zhu, Haiyong Wang, Bin Wang, Linhai Fu and Guangmao YuObjectiveEsophageal carcinoma (ESCA) is a common malignancy characterized by high morbidity and mortality. Our work managed to dissect the modulatory mechanism of E2F1/miR-29c-3p/COL11A1 in the malignant progression and sensitivity of ESCA cells to sorafenib.
MethodsVia bioinformatics approaches, we identified the target miRNA. Subsequently, CCK-8, cell cycle analysis, and flow cytometry were used to check the biological influences of miR-29c-3p on ESCA cells. TransmiR, mirDIP, miRPathDB, and miRDB databases were used as tools for the prediction of upstream transcription factors and downstream genes of miR-29c-3p. The targeting relationship of genes was detected via RNA immunoprecipitation and chromatin immunoprecipitation, which was further validated by dual-luciferase assay. Finally, in vitro experiments revealed the way E2F1/miR-29c-3p/COL11A1 affected sorafenib’s sensitivity, and in vivo experiments were used to verify the way E2F1 and sorafenib impacted ESCA tumor growth.
ResultsmiR-29c-3p, downregulated in ESCA, could suppress ESCA cell viability, arrest the cell cycle in the G0/G1 phase, and impel apoptosis. E2F1 was found to be upregulated in ESCA and it could abate the transcriptional activity of miR-29c-3p. COL11A1 was found to be a downstream target of miR-29c-3p to enhance cell viability, induce cell cycle arrest in S phase, and constrain apoptosis. Cellular and animal experiments together demonstrated that E2F1 abated the sorafenib’s sensitivity of ESCA cells via miR-29c-3p/COL11A1.
ConclusionE2F1 affected the viability, cell cycle, and apoptosis of ESCA cells by modulating miR-29c-3p/COL11A1, and it attenuated the sensitivity of ESCA cells to sorafenib, shedding new light on the treatment of ESCA.
-
-
-
E7386 is not a Specific CBP/β-Catenin Antagonist
Authors: Yusuke Higuchi, Cu Nguyen, Nyam-Osor Chimge, Ching Ouyang, Jia-Ling Teo and Michael KahnBackground and ObjectiveThe first clinically evaluated CBP/β-catenin antagonist, PRI-724, displayed an excellent safety profile administered intravenously via continuous infusion. Eisai recently disclosed a third-generation, orally available, reportedly CBP/β-catenin antagonist, E7386. However, several structural features and the reported cytotoxicity of E7386 were unexpected for a specific CBP/β-catenin antagonist. Therefore, we undertook a comparison of E7386 versus the highly specific bona fide CBP/β-catenin antagonists, ICG-001 and C82, the active agents derived from the prodrug PRI-724.
IntroductionCBP/β-catenin antagonists rebalance the equilibrium between CBP/β-catenin and p300/β-catenin dependent transcription and may be able to treat or prevent many diseases of aging via maintenance of somatic stem cell pool and regulating mitochondrial function and metabolism involved in differentiation and immune cell function. The safety, efficacy, and therapeutic potential of the specific CBP/β-catenin antagonists, ICG-001, and the second-generation compound, C82, the active agent derived from the pro-drug PRI-724, have been studied extensively in a variety of preclinical disease models and in the clinic for oncology and hepatic fibrosis. However, the lack of oral bioavailability has hampered the further development of PRI-724. Thus, Eisai recently proposed a third-generation, orally available, reportedly CBP/β-catenin antagonist E7386. Here, we have performed a comparative analysis of E7386 with the highly specific bona fide CBP/β-catenin antagonists, ICG-001 and C82.
MethodsWe utilized a series of previously validated biochemical and transcriptional assays to investigate the selective targeting of the CBP/β-catenin interaction in conjunction with global transcriptional profiling to compare the three small molecules, ICG-001, C82, and E7386.
ResultsOur data cast significant doubt that the mechanism of action of E7386 is via specific CBP/β-catenin antagonism.
ConclusionIt can thus be concluded that E7386 is not a specific CBP/β-catenin antagonist.
-
- Pharmacology
-
-
-
Mammalian Target of Rapamycin (mTOR) Signalling Pathway-A Potential Target for Cancer Intervention: A Short Overview
Background:The mammalian role of the rapamycin (mTOR) pathway is the practical nutrient-sensitive regulation of animal growth and plays a central role in physiology, metabolism, and common diseases. The mTOR is activated in response to nutrients, growth factors, and cellular energy. The mTOR pathway activates in various cellular processes and human cancer diseases. Dysfunction of mTOR signal transduction is associated with metabolic disorders, cancer for instance.
Objective:In recent years, significant achievements envisaged in developing targeted drugs for cancer. The global impact of cancer continues to grow. However, the focus of disease-modifying therapies remains elusive. The mTOR is a significant target in cancer to be considered for mTOR inhibitors, even though the costs are high. Despite many mTOR inhibitors, potent, selective inhibitors for mTOR are still limited. Therefore, in this review, the mTOR structure and protein-ligand interactions of utmost importance to provide the basis for molecular modelling and structure-based drug design are discussed.
Conclusion:This review introduces the mTOR, its crystal structure, and the latest research on mTOR.Besides, the role of mTOR in cancer, its function, and its regulation are reviewed. In addition, the mechanistic role of mTOR signalling networks in cancer and interaction with drugs that inhibit the development of mTOR and crystal structures of mTOR and its complexes are explored. Finally, the current status and prospects of mTOR-targeted therapy are addressed.
-
-
-
-
Hsa_Circ_0000021 Sponges miR-3940-3p/KPNA2 Expression to Promote Cervical Cancer Progression
Authors: Qingyuan Zeng, Kun Feng, Yang Yu and Yumei LvBackgroundCircular RNAs (circRNAs) have a vital role in the occurrence of numerous cancers. However, its function and pattern of expression in cervical cancer (CC) remain unclear. This research aims to investigate the hsa_circ_000002’s regulatory mechanism in CC.
MethodsHsa_circ_0000021, miR-3940-3p, and KPNA2 expression levels were estimated through qRT-PCR. Nuclear/cytoplasmic separation was conducted to find the subcellular location of hsa_circ_0000021. Western blot was done to estimate the levels of KPNA2 protein. CCK-8, BrdU, wound healing, transwell, and tumor xenograft assays were performed to study how hsa_circ_0000021/miR-3940-3P/KPNA2 function affect CC. Hsa_circ_0000021’s targeting relationships with miR-3940-3p and KPNA2 were ascertained through RIP and luciferase experiments.
ResultsHsa_circ_0000021 and KPNA2 were overexpressed and inversely associated with the levels of miR-3940-3p in CC. Knocking down either hsa_circ_0000021 or KPNA2 repressed the growth of CC tumors as well as the proliferation, invasion, and migration of CC cells. Silencing miR-3940-3p promoted the malignant proliferation of CC cells. Regarding its mechanism, hsa_circ_0000021 affected the malignant CC cell proliferation via the sponging of miR-3940-3p, which targeted KPNA2.
ConclusionHsa_circ_0000021 regulates the miR-3940-3p/KPNA2 axis to promote CC occurrence. This potentially is a novel target for CC treatment.
-
-
-
Perspectives on the Role of P21-Activated Kinase 1 (PAK1) in the Intestinal Anti-inflammatory and Antitumor Potential of Artepillin C
More LessThe Brazilian biodiversity may bring new perspectives to the therapy of Inflammatory Bowel Diseases (IBD) and intestinal cancer. The effect of Brazilian Green Propolis in reducing ulcerative colitis in mice has already been described, as well as high amounts of the prenylated compound Artepellin C (ARC). The search for new pharmacological targets for IBD is also advancing. Among possibilities is the p21-activated kinase (PAK1), overexpressed and activated in the intestinal mucosa during IBD and colitis-associated colorectal cancer (CAC). PAK 1 contributes to tissue inflammation by reducing the expression of peroxisome proliferator-activated receptor type γ (PPARγ) and increasing activation of nuclear factor (NF)-κB. At least in vitro, inhibition of PAK1 has been reported to mitigate NF-κB-mediated inflammation in intestinal cells and ARC inhibits PAK1 activation. Given this pharmacological potential of ARC and the role of PAK1 in IBD and CAC, this perspective collected information that encourages future research to test the hypothesis that ARC can maintain intestinal integrity under the inflammatory and neoplastic stimulus and that inhibition of PAK1/NF-κB signaling and favoring PPAR-γ activity is pivotal in this action. Therefore, future studies employing in vitro and in vivo steps, using murine and human enterocytes and rodents submitted to ulcerative colitis and CAC models are incentivized by the data gathered here, favor retirar essas palavras: mostly in vitro studies, before clinical trials. Therefore, the perspective presented here points to an interesting path in the search for a drug useful in inflammatory and neoplastic intestinal diseases, which may have ARC as a prototype, acting on a target not yet explored clinically.
-
-
-
Antimicrobial Resistance of Clinical Klebsiella pneumoniae Isolates: Involvement of AcrAB and OqxAB Efflux Pumps
Authors: Osman Albarri, Manaf AlMatar, Işil Var and Fatih KöksalBackgroundOver the last several decades, the AcrAB and OqxAB efflux pumps have been found to cause multidrug resistance (MDR) in various bacteria, most notably Klebsiella pneumoniae. Antibiotic resistance surges with increased expression of the acrAB and oqxAB efflux pumps.
MethodsIn accordance with CLSI guidelines, a disk diffusion test was carried out using 50 K. pneumoniae isolates obtained from various clinical samples. CT was computed in treated samples and compared to a susceptible ciprofloxacin strain (A111). The final finding is presented as the fold change in the target gene's expression in treated samples relative to a control sample (A111), normalized to a reference gene. As ∆∆CT = 0 and 2 to the power of 0 = 1, relative gene expression for reference samples is often set to 1
ResultsThe highest rates of resistance were recognized with cefotaxime (100%), cefuroxime (100%), cefepime (100%), levofloxacin (98%), trimethoprim-sulfamethoxazole (80%), and gentamicin (72%), whereas imipenem (34%) had the lowest rates. Overexpression of acrA and acrB, oqxA and oqxB, regulators marA, soxS, and rarA were greater in ciprofloxacin-resistant isolates compared to the reference strain (strain A111). There was also a moderate connection between ciprofloxacin MIC and acrAB gene expression and a moderate connection between ciprofloxacin MIC and oqxAB gene expression.
ConclusionThis work provides a deeper knowledge of the role of efflux pump genes, particularly acrAB and oqxAB, as well as transcriptional regulators marA, soxS, and rarA, in bacterial resistance to ciprofloxacin.
-
-
-
A Detailed Review of Molecular Pathways and Mechanisms Responsible for the Development and Aggravation of Neuropathy and Nephropathy in Diabetes
Authors: Phool Chandra, Neetu Sachan, Nikita Saraswat and Niraj VyawahareBackgroundDiabetic mellitus is responsible for triggering many conditions, such as neuropathy, nephropathy, and retinopathy. Hyperglycemia leads to the development of oxidative stress conditions, activation of pathways, and generation of metabolites, leading to complications like neuropathy and nephropathy.
ObjectiveThis paper aims to discuss the mechanism of actions, pathways, and metabolites triggered due to the development of neuropathy and nephropathy post-long-haul diabetes in patients. The therapeutic targets are also highlighted, proving to be a potential cure for such conditions.
MethodsResearch works were searched from international and national databases with keywords like “diabetes,” “diabetic nephropathy,” “NADPH,” “oxidative stress,” “PKC,” “Molecular mechanisms,” “ cellular mechanisms,” “complications of diabetes,” and “factors.” The databases searched were PubMed, Scopus, Directory of open access journals, Semantic Scholar, Core, Europe PMC, EMBASE, Nutrition, FSTA- Food Science and Technology, Merck Index, Google Scholar, PubMed, Science Open, MedlinePlus, Indian citation index, World Wide Science, and Shodhganga.
ResultsPathways causing protein kinase C (PKC) activation, free radical injury, oxidative stress, and aggravating the conditions of neuropathy and nephropathy were discussed. In diabetic neuropathy and nephropathy, neurons and nephrons are affected to the extent that their normal physiology is disturbed, thus leading to further complications and conditions of loss of nerve sensation in diabetic neuropathy and kidney failure in diabetic nephropathy.
Current treatment options available for the management of diabetic neuropathy are anticonvulsants, antidepressants, and topical medications, including capsaicin. According to AAN guidelines, pregabalin is recommended as the first line of therapy, whereas other drugs currently used for treatment are gabapentin, venlafaxine, opioids, amitriptyline, and valproate.
Drug targets for treating diabetic neuropathy must suppress the activated polyol pathways, kinase C, hexosamine, and other pathways, which amplify neuroinflammation. Targeted therapy must focus on the reduction of oxidative stress and proinflammatory cytokines and suppression of neuroinflammation, NF-κB, AP-1, etc.
ConclusionPotential drug targets must be considered for new research on the treatment of neuropathy and nephropathy conditions.
-
- Pharmacology
-
-
-
DDR1-Induced Paracrine Factors of Hepatocytes Promote HSC Activation and Fibrosis Development
Authors: Ying Meng, Tong Zhao, Tiyun Han, Huilin Chen, Zhengyi Zhang and Dekui ZhangBackgroundThis study investigated the role and potential mechanisms of Discoidin domain receptors-1 (DDR1) during liver fibrogenesis.
MethodsBlood and livers were collected from mice. In the in vitro experiments, human normal hepatocyte (LO2 cell line) and human hepatoma cells (HepG2 cell line) with overexpressed DDR1 (DDR1-OE) or DDR1 knockdown (DDR1-KD) were constructed by transfecting the corresponding lentivirus. Human hepatic stellate cells (LX2 cell line) were incubated with a conditioned medium (CM) of the above stable transfected cells treated with collagen. The cells and supernatants were collected for molecular and biochemical analyses.
ResultsDDR1 expression was increased in hepatocytes from carbon tetrachloride (CCL4)-induced fibrotic livers compared to normal livers in wild-type (WT) mice. Liver fibrosis was relieved, and hepatic stellate cells (HSC) activation was decreased in CCL4-treated DDR1 knockout (DDR1-KO) mice compared with CCL4-treated WT mice. LX2 cells cultured in CM of LO2 DDR1-OE cells revealed increased α-smooth muscle actin (αSMA) and type I collagen (COL1) expressions and cell proliferation. Meanwhile, cell proliferation and the expression levels of αSMA and COL1 in LX2 cells cultured in CM of HepG2 DDR1-KD cells were decreased. Moreover, IL6, TNFα, and TGFβ1 in CM of DDR1-OE cells appeared to promote LX2 cell activation and proliferation, regulated by NF-κB and Akt pathways.
ConclusionThese results indicated that DDR1 in hepatocytes promoted HSC activation and proliferation and that paracrine factors IL6, TNFα, and TGFβ1 induced by DDR1 through activating NF-κB and Akt pathways may be the underlying mechanisms. Our study suggests that collagen-receptor DDR1 may be a potential therapeutic target for hepatic fibrosis.
-
-