Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

The incidence of nonalcoholic fatty liver disease (NAFLD) has been rising worldwide in parallel with diabetes and metabolic syndrome. NAFLD refers to a spectrum of liver abnormalities with a variable course, ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), eventually leading to cirrhosis and hepatocellular carcinoma. Pregnane X receptor (PXR), a member of the nuclear receptor superfamily, plays a prominent part in the regulation of endogenous metabolic genes in NAFLD. Recent studies have suggested that PXR has therapeutic potential for NAFLD, yet the relationship between PXR and NAFLD remains controversial. In this review, PXR is proposed to play a dual role in the development and progression of NAFLD. Its activation will aggravate steatosis of the liver, reduce inflammatory response, and prevent liver fibrosis. In addition, the interactions between PXR, substance metabolism, inflammation, fibrosis, and gut microbiota in non-alcoholic fatty liver were elucidated. Due to limited therapeutic options, a better understanding of the contribution of PXR to the pathogenesis of NAFLD should facilitate the design of innovative drugs targeting NAFLD.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429259143230927110556
2024-01-01
2024-11-26
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-e18761429259143.html?itemId=/content/journals/cmp/10.2174/0118761429259143230927110556&mimeType=html&fmt=ahah

References

  1. EslamM. SanyalA.J. GeorgeJ. SanyalA. Neuschwander-TetriB. TiribelliC. KleinerD.E. BruntE. BugianesiE. Yki-JärvinenH. GrønbækH. Cortez-PintoH. GeorgeJ. FanJ. ValentiL. AbdelmalekM. Romero-GomezM. RinellaM. ArreseM. EslamM. BedossaP. NewsomeP.N. AnsteeQ.M. JalanR. BatallerR. LoombaR. SookoianS. SarinS.K. HarrisonS. KawaguchiT. WongV.W-S. RatziuV. YilmazY. YounossiZ. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease.Gastroenterology2020158719992014.e110.1053/j.gastro.2019.11.31232044314
    [Google Scholar]
  2. AnguloP. KleinerD.E. Dam-LarsenS. AdamsL.A. BjornssonE.S. CharatcharoenwitthayaP. MillsP.R. KeachJ.C. LaffertyH.D. StahlerA. HaflidadottirS. BendtsenF. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease.Gastroenterology20151492389397.e1010.1053/j.gastro.2015.04.04325935633
    [Google Scholar]
  3. EkstedtM. HagströmH. NasrP. FredriksonM. StålP. KechagiasS. HultcrantzR. Fibrosis stage is the strongest predictor for disease‐specific mortality in NAFLD after up to 33 years of follow‐up.Hepatology20156151547155410.1002/hep.2736825125077
    [Google Scholar]
  4. PaisR. BarrittA.S.IV CalmusY. ScattonO. RungeT. LebrayP. PoynardT. RatziuV. ContiF. NAFLD and liver transplantation: Current burden and expected challenges.J. Hepatol.20166561245125710.1016/j.jhep.2016.07.03327486010
    [Google Scholar]
  5. SaimanY. HooksR. CarrR.M. High-risk groups for non-alcoholic fatty liver and non-alcoholic steatohepatitis development and progression.Curr. Hepatol. Rep.202019441241910.1007/s11901‑020‑00539‑5
    [Google Scholar]
  6. LuoW. XinY. ZhaoX. ZhangF. LiuC. FanH. XiT. XiongJ. Suppression of carboxylesterases by imatinib mediated by the down-regulation of pregnane X receptor.Br. J. Pharmacol.2017174870071710.1111/bph.1373128128444
    [Google Scholar]
  7. PetryszakR. KeaysM. TangY.A. FonsecaN.A. BarreraE. BurdettT. FüllgrabeA. FuentesA.M.P. JuppS. KoskinenS. MannionO. HuertaL. MegyK. SnowC. WilliamsE. BarzineM. HastingsE. WeisserH. WrightJ. JaiswalP. HuberW. ChoudharyJ. ParkinsonH.E. BrazmaA. Expression atlas update—an integrated database of gene and protein expression in humans, animals and plants.Nucleic Acids Res.201644D1D746D75210.1093/nar/gkv104526481351
    [Google Scholar]
  8. ByrneC.D. TargherG. NAFLD: A multisystem disease.J. Hepatol.2015621Suppl.S47S6410.1016/j.jhep.2014.12.01225920090
    [Google Scholar]
  9. TargherG. ByrneC.D. LonardoA. ZoppiniG. BarbuiC. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis.J. Hepatol.201665358960010.1016/j.jhep.2016.05.01327212244
    [Google Scholar]
  10. CotterT.G. RinellaM. Nonalcoholic fatty liver disease 2020: The state of the disease.Gastroenterology202015871851186410.1053/j.gastro.2020.01.05232061595
    [Google Scholar]
  11. OladimejiP.O. ChenT. PXR: More than just a master xenobiotic receptor.Mol. Pharmacol.201893211912710.1124/mol.117.11015529113993
    [Google Scholar]
  12. PuengelT. LiuH. GuillotA. HeymannF. TackeF. PeiselerM. Nuclear receptors linking metabolism, inflammation, and fibrosis in nonalcoholic fatty liver disease.Int. J. Mol. Sci.2022235266810.3390/ijms2305266835269812
    [Google Scholar]
  13. RomeroF.A. JonesC.T. XuY. FenauxM. HalcombR.L. The race to bash NASH: Emerging targets and drug development in a complex liver disease.J. Med. Chem.202063105031507310.1021/acs.jmedchem.9b0170131930920
    [Google Scholar]
  14. FurutaK. GuoQ. PavelkoK.D. LeeJ.H. RobertsonK.D. NakaoY. MelekJ. ShahV.H. HirsovaP. IbrahimS.H. Lipid-induced endothelial vascular cell adhesion molecule 1 promotes nonalcoholic steatohepatitis pathogenesis.J. Clin. Invest.20211316e14369010.1172/JCI14369033476308
    [Google Scholar]
  15. PondugulaS.R. ManiS. Pregnane xenobiotic receptor in cancer pathogenesis and therapeutic response.Cancer Lett.201332811910.1016/j.canlet.2012.08.03022939994
    [Google Scholar]
  16. LiangY. GongY. JiangQ. YuY. ZhangJ. Environmental endocrine disruptors and pregnane X receptor action: A review.Food Chem. Toxicol.202317911397610.1016/j.fct.2023.11397637532173
    [Google Scholar]
  17. MingW. LuanZ. YaoY. LiuH. HuS. DuC. ZhangC. ZhaoY. HuangY. SunX. QiaoR. XuH. GuanY. ZhangX. Pregnane X receptor activation alleviates renal fibrosis in mice via interacting with p53 and inhibiting the Wnt7a/β-catenin signaling.Acta Pharmacol. Sin.2023441020159010.1038/s41401‑023‑01113‑737344564
    [Google Scholar]
  18. XingY. YanJ. NiuY. PXR: A center of transcriptional regulation in cancer.Acta Pharm. Sin. B202010219720610.1016/j.apsb.2019.06.01232082968
    [Google Scholar]
  19. FanS. YanY. XiaY. ZhouZ. LuoL. ZhuM. HanY. YaoD. ZhangL. FangM. PengL. YuJ. LiuY. GaoX. GuanH. LiH. WangC. WuX. ZhuH. CaoY. HuangC. Pregnane X receptor agonist nomilin extends lifespan and healthspan in preclinical models through detoxification functions.Nat. Commun.2023141336810.1038/s41467‑023‑39118‑937291126
    [Google Scholar]
  20. LvY. LuoY.Y. RenH.W. LiC.J. XiangZ.X. LuanZ.L. The role of pregnane X receptor (PXR) in substance metabolism.Front. Endocrinol.20221395990210.3389/fendo.2022.95990236111293
    [Google Scholar]
  21. SunL. SunZ. WangQ. ZhangY. JiaZ. Role of nuclear receptor PXR in immune cells and inflammatory diseases.Front. Immunol.20221396939910.3389/fimmu.2022.96939936119030
    [Google Scholar]
  22. Bautista-OlivierC.D. ElizondoG. PXR as the tipping point between innate immune response, microbial infections, and drug metabolism.Biochem. Pharmacol.202220211514710.1016/j.bcp.2022.11514735714683
    [Google Scholar]
  23. WahlangB. FalknerK.C. GregoryB. AnsertD. YoungD. ConklinD.J. BhatnagarA. McClainC.J. CaveM. Polychlorinated biphenyl 153 is a diet-dependent obesogen that worsens nonalcoholic fatty liver disease in male C57BL6/J mice.J. Nutr. Biochem.20132491587159510.1016/j.jnutbio.2013.01.00923618531
    [Google Scholar]
  24. KimS. ChoiS. DuttaM. AsubontengJ.O. PolunasM. GoedkenM. GonzalezF.J. CuiJ.Y. GyamfiM.A. Pregnane X receptor exacerbates nonalcoholic fatty liver disease accompanied by obesity- and inflammation-prone gut microbiome signature.Biochem. Pharmacol.202119311469810.1016/j.bcp.2021.11469834303710
    [Google Scholar]
  25. SaraswathiV. Perriotte-OlsonC. GanesanM. DesouzaC.V. AlnoutiY. DuryeeM.J. ThieleG.M. NordgrenT.M. ClemensD.L. A combination of dietary N-3 fatty acids and a cyclooxygenase-1 inhibitor attenuates nonalcoholic fatty liver disease in mice.J. Nutr. Biochem.20174214915910.1016/j.jnutbio.2017.01.01128187366
    [Google Scholar]
  26. KongL. AnX. HuL. ZhangS. LiuL. ZhaoS. WangR. NanY. Resveratrol ameliorates nutritional steatohepatitis through the mmu‑miR‑599/PXR pathway.Int. J. Mol. Med.20224944710.3892/ijmm.2022.510235137921
    [Google Scholar]
  27. CarnahanV. RedinboM. Structure and function of the human nuclear xenobiotic receptor PXR.Curr. Drug Metab.20056435736710.2174/138920005463384416101574
    [Google Scholar]
  28. MangelsdorfD.J. EvansR.M. The RXR heterodimers and orphan receptors.Cell199583684185010.1016/0092‑8674(95)90200‑78521508
    [Google Scholar]
  29. HouY. MoreauF. ChadeeK. PPARγ is an E3 ligase that induces the degradation of NFκB/p65.Nat. Commun.201231130010.1038/ncomms227023250430
    [Google Scholar]
  30. RanaM. DashA.K. PonnusamyK. TyagiR.K. Nuclear localization signal region in nuclear receptor PXR governs the receptor association with mitotic chromatin.Chromosome Res.201826425527610.1007/s10577‑018‑9583‑230009337
    [Google Scholar]
  31. UmesonoK. EvansR.M. Determinants of target gene specificity for steroid/thyroid hormone receptors.Cell19895771139114610.1016/0092‑8674(89)90051‑22500251
    [Google Scholar]
  32. BuchmanC.D. ChaiS.C. ChenT. A current structural perspective on PXR and CAR in drug metabolism.Expert Opin. Drug Metab. Toxicol.201814663564710.1080/17425255.2018.147648829757018
    [Google Scholar]
  33. di MasiA. MarinisE.D. AscenziP. MarinoM. Nuclear receptors CAR and PXR: Molecular, functional, and biomedical aspects.Mol. Aspects Med.200930529734310.1016/j.mam.2009.04.00219427329
    [Google Scholar]
  34. BourguetW. GermainP. GronemeyerH. Nuclear receptor ligand-binding domains: Three-dimensional structures, molecular interactions and pharmacological implications.Trends Pharmacol. Sci.2000211038138810.1016/S0165‑6147(00)01548‑011050318
    [Google Scholar]
  35. OladimejiP. CuiH. ZhangC. ChenT. Regulation of PXR and CAR by protein-protein interaction and signaling crosstalk.Expert Opin. Drug Metab. Toxicol.2016129997101010.1080/17425255.2016.120106927295009
    [Google Scholar]
  36. HallA. ChanteuxH. MénochetK. LedecqM. SchulzeM.S.E.D. Designing out PXR activity on drug discovery projects: A review of structure-based methods, empirical and computational approaches.J. Med. Chem.202164106413652210.1021/acs.jmedchem.0c0224534003642
    [Google Scholar]
  37. ChaiS.C. WrightW.C. ChenT. Strategies for developing pregnane X receptor antagonists: Implications from metabolism to cancer.Med. Res. Rev.20204031061108310.1002/med.2164831782213
    [Google Scholar]
  38. MackowiakB. WangH. Mechanisms of xenobiotic receptor activation: Direct vs. indirect.Biochim. Biophys. Acta. Gene Regul. Mech.2016185991130114010.1016/j.bbagrm.2016.02.00626877237
    [Google Scholar]
  39. OransJ. TeoticoD.G. RedinboM.R. The nuclear xenobiotic receptor pregnane X receptor: Recent insights and new challenges.Mol. Endocrinol.200519122891290010.1210/me.2005‑015615961506
    [Google Scholar]
  40. CasabarR.C.T. DasP.C. DeKreyG.K. GardinerC.S. CaoY. RoseR.L. WallaceA.D. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor.Toxicol. Appl. Pharmacol.2010245333534310.1016/j.taap.2010.03.01720361990
    [Google Scholar]
  41. De BosscherK. DesmetS.J. ClarisseD. Estébanez-PerpiñaE. BrunsveldL. Nuclear receptor crosstalk — defining the mechanisms for therapeutic innovation.Nat. Rev. Endocrinol.202016736337710.1038/s41574‑020‑0349‑532303708
    [Google Scholar]
  42. SainiS.P.S. MuY. GongH. TomaD. UppalH. RenS. LiS. PoloyacS.M. XieW. Dual role of orphan nuclear receptor pregnane X receptor in bilirubin detoxification in mice.Hepatology200541349750510.1002/hep.2057015726644
    [Google Scholar]
  43. PoudelS. HuberA.D. ChenT. Regulation of nuclear receptors PXR and CAR by small molecules and signal crosstalk: Roles in drug metabolism and beyond.Drug Metab. Dispos.202236116789
    [Google Scholar]
  44. BwayiM.N. Garcia-MaldonadoE. ChaiS.C. XieB. ChodankarS. HuberA.D. WuJ. AnnuK. WrightW.C. LeeH.M. SeetharamanJ. WangJ. BuchmanC.D. PengJ. ChenT. Molecular basis of crosstalk in nuclear receptors: Heterodimerization between PXR and CAR and the implication in gene regulation.Nucleic Acids Res.20225063254327510.1093/nar/gkac13335212371
    [Google Scholar]
  45. SuinoK. PengL. ReynoldsR. LiY. ChaJ.Y. RepaJ.J. KliewerS.A. XuH.E. The nuclear xenobiotic receptor CAR: Structural determinants of constitutive activation and heterodimerization.Mol. Cell200416689390515610733
    [Google Scholar]
  46. WillhiteC.C. BallG.L. McLellanC.J. Total allowable concentrations of monomeric inorganic aluminum and hydrated aluminum silicates in drinking water.Crit. Rev. Toxicol.201242535844210.3109/10408444.2012.67410122512666
    [Google Scholar]
  47. KumarS. JaiswalB. KumarS. NegiS. TyagiR.K. Cross-talk between androgen receptor and pregnane and xenobiotic receptor reveals existence of a novel modulatory action of anti-androgenic drugs.Biochem. Pharmacol.201080796497610.1016/j.bcp.2010.06.00920599793
    [Google Scholar]
  48. CocciP. MosconiG. PalermoF.A. Pregnane X receptor (PXR) signaling in seabream primary hepatocytes exposed to extracts of seawater samples collected from polycyclic aromatic hydrocarbons (PAHs)-contaminated coastal areas.Mar. Environ. Res.201713018118610.1016/j.marenvres.2017.07.01128760623
    [Google Scholar]
  49. JonkerJ.W. LiddleC. DownesM. FXR and PXR: Potential therapeutic targets in cholestasis.J. Steroid Biochem. Mol. Biol.20121303-514715810.1016/j.jsbmb.2011.06.01221801835
    [Google Scholar]
  50. SkandalakiA. SarantisP. TheocharisS. Pregnane X receptor (PXR) polymorphisms and cancer treatment.Biomolecules2021118114210.3390/biom1108114234439808
    [Google Scholar]
  51. SugataniJ. UchidaT. KurosawaM. YamaguchiM. YamazakiY. IkariA. MiwaM. Regulation of pregnane X receptor (PXR) function and UGT1A1 gene expression by posttranslational modification of PXR protein.Drug Metab. Dispos.201240102031204010.1124/dmd.112.04674822829544
    [Google Scholar]
  52. PasquelD. DoricakovaA. LiH. KortagereS. KrasowskiM.D. BiswasA. WaltonW.G. RedinboM.R. DvorakZ. ManiS. Acetylation of lysine 109 modulates pregnane X receptor DNA binding and transcriptional activity.Biochim. Biophys. Acta. Gene Regul. Mech.2016185991155116910.1016/j.bbagrm.2016.01.00626855179
    [Google Scholar]
  53. CuiW. SunM. ZhangS. ShenX. GalevaN. WilliamsT.D. StaudingerJ.L. A SUMO-acetyl switch in PXR biology.Biochim. Biophys. Acta. Gene Regul. Mech.2016185991170118210.1016/j.bbagrm.2016.02.00826883953
    [Google Scholar]
  54. SmutnyT. ManiS. PavekP. Post-translational and post-transcriptional modifications of pregnane X receptor (PXR) in regulation of the cytochrome P450 superfamily.Curr. Drug Metab.201314101059106910.2174/138920021466613121115330724329114
    [Google Scholar]
  55. YokoboriK. GruzdevA. NegishiM. Mice blocking Ser347 phosphorylation of pregnane x receptor develop hepatic fasting-induced steatosis and hypertriglyceridemia.Biochem. Biophys. Res. Commun.2022615758010.1016/j.bbrc.2022.05.05535609418
    [Google Scholar]
  56. QinM. XinY. BianY. YangX. XiT. XiongJ. Phosphorylation-induced ubiquitination and degradation of PXR through CDK2-TRIM21 axis.Cells202211226410.3390/cells1102026435053380
    [Google Scholar]
  57. WangY.M. ChaiS.C. LinW. ChaiX. EliasA. WuJ. OngS.S. PondugulaS.R. BeardJ.A. SchuetzE.G. ZengS. XieW. ChenT. Serine 350 of human pregnane X receptor is crucial for its heterodimerization with retinoid X receptor alpha and transactivation of target genes in vitro and in vivo.Biochem. Pharmacol.201596435736810.1016/j.bcp.2015.06.01826119819
    [Google Scholar]
  58. BakshiK. RanjithaB. DubeyS. JagannadhamJ. JaiswalB. GuptaA. Novel complex of HAT protein TIP60 and nuclear receptor PXR promotes cell migration and adhesion.Sci. Rep.201771363510.1038/s41598‑017‑03783‑w28623334
    [Google Scholar]
  59. CuiW. SunM. GalevaN. WilliamsT.D. AzumaY. StaudingerJ.L. SUMOylation and ubiquitylation circuitry controls pregnane X receptor biology in hepatocytes.Drug Metab. Dispos.20154391316132510.1124/dmd.115.06520126063058
    [Google Scholar]
  60. EkinsS. ChangC. ManiS. KrasowskiM.D. ReschlyE.J. IyerM. KholodovychV. AiN. WelshW.J. SinzM. SwaanP.W. PatelR. BachmannK. Human pregnane X receptor antagonists and agonists define molecular requirements for different binding sites.Mol. Pharmacol.200772359260310.1124/mol.107.03839817576789
    [Google Scholar]
  61. PavekP. Pregnane X Receptor (PXR)-Mediated Gene Repression and Cross-Talk of PXR with Other Nuclear Receptors via Coactivator Interactions.Front. Pharmacol.2016745610.3389/fphar.2016.0045627932985
    [Google Scholar]
  62. MoreauA. VilaremM.J. MaurelP. PascussiJ.M. Xenoreceptors CAR and PXR activation and consequences on lipid metabolism, glucose homeostasis, and inflammatory response.Mol. Pharm.200851354110.1021/mp700103m18159929
    [Google Scholar]
  63. BhallaS. OzalpC. FangS. XiangL. KemperJ.K. Ligand-activated pregnane X receptor interferes with HNF-4 signaling by targeting a common coactivator PGC-1alpha. Functional implications in hepatic cholesterol and glucose metabolism.J. Biol. Chem.200427943451394514710.1074/jbc.M40542320015322103
    [Google Scholar]
  64. PondugulaS.R. DongH. ChenT. Phosphorylation and protein–protein interactions in PXR-mediated CYP3A repression.Expert Opin. Drug Metab. Toxicol.20095886187310.1517/1742525090301236019505191
    [Google Scholar]
  65. KrausovaL. StejskalovaL. WangH. VrzalR. DvorakZ. ManiS. PavekP. Metformin suppresses pregnane X receptor (PXR)-regulated transactivation of CYP3A4 gene.Biochem. Pharmacol.201182111771178010.1016/j.bcp.2011.08.02321920351
    [Google Scholar]
  66. SmutnyT. BitmanM. UrbanM. DubeckaM. VrzalR. DvorakZ. PavekP. U0126, a mitogen-activated protein kinase kinase 1 and 2 (MEK1 and 2) inhibitor, selectively up-regulates main isoforms of CYP3A subfamily via a pregnane X receptor (PXR) in HepG2 cells.Arch. Toxicol.201488122243225910.1007/s00204‑014‑1254‑224819614
    [Google Scholar]
  67. LiC.W. DinhG.K. ChenJ.D. Preferential physical and functional interaction of pregnane X receptor with the SMRTalpha isoform.Mol. Pharmacol.200975236337310.1124/mol.108.04784518978041
    [Google Scholar]
  68. PiccininE. VillaniG. MoschettaA. Metabolic aspects in NAFLD, NASH and hepatocellular carcinoma: The role of PGC1 coactivators.Nat. Rev. Gastroenterol. Hepatol.201916316017410.1038/s41575‑018‑0089‑330518830
    [Google Scholar]
  69. ShizuR. EzakiK. SatoT. SugawaraA. HosakaT. SasakiT. YoshinariK. PXR suppresses PPARα-dependent HMGCS2 gene transcription by inhibiting the interaction between PPARα and PGC1α.Cells20211012355010.3390/cells1012355034944058
    [Google Scholar]
  70. StaudingerJ.L. GoodwinB. JonesS.A. Hawkins-BrownD. MacKenzieK.I. LaTourA. LiuY. KlaassenC.D. BrownK.K. ReinhardJ. WillsonT.M. KollerB.H. KliewerS.A. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity.Proc. Natl. Acad. Sci. USA20019863369337410.1073/pnas.05155169811248085
    [Google Scholar]
  71. CoppleB.L. LiT. Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules.Pharmacol. Res.201610492110.1016/j.phrs.2015.12.00726706784
    [Google Scholar]
  72. JuřicaJ. DovrtělováG. NoskováK. ZendulkaO. Bile acids, nuclear receptors and cytochrome P450.Physiol. Res.201665Suppl. 4S427S44010.33549/physiolres.93351228006925
    [Google Scholar]
  73. AsifS. KimR.Y. FaticaT. SimJ. ZhaoX. OhY. DenoncourtA. CheungA.C. DowneyM. MulvihillE.E. KimK.H. Hmgcs2-mediated ketogenesis modulates high-fat diet-induced hepatosteatosis.Mol. Metab.20226110149410.1016/j.molmet.2022.10149435421611
    [Google Scholar]
  74. WangD. HuangJ. GuiT. YangY. FengT. TzvetkovN.T. XuT. GaiZ. ZhouY. ZhangJ. AtanasovA.G. SR-BI as a target of natural products and its significance in cancer.Semin. Cancer Biol.202280183810.1016/j.semcancer.2019.12.02531935456
    [Google Scholar]
  75. SporstølM. TapiaG. MalerødL. MousaviS.A. BergT. Pregnane X receptor-agonists down-regulate hepatic ATP-binding cassette transporter A1 and scavenger receptor class B type I.Biochem. Biophys. Res. Commun.200533141533154110.1016/j.bbrc.2005.04.07115883047
    [Google Scholar]
  76. BerkP.D. Regulatable fatty acid transport mechanisms are central to the pathophysiology of obesity, fatty liver, and metabolic syndrome.Hepatology20084851362137610.1002/hep.2263218972439
    [Google Scholar]
  77. PrenticeK.J. SaksiJ. HotamisligilG.S. Adipokine FABP4 integrates energy stores and counterregulatory metabolic responses.J. Lipid Res.201960473474010.1194/jlr.S09179330705117
    [Google Scholar]
  78. MilnerK.L. van der PoortenD. XuA. BugianesiE. KenchJ.G. LamK.S.L. ChisholmD.J. GeorgeJ. Adipocyte fatty acid binding protein levels relate to inflammation and fibrosis in nonalcoholic fatty liver disease.Hepatology20094961926193410.1002/hep.2289619475694
    [Google Scholar]
  79. YanL. YangK. WangS. XieY. ZhangL. TianX. PXR-mediated expression of FABP4 promotes valproate-induced lipid accumulation in HepG2 cells.Toxicol. Lett.2021346475610.1016/j.toxlet.2021.04.01633901630
    [Google Scholar]
  80. ZhouJ. FebbraioM. WadaT. ZhaiY. KurubaR. HeJ. LeeJ.H. KhademS. RenS. LiS. SilversteinR.L. XieW. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis.Gastroenterology20081342556567.e110.1053/j.gastro.2007.11.03718242221
    [Google Scholar]
  81. RadaP. González-RodríguezÁ. García-MonzónC. ValverdeÁ.M. Understanding lipotoxicity in NAFLD pathogenesis: Is CD36 a key driver?Cell Death Dis.202011980210.1038/s41419‑020‑03003‑w32978374
    [Google Scholar]
  82. ZhouJ. ZhaiY. MuY. GongH. UppalH. TomaD. RenS. EvansR.M. XieW. A novel pregnane X receptor-mediated and sterol regulatory element-binding protein-independent lipogenic pathway.J. Biol. Chem.200628121150131502010.1074/jbc.M51111620016556603
    [Google Scholar]
  83. DonnellyK.L. SmithC.I. SchwarzenbergS.J. JessurunJ. BoldtM.D. ParksE.J. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease.J. Clin. Invest.200511551343135110.1172/JCI2362115864352
    [Google Scholar]
  84. BitterA. RümmeleP. KleinK. KandelB.A. RiegerJ.K. NüsslerA.K. ZangerU.M. TraunerM. SchwabM. BurkO. Pregnane X receptor activation and silencing promote steatosis of human hepatic cells by distinct lipogenic mechanisms.Arch. Toxicol.201589112089210310.1007/s00204‑014‑1348‑x25182422
    [Google Scholar]
  85. HuangJ.H. ZhangC. ZhangD.G. LiL. ChenX. XuD.X. Rifampicin-induced hepatic lipid accumulation: Association with up-regulation of peroxisome proliferator-activated receptor γ in mouse liver.PLoS One20161111e016578710.1371/journal.pone.016578727806127
    [Google Scholar]
  86. NtambiJ. MiyazakiM. Regulation of stearoyl-CoA desaturases and role in metabolism.Prog. Lipid Res.20044329110410.1016/S0163‑7827(03)00039‑014654089
    [Google Scholar]
  87. ZhangJ. WeiY. HuB. HuangM. XieW. ZhaiY. Activation of human stearoyl-coenzyme A desaturase 1 contributes to the lipogenic effect of PXR in HepG2 cells.PLoS One201387e6795910.1371/journal.pone.006795923874477
    [Google Scholar]
  88. LiH. YuX.H. OuX. OuyangX.P. TangC.K. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis.Prog. Lipid Res.20218310110910.1016/j.plipres.2021.10110934097928
    [Google Scholar]
  89. DengX. PanX. ChengC. LiuB. ZhangH. ZhangY. XuK. Regulation of SREBP-2 intracellular trafficking improves impaired autophagic flux and alleviates endoplasmic reticulum stress in NAFLD.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20171862333735010.1016/j.bbalip.2016.12.00728011404
    [Google Scholar]
  90. KarpaleM. KäräjämäkiA.J. KummuO. GyllingH. HyötyläinenT. OrešičM. TolonenA. HautajärviH. SavolainenM.J. Ala-KorpelaM. HukkanenJ. HakkolaJ. Activation of pregnane X receptor induces atherogenic lipids and PCSK9 by a SREBP2-mediated mechanism.Br. J. Pharmacol.2021178122461248110.1111/bph.1543333687065
    [Google Scholar]
  91. LiuD. WongC.C. FuL. ChenH. ZhaoL. LiC. ZhouY. ZhangY. XuW. YangY. WuB. ChengG. LaiP.B.S. WongN. SungJ.J.Y. YuJ. Squalene epoxidase drives NAFLD-induced hepatocellular carcinoma and is a pharmaceutical target.Sci. Transl. Med.201810437eaap984010.1126/scitranslmed.aap984029669855
    [Google Scholar]
  92. LiuD. WongC.C. ZhouY. LiC. ChenH. JiF. GoM.Y.Y. WangF. SuH. WeiH. CaiZ. WongN. WongV.W.S. YuJ. Squalene epoxidase induces nonalcoholic steatohepatitis via binding to carbonic anhydrase III and is a therapeutic target.Gastroenterology2021160724672482.e310.1053/j.gastro.2021.02.05133647280
    [Google Scholar]
  93. GwagT. MengZ. SuiY. HelsleyR.N. ParkS.H. WangS. GreenbergR.N. ZhouC. Non-nucleoside reverse transcriptase inhibitor efavirenz activates PXR to induce hypercholesterolemia and hepatic steatosis.J. Hepatol.201970593094010.1016/j.jhep.2018.12.03830677459
    [Google Scholar]
  94. LoombaR. FriedmanS.L. ShulmanG.I. Mechanisms and disease consequences of nonalcoholic fatty liver disease.Cell2021184102537256410.1016/j.cell.2021.04.01533989548
    [Google Scholar]
  95. NakamuraK. MooreR. NegishiM. SueyoshiT. Nuclear pregnane X receptor cross-talk with FoxA2 to mediate drug-induced regulation of lipid metabolism in fasting mouse liver.J. Biol. Chem.2007282139768977610.1074/jbc.M61007220017267396
    [Google Scholar]
  96. Tahri-JouteyM. AndreolettiP. SurapureddiS. NasserB. Cherkaoui-MalkiM. LatruffeN. Mechanisms Mediating the Regulation of Peroxisomal Fatty Acid Beta-Oxidation by PPARα.Int. J. Mol. Sci.20212216896910.3390/ijms2216896934445672
    [Google Scholar]
  97. ChenL. ChenX.W. HuangX. SongB.L. WangY. WangY. Regulation of glucose and lipid metabolism in health and disease.Sci. China Life Sci.201962111420145810.1007/s11427‑019‑1563‑331686320
    [Google Scholar]
  98. Hassani-Nezhad-GashtiF. RysäJ. KummuO. NäpänkangasJ. BulerM. KarpaleM. HukkanenJ. HakkolaJ. Activation of nuclear receptor PXR impairs glucose tolerance and dysregulates GLUT2 expression and subcellular localization in liver.Biochem. Pharmacol.201814825326410.1016/j.bcp.2018.01.00129309761
    [Google Scholar]
  99. CuiJ.Y. GunewardenaS.S. RockwellC.E. KlaassenC.D. ChIPing the cistrome of PXR in mouse liver.Nucleic Acids Res.201038227943796310.1093/nar/gkq65420693526
    [Google Scholar]
  100. LiuP. JiangL. KongW. XieQ. LiP. LiuX. ZhangJ. LiuM. WangZ. ZhuL. YangH. ZhouY. ZouJ. LiuX. LiuL. PXR activation impairs hepatic glucose metabolism partly via inhibiting the HNF4α–GLUT2 pathway.Acta Pharm. Sin. B20221252391240510.1016/j.apsb.2021.09.03135646519
    [Google Scholar]
  101. SpruiellK. RichardsonR.M. CullenJ.M. AwumeyE.M. GonzalezF.J. GyamfiM.A. Role of pregnane X receptor in obesity and glucose homeostasis in male mice.J. Biol. Chem.201428963244326110.1074/jbc.M113.49457524362030
    [Google Scholar]
  102. LingZ. ShuN. XuP. WangF. ZhongZ. SunB. LiF. ZhangM. ZhaoK. TangX. WangZ. ZhuL. LiuL. LiuX. Involvement of pregnane X receptor in the impaired glucose utilization induced by atorvastatin in hepatocytes.Biochem. Pharmacol.20161009811110.1016/j.bcp.2015.11.02326616219
    [Google Scholar]
  103. RuiL. Energy metabolism in the liver.Compr. Physiol.20144117719710.1002/cphy.c13002424692138
    [Google Scholar]
  104. KodamaS. MooreR. YamamotoY. NegishiM. Human nuclear pregnane X receptor cross-talk with CREB to repress cAMP activation of the glucose-6-phosphatase gene.Biochem. J.2007407337338110.1042/BJ2007048117635106
    [Google Scholar]
  105. WangP. ShaoX. BaoY. ZhuJ. ChenL. ZhangL. MaX. ZhongX. Impact of obese levels on the hepatic expression of nuclear receptors and drug-metabolizing enzymes in adult and offspring mice.Acta Pharm. Sin. B202010117118510.1016/j.apsb.2019.10.00931993314
    [Google Scholar]
  106. JamwalR. de la MonteS.M. OgasawaraK. AdusumalliS. BarlockB.B. AkhlaghiF. Nonalcoholic fatty liver disease and diabetes are associated with decreased CYP3A4 protein expression and activity in human liver.Mol. Pharm.20181572621263210.1021/acs.molpharmaceut.8b0015929792708
    [Google Scholar]
  107. FisherC.D. LickteigA.J. AugustineL.M. Ranger-MooreJ. JacksonJ.P. FergusonS.S. CherringtonN.J. Hepatic cytochrome P450 enzyme alterations in humans with progressive stages of nonalcoholic fatty liver disease.Drug Metab. Dispos.200937102087209410.1124/dmd.109.02746619651758
    [Google Scholar]
  108. BellL.N. TemmC.J. SaxenaR. VuppalanchiR. SchauerP. RabinovitzM. KrasinskasA. ChalasaniN. MattarS.G. Bariatric surgery-induced weight loss reduces hepatic lipid peroxidation levels and affects hepatic cytochrome P-450 protein content.Ann. Surg.201025161041104810.1097/SLA.0b013e3181dbb57220485142
    [Google Scholar]
  109. LiX. WangZ. KlaunigJ.E. Modulation of xenobiotic nuclear receptors in high-fat diet induced non-alcoholic fatty liver disease.Toxicology201841019921310.1016/j.tox.2018.08.00730120929
    [Google Scholar]
  110. SepeV. D’AmoreC. UmmarinoR. RengaB. D’AuriaM.V. NovellinoE. SinisiA. Taglialatela-ScafatiO. NakaoY. LimongelliV. ZampellaA. FiorucciS. Insights on pregnane-X-receptor modulation. Natural and semisynthetic steroids from Theonella marine sponges.Eur. J. Med. Chem.20147312613410.1016/j.ejmech.2013.12.00524388834
    [Google Scholar]
  111. YonedaM. EndoH. MawatariH. NozakiY. FujitaK. AkiyamaT. HigurashiT. UchiyamaT. YonedaK. TakahashiH. KirikoshiH. InamoriM. AbeY. KubotaK. SaitoS. KobayashiN. YamaguchiN. MaeyamaS. YamamotoS. TsutsumiS. AburataniH. WadaK. HottaK. NakajimaA. Gene expression profiling of non-alcoholic steatohepatitis using gene set enrichment analysis.Hepatol. Res.20083812041210.1111/j.1872‑034X.2008.00399.x18637145
    [Google Scholar]
  112. MaX. ZhengX. LiuS. ZhuangL. WangM. WangY. XinY. XuanS. Relationship of circulating total bilirubin, UDP-glucuronosyltransferases 1A1 and the development of non-alcoholic fatty liver disease: A cross-sectional study.BMC Gastroenterol.2022221610.1186/s12876‑021‑02088‑734986792
    [Google Scholar]
  113. ZhuH. ChenZ. MaZ. TanH. XiaoC. TangX. ZhangB. WangY. GaoY. Tanshinone IIA protects endothelial cells from H 2 O 2 -induced injuries via PXR activation.Biomol. Ther.201725659960810.4062/biomolther.2016.17928173640
    [Google Scholar]
  114. HarmsenS. MeijermanI. BeijnenJ.H. SchellensJ.H.M. The role of nuclear receptors in pharmacokinetic drug–drug interactions in oncology.Cancer Treat. Rev.200733436938010.1016/j.ctrv.2007.02.00317451886
    [Google Scholar]
  115. KolwankarD. VuppalanchiR. EthellB. JonesD.R. WrightonS.A. HallS.D. ChalasaniN. Association between nonalcoholic hepatic steatosis and hepatic cytochrome P-450 3A activity.Clin. Gastroenterol. Hepatol.20075338839310.1016/j.cgh.2006.12.02117368239
    [Google Scholar]
  116. WoolseyS.J. BeatonM.D. MansellS.E. Leon-PonteM. YuJ. PinC.L. AdamsP.C. KimR.B. TironaR.G. A fibroblast growth factor 21–pregnane X receptor pathway downregulates hepatic CYP3A4 in nonalcoholic fatty liver disease.Mol. Pharmacol.201690443744610.1124/mol.116.10468727482056
    [Google Scholar]
  117. YanJ. XieW. A brief history of the discovery of PXR and CAR as xenobiotic receptors.Acta Pharm. Sin. B20166545045210.1016/j.apsb.2016.06.01127709013
    [Google Scholar]
  118. NigamS.K. What do drug transporters really do?Nat. Rev. Drug Discov.2015141294410.1038/nrd446125475361
    [Google Scholar]
  119. RosenthalS.B. BushK.T. NigamS.K. A network of SLC and ABC transporter and DME genes involved in remote sensing and signaling in the gut-liver-kidney axis.Sci. Rep.2019911187910.1038/s41598‑019‑47798‑x31417100
    [Google Scholar]
  120. ZengH. LinY. GongJ. LinS. GaoJ. LiC. FengZ. ZhangH. ZhangJ. LiY. YuC. CYP3A suppression during diet-induced nonalcoholic fatty liver disease is independent of PXR regulation.Chem. Biol. Interact.201930818519310.1016/j.cbi.2019.05.03831132328
    [Google Scholar]
  121. SuiY. MengZ. ParkS.H. LuW. LiveloC. ChenQ. ZhouT. ZhouC. Myeloid-specific deficiency of pregnane X receptor decreases atherosclerosis in LDL receptor-deficient mice.J. Lipid Res.202061569670610.1194/jlr.RA11900012232170024
    [Google Scholar]
  122. MridhaA.R. WreeA. RobertsonA.A.B. YehM.M. JohnsonC.D. Van RooyenD.M. HaczeyniF. TeohN.C.H. SavardC. IoannouG.N. MastersS.L. SchroderK. CooperM.A. FeldsteinA.E. FarrellG.C. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice.J. Hepatol.20176651037104610.1016/j.jhep.2017.01.02228167322
    [Google Scholar]
  123. AlegreF. PelegrinP. FeldsteinA. Inflammasomes in liver fibrosis.Semin. Liver Dis.201737211912710.1055/s‑0037‑160135028564720
    [Google Scholar]
  124. WangS. LeiT. ZhangK. ZhaoW. FangL. LaiB. HanJ. XiaoL. WangN. Xenobiotic pregnane X receptor (PXR) regulates innate immunity via activation of NLRP3 inflammasome in vascular endothelial cells.J. Biol. Chem.201428943300753008110.1074/jbc.M114.57878125202020
    [Google Scholar]
  125. HudsonG. FlanniganK.L. VenuV.K.P. AlstonL. SandallC.F. MacDonaldJ.A. MuruveD.A. ChangT.K.H. ManiS. HirotaS.A. Pregnane X receptor activation triggers rapid atp release in primed macrophages that mediates nlrp3 inflammasome activation.J. Pharmacol. Exp. Ther.20193701445310.1124/jpet.118.25567931004077
    [Google Scholar]
  126. KrenkelO. TackeF. Liver macrophages in tissue homeostasis and disease.Nat. Rev. Immunol.201717530632110.1038/nri.2017.1128317925
    [Google Scholar]
  127. DeuringJ.J. LiM. CaoW. ChenS. WangW. de HaarC. van der WoudeC.J. PeppelenboschM. Pregnane X receptor activation constrains mucosal NF-κB activity in active inflammatory bowel disease.PLoS One20191410e022192410.1371/journal.pone.022192431581194
    [Google Scholar]
  128. SunM. CuiW. WoodyS.K. StaudingerJ.L. Pregnane X receptor modulates the inflammatory response in primary cultures of hepatocytes.Drug Metab. Dispos.201543333534310.1124/dmd.114.06230725527709
    [Google Scholar]
  129. OkamuraM. ShizuR. AbeT. KodamaS. HosakaT. SasakiT. YoshinariK. PXR functionally interacts with NF-κB and AP-1 to Downregulate the inflammation-induced expression of chemokine CXCL2 in mice.Cells2020910229610.3390/cells910229633076328
    [Google Scholar]
  130. EricksonS.L. AlstonL. NievesK. ChangT.K.H. ManiS. FlanniganK.L. HirotaS.A. The xenobiotic sensing pregnane X receptor regulates tissue damage and inflammation triggered by C difficile toxins.FASEB J.20203422198221210.1096/fj.201902083RR31907988
    [Google Scholar]
  131. AmerA.O. ProbertP.M. DunnM. KnightM. VallanceA.E. FlecknellP.A. OakleyF. CameronI. WhiteS.A. BlainP.G. WrightM.C. Sustained isoprostane E2 elevation, inflammation and fibrosis after acute ischaemia-reperfusion injury are reduced by pregnane X receptor activation.PLoS One2015108e013617310.1371/journal.pone.013617326302150
    [Google Scholar]
  132. ZhouC. TabbM.M. NelsonE.L. GrünF. VermaS. SadatrafieiA. LinM. MallickS. FormanB.M. ThummelK.E. BlumbergB. Mutual repression between steroid and xenobiotic receptor and NF- B signaling pathways links xenobiotic metabolism and inflammation.J. Clin. Invest.200611682280228910.1172/JCI2628316841097
    [Google Scholar]
  133. VenkateshM. MukherjeeS. WangH. LiH. SunK. BenechetA.P. QiuZ. MaherL. RedinboM.R. PhillipsR.S. FleetJ.C. KortagereS. MukherjeeP. FasanoA. Le VenJ. NicholsonJ.K. DumasM.E. KhannaK.M. ManiS. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4.Immunity201441229631010.1016/j.immuni.2014.06.01425065623
    [Google Scholar]
  134. StienstraR. van DiepenJ.A. TackC.J. ZakiM.H. van de VeerdonkF.L. PereraD. NealeG.A. HooiveldG.J. HijmansA. VroegrijkI. van den BergS. RomijnJ. RensenP.C.N. JoostenL.A.B. NeteaM.G. KannegantiT.D. Inflammasome is a central player in the induction of obesity and insulin resistance.Proc. Natl. Acad. Sci. USA201110837153241532910.1073/pnas.110025510821876127
    [Google Scholar]
  135. Henao-MejiaJ. ElinavE. JinC. HaoL. MehalW.Z. StrowigT. ThaissC.A. KauA.L. EisenbarthS.C. JurczakM.J. CamporezJ.P. ShulmanG.I. GordonJ.I. HoffmanH.M. FlavellR.A. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity.Nature2012482738417918510.1038/nature1080922297845
    [Google Scholar]
  136. SunnyN.E. ParksE.J. BrowningJ.D. BurgessS.C. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease.Cell Metab.201114680481010.1016/j.cmet.2011.11.00422152305
    [Google Scholar]
  137. KoliakiC. SzendroediJ. KaulK. JelenikT. NowotnyP. JankowiakF. HerderC. CarstensenM. KrauschM. KnoefelW.T. SchlensakM. RodenM. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis.Cell Metab.201521573974610.1016/j.cmet.2015.04.00425955209
    [Google Scholar]
  138. SatapatiS. KucejovaB. DuarteJ.A.G. FletcherJ.A. ReynoldsL. SunnyN.E. HeT. NairL.A. LivingstonK. FuX. MerrittM.E. SherryA.D. MalloyC.R. SheltonJ.M. LambertJ. ParksE.J. CorbinI. MagnusonM.A. BrowningJ.D. BurgessS.C. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver.J. Clin. Invest.2015125124447446210.1172/JCI8220426571396
    [Google Scholar]
  139. NagahoriH. NakamuraK. SumidaK. ItoS. OhtsukiS. Combining genomics to identify the pathways of post-transcriptional nongenotoxic signaling and energy homeostasis in livers of rats treated with the pregnane x receptor agonist, pregnenolone carbonitrile.J. Proteome Res.201716103634364510.1021/acs.jproteome.7b0036428825834
    [Google Scholar]
  140. UrquhartB.L. TironaR.G. KimR.B. Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: Implications for interindividual variability in response to drugs.J. Clin. Pharmacol.200747556657810.1177/009127000729993017442683
    [Google Scholar]
  141. GongH. SinghS.V. SinghS.P. MuY. LeeJ.H. SainiS.P.S. TomaD. RenS. KaganV.E. DayB.W. ZimniakP. XieW. Orphan nuclear receptor pregnane X receptor sensitizes oxidative stress responses in transgenic mice and cancerous cells.Mol. Endocrinol.200620227929010.1210/me.2005‑020516195250
    [Google Scholar]
  142. XieY. XuM. DengM. LiZ. WangP. RenS. GuoY. MaX. FanJ. BilliarT.R. XieW. Activation of pregnane X receptor sensitizes mice to hemorrhagic shock–induced liver injury.Hepatology2019703995101010.1002/hep.3069131038762
    [Google Scholar]
  143. SwalesK.E. MooreR. TrussN.J. TuckerA. WarnerT.D. NegishiM. Bishop-BaileyD. Pregnane X receptor regulates drug metabolism and transport in the vasculature and protects from oxidative stress.Cardiovasc. Res.201293467468110.1093/cvr/cvr33022166712
    [Google Scholar]
  144. CzajaM.J. Function of autophagy in nonalcoholic fatty liver disease.Dig. Dis. Sci.20166151304131310.1007/s10620‑015‑4025‑x26725058
    [Google Scholar]
  145. LeeY.A. NoonL.A. AkatK.M. YbanezM.D. LeeT.F. BerresM.L. FujiwaraN. GoossensN. ChouH.I. Parvin-NejadF.P. KhambuB. KramerE.G.M. GordonR. PflegerC. GermainD. JohnG.R. CampbellK.N. YueZ. YinX.M. CuervoA.M. CzajaM.J. FielM.I. HoshidaY. FriedmanS.L. Autophagy is a gatekeeper of hepatic differentiation and carcinogenesis by controlling the degradation of Yap.Nat. Commun.201891496210.1038/s41467‑018‑07338‑z30470740
    [Google Scholar]
  146. SinghR. KaushikS. WangY. XiangY. NovakI. KomatsuM. TanakaK. CuervoA.M. CzajaM.J. Autophagy regulates lipid metabolism.Nature200945872421131113510.1038/nature0797619339967
    [Google Scholar]
  147. ChenC.L. LinY.C. Autophagy dysregulation in metabolic associated fatty liver disease: A new therapeutic target.Int. J. Mol. Sci.202223171005510.3390/ijms23171005536077452
    [Google Scholar]
  148. YanL. ChenZ. WuL. SuY. WangX. TangN. Inhibitory effect of PXR on ammonia-induced hepatocyte autophagy via P53.Toxicol. Lett.201829515316110.1016/j.toxlet.2018.06.106629908302
    [Google Scholar]
  149. KodamaS. NegishiM. PXR cross-talks with internal and external signals in physiological and pathophysiological responses.Drug Metab. Rev.201345330031010.3109/03602532.2013.79558523701014
    [Google Scholar]
  150. LiH. GongW. WangG. YuE. TianJ. XiaY. LiZ. ZhangK. XieJ. Role of nuclear pregnane X receptor in Cu-induced lipid metabolism and xenobiotic responses in largemouth bass (Micropterus salmoides).Front. Endocrinol.20221395098510.3389/fendo.2022.95098535966089
    [Google Scholar]
  151. NakagawaH. UmemuraA. TaniguchiK. Font-BurgadaJ. DharD. OgataH. ZhongZ. ValasekM.A. SekiE. HidalgoJ. KoikeK. KaufmanR.J. KarinM. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development.Cancer Cell201426333134310.1016/j.ccr.2014.07.00125132496
    [Google Scholar]
  152. MaurelM. SamaliA. ChevetE. Endoplasmic reticulum stress: At the crossroads of inflammation and metabolism in hepatocellular carcinoma development.Cancer Cell201426330130310.1016/j.ccr.2014.08.00725203316
    [Google Scholar]
  153. ShehuA.I. LuJ. WangP. ZhuJ. WangY. YangD. McMahonD. XieW. GonzalezF.J. MaX. Pregnane X receptor activation potentiates ritonavir hepatotoxicity.J. Clin. Invest.201912972898290310.1172/JCI12827431039134
    [Google Scholar]
  154. VachirayonstiT. HoK.W. YangD. YanB. Suppression of the pregnane X receptor during endoplasmic reticulum stress is achieved by down-regulating hepatocyte nuclear factor-4α and up-regulating liver-enriched inhibitory protein.Toxicol. Sci.2015144238239210.1093/toxsci/kfv00825616597
    [Google Scholar]
  155. DulaiP.S. SinghS. PatelJ. SoniM. ProkopL.J. YounossiZ. SebastianiG. EkstedtM. HagstromH. NasrP. StalP. WongV.W.S. KechagiasS. HultcrantzR. LoombaR. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta‐analysis.Hepatology20176551557156510.1002/hep.2908528130788
    [Google Scholar]
  156. SanyalA.J. HarrisonS.A. RatziuV. AbdelmalekM.F. DiehlA.M. CaldwellS. ShiffmanM.L. Aguilar SchallR. JiaC. McColganB. DjedjosC.S. McHutchisonJ.G. SubramanianG.M. MyersR.P. YounossiZ. MuirA.J. AfdhalN.H. BoschJ. GoodmanZ. The natural history of advanced fibrosis due to nonalcoholic steatohepatitis: Data from the simtuzumab trials.Hepatology20197061913192710.1002/hep.3066430993748
    [Google Scholar]
  157. TsuchidaT. FriedmanS.L. Mechanisms of hepatic stellate cell activation.Nat. Rev. Gastroenterol. Hepatol.201714739741110.1038/nrgastro.2017.3828487545
    [Google Scholar]
  158. LadeA. NoonL.A. FriedmanS.L. Contributions of metabolic dysregulation and inflammation to nonalcoholic steatohepatitis, hepatic fibrosis, and cancer.Curr. Opin. Oncol.201426110010710.1097/CCO.000000000000004224275855
    [Google Scholar]
  159. MohandasS. VairappanB. Role of pregnane X-receptor in regulating bacterial translocation in chronic liver diseases.World J. Hepatol.20179321210122610.4254/wjh.v9.i32.121029184608
    [Google Scholar]
  160. WrightM.C. The impact of pregnane X receptor activation on liver fibrosis.Biochem. Soc. Trans.20063461119112310.1042/BST034111917073765
    [Google Scholar]
  161. LiX. WangZ. KlaunigJ.J.T. The effects of perfluorooctanoate on high fat diet induced non-alcoholic fatty liver disease in mice.Toxicology201941611410.1016/j.tox.2019.01.017
    [Google Scholar]
  162. YettiH. NaitoH. YuanY. JiaX. HayashiY. Bile acid detoxifying enzymes limit susceptibility to liver fibrosis in female SHRSP5/Dmcr rats fed with a high-fat-cholesterol diet.PLoS One.2018132e0192863
    [Google Scholar]
  163. WallaceK. CowieD.E. KonstantinouD.K. HillS.J. TjelleT.E. AxonA. KoruthM. WhiteS.A. CarlsenH. MannD.A. WrightM.C. The PXR is a drug target for chronic inflammatory liver disease.J. Steroid Biochem. Mol. Biol.20101202-313714810.1016/j.jsbmb.2010.04.01220416375
    [Google Scholar]
  164. CaussyC. TripathiA. HumphreyG. BassirianS. SinghS. FaulknerC. BettencourtR. RizoE. RichardsL. XuZ.Z. DownesM.R. EvansR.M. BrennerD.A. SirlinC.B. KnightR. LoombaR. A gut microbiome signature for cirrhosis due to nonalcoholic fatty liver disease.Nat. Commun.2019101140610.1038/s41467‑019‑09455‑930926798
    [Google Scholar]
  165. Da SilvaH.E. TeterinaA. ComelliE.M. TaibiA. ArendtB.M. FischerS.E. LouW. AllardJ.P. Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance.Sci. Rep.201881146610.1038/s41598‑018‑19753‑929362454
    [Google Scholar]
  166. LoombaR. SeguritanV. LiW. LongT. KlitgordN. BhattA. DulaiP.S. CaussyC. BettencourtR. HighlanderS.K. JonesM.B. SirlinC.B. SchnablB. BrinkacL. SchorkN. ChenC.H. BrennerD.A. BiggsW. YoosephS. VenterJ.C. NelsonK.E. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease.Cell Metab.201725510541062.e510.1016/j.cmet.2017.04.00128467925
    [Google Scholar]
  167. OhT.G. KimS.M. CaussyC. FuT. GuoJ. BassirianS. SinghS. MadambaE.V. BettencourtR. RichardsL. YuR.T. AtkinsA.R. HuanT. BrennerD.A. SirlinC.B. DownesM. EvansR.M. LoombaR. A universal gut-microbiome-derived signature predicts cirrhosis.Cell Metab.2020325878888.e610.1016/j.cmet.2020.06.00532610095
    [Google Scholar]
  168. SchwimmerJ.B. JohnsonJ.S. AngelesJ.E. BehlingC. BeltP.H. BoreckiI. BrossC. DurelleJ. GoyalN.P. HamiltonG. HoltzM.L. LavineJ.E. MitrevaM. NewtonK.P. PanA. SimpsonP.M. SirlinC.B. SodergrenE. TyagiR. YatesK.P. WeinstockG.M. SalzmanN.H. Microbiome signatures associated with steatohepatitis and moderate to severe fibrosis in children with nonalcoholic fatty liver disease.Gastroenterology201915741109112210.1053/j.gastro.2019.06.02831255652
    [Google Scholar]
  169. SharptonS.R. AjmeraV. LoombaR. Emerging role of the gut microbiome in nonalcoholic fatty liver disease: From composition to function.Clin. Gastroenterol. Hepatol.201917229630610.1016/j.cgh.2018.08.06530196156
    [Google Scholar]
  170. BarrettoS.A. LasserreF. HuilletM. RégnierM. PolizziA. LippiY. FougeratA. PersonE. BruelS. BétoulièresC. NayliesC. LukowiczC. SmatiS. GuzylackL. OlierM. ThéodorouV. Mselli-LakhalL. ZalkoD. WahliW. LoiseauN. Gamet-PayrastreL. GuillouH. Ellero-SimatosS. The pregnane X receptor drives sexually dimorphic hepatic changes in lipid and xenobiotic metabolism in response to gut microbiota in mice.Microbiome2021919310.1186/s40168‑021‑01050‑933879258
    [Google Scholar]
  171. DempseyJ.L. CuiJ.Y. Microbiome is a functional modifier of P450 drug metabolism.Curr. Pharmacol. Rep.20195648149010.1007/s40495‑019‑00200‑w33312848
    [Google Scholar]
  172. ZhaoX. ZhouJ. LiangW. ShengQ. LuL. ChenT. ChenJ. TanK. LvZ. Probiotics mixture reinforces barrier function to ameliorate necrotizing enterocolitis by regulating PXR-JNK pathway.Cell Biosci.20211112010.1186/s13578‑021‑00530‑733482929
    [Google Scholar]
  173. DempseyJ.L. WangD. SiginirG. FeiQ. RafteryD. GuH. Yue CuiJ. Pharmacological activation of PXR and CAR downregulates distinct bile acid-metabolizing intestinal bacteria and alters bile acid homeostasis.Toxicol. Sci.20191681406010.1093/toxsci/kfy27130407581
    [Google Scholar]
  174. SimrénM. TackJ. New treatments and therapeutic targets for IBS and other functional bowel disorders.Nat. Rev. Gastroenterol. Hepatol.2018151058960510.1038/s41575‑018‑0034‑529930260
    [Google Scholar]
  175. NingL. LouX. ZhangF. XuG. Nuclear receptors in the pathogenesis and management of inflammatory bowel disease.Mediators Inflamm.2019201911310.1155/2019/262494130804707
    [Google Scholar]
  176. LopetusoL.R. NapoliM. RizzattiG. GasbarriniA. The intriguing role of Rifaximin in gut barrier chronic inflammation and in the treatment of Crohn’s disease.Expert Opin. Investig. Drugs201827654355110.1080/13543784.2018.148333329865875
    [Google Scholar]
  177. WebbG.J. RahmanS.R. LevyC. HirschfieldG.M. Low risk of hepatotoxicity from rifampicin when used for cholestatic pruritus: A cross-disease cohort study.Aliment. Pharmacol. Ther.20184781213121910.1111/apt.1457929468705
    [Google Scholar]
  178. TuohutaerbiekeM. LiX. YinY. ChenW. WuD. MaoZ. MamuerjiangJ. MaoY. ShenT. The characteristics, prevalence, and risk factors of drug-induced liver injury among brucellosis inpatients in Xinjiang, China.Front. Pharmacol.20211265780510.3389/fphar.2021.65780534040524
    [Google Scholar]
  179. WangJ.Y. TsaiC.H. LeeY.L. LeeL.N. HsuC.L. ChangH.C. ChenJ.M. HsuC.A. YuC.J. YangP.C. Gender-dimorphic impact of pxr genotype and haplotype on hepatotoxicity during antituberculosis treatment.Medicine20159424e98210.1097/MD.000000000000098226091473
    [Google Scholar]
  180. zhangX. MaZ. LiangQ. TangX. HuD. LiuC. TanH. XiaoC. ZhangB. WangY. GaoY. Tanshinone IIA exerts protective effects in a LCA-induced cholestatic liver model associated with participation of pregnane X receptor.J. Ethnopharmacol.201516435736710.1016/j.jep.2015.01.04725660334
    [Google Scholar]
  181. EkinsS. KholodovychV. AiN. SinzM. GalJ. GeraL. WelshW.J. BachmannK. ManiS. Computational discovery of novel low micromolar human pregnane X receptor antagonists.Mol. Pharmacol.200874366267210.1124/mol.108.04943718579710
    [Google Scholar]
  182. LiF. LuJ. ChengJ. WangL. MatsubaraT. CsanakyI.L. KlaassenC.D. GonzalezF.J. MaX. Human PXR modulates hepatotoxicity associated with rifampicin and isoniazid co-therapy.Nat. Med.201319441842010.1038/nm.310423475203
    [Google Scholar]
  183. Healan-GreenbergC. WaringJ.F. KempfD.J. BlommeE.A.G. TironaR.G. KimR.B. A human immunodeficiency virus protease inhibitor is a novel functional inhibitor of human pregnane X receptor.Drug Metab. Dispos.200836350050710.1124/dmd.107.01954718096673
    [Google Scholar]
  184. MaX. ShahY.M. GuoG.L. WangT. KrauszK.W. IdleJ.R. GonzalezF.J. Rifaximin is a gut-specific human pregnane X receptor activator.J. Pharmacol. Exp. Ther.2007322139139810.1124/jpet.107.12191317442842
    [Google Scholar]
  185. ManiS. DouW. RedinboM.R. PXR antagonists and implication in drug metabolism.Drug Metab. Rev.2013451607210.3109/03602532.2012.74636323330542
    [Google Scholar]
  186. FloraG.D. SahliK.A. SasikumarP. HolbrookL.M. StainerA.R. AlOudaS.K. CrescenteM. SageT. UnsworthA.J. GibbinsJ.M. Non-genomic effects of the pregnane X receptor negatively regulate platelet functions, thrombosis and haemostasis.Sci. Rep.2019911721010.1038/s41598‑019‑53218‑x31748641
    [Google Scholar]
  187. BurkO. KuzikovM. KronenbergerT. JeskeJ. KeminerO. ThaslerW.E. SchwabM. WrengerC. WindshügelB. Identification of approved drugs as potent inhibitors of pregnane X receptor activation with differential receptor interaction profiles.Arch. Toxicol.20189241435145110.1007/s00204‑018‑2165‑429356861
    [Google Scholar]
  188. GrewalG.K. SinghK.D. KanojiaN. RawatC. KukalS. JajodiaA. SinghalA. MisraR. NagamaniS. MuthusamyK. KukretiR. Exploring the carbamazepine interaction with human pregnane x receptor and effect on ABCC2 using in vitro and in silico approach.Pharm. Res.20173471444145810.1007/s11095‑017‑2161‑z28432535
    [Google Scholar]
  189. LuoG. CunninghamM. KimS. BurnT. LinJ. SinzM. HamiltonG. RizzoC. JolleyS. GilbertD. DowneyA. MudraD. GrahamR. CarrollK. XieJ. MadanA. ParkinsonA. ChristD. SellingB. LeCluyseE. GanL.S. CYP3A4 induction by drugs: Correlation between a pregnane X receptor reporter gene assay and CYP3A4 expression in human hepatocytes.Drug Metab. Dispos.200230779580410.1124/dmd.30.7.79512065438
    [Google Scholar]
  190. HusainI. DaleO.R. MartinK. GurleyB.J. AdamsS.J. AvulaB. ChittiboyinaA.G. KhanI.A. KhanS.I. Screening of medicinal plants for possible herb-drug interactions through modulating nuclear receptors, drug-metabolizing enzymes and transporters.J. Ethnopharmacol.202330111582210.1016/j.jep.2022.11582236223846
    [Google Scholar]
  191. LiangH. YangX. LiH. WangX. SuH. LiX. TianJ. CaiC. HuangM. BiH. Schisandrol B protects against cholestatic liver injury by inhibiting pyroptosis through pregnane X receptor.Biochem. Pharmacol.202220411522210.1016/j.bcp.2022.11522235988735
    [Google Scholar]
  192. ZhouC. PoultonE.J. GrünF. BammlerT.K. BlumbergB. ThummelK.E. EatonD.L. The dietary isothiocyanate sulforaphane is an antagonist of the human steroid and xenobiotic nuclear receptor.Mol. Pharmacol.200771122022910.1124/mol.106.02926417028159
    [Google Scholar]
  193. AlhusbanM. PandeyP. AhnJ. AvulaB. HaiderS. AvontoC. AliZ. KhanS.I. FerreiraD. KhanI.A. ChittiboyinaA.G. Computational tools to expedite the identification of potential PXR modulators in complex natural product mixtures: A case study with five closely related licorice species.ACS Omega2022730268242684310.1021/acsomega.2c0324035936409
    [Google Scholar]
  194. WangH. LiH. MooreL.B. JohnsonM.D.L. MaglichJ.M. GoodwinB. IttoopO.R.R. WiselyB. CreechK. ParksD.J. CollinsJ.L. WillsonT.M. KalpanaG.V. VenkateshM. XieW. ChoS.Y. RobozJ. RedinboM. MooreJ.T. ManiS. The phytoestrogen coumestrol is a naturally occurring antagonist of the human pregnane X receptor.Mol. Endocrinol.200822483885710.1210/me.2007‑021818096694
    [Google Scholar]
  195. WangL. LiF. LuJ. LiG. LiD. ZhongX. GuoG.L. MaX. The Chinese herbal medicine Sophora flavescens activates pregnane X receptor.Drug Metab. Dispos.201038122226223110.1124/dmd.110.03525320736322
    [Google Scholar]
  196. LimY.P. MaC.Y. LiuC.L. LinY.H. HuM.L. ChenJ.J. HungD.Z. HsiehW.T. HuangJ.D. Sesamin: A naturally occurring lignan inhibits CYP3A4 by antagonizing the pregnane X receptor activation.Evid. Based Complement. Alternat. Med.2012201211510.1155/2012/24281022645625
    [Google Scholar]
  197. HeJ. NishidaS. XuM. MakishimaM. XieW. PXR prevents cholesterol gallstone disease by regulating biosynthesis and transport of bile salts.Gastroenterology201114072095210610.1053/j.gastro.2011.02.05521354151
    [Google Scholar]
  198. MooimanK.D. Maas-BakkerR.F. MoretE.E. BeijnenJ.H. SchellensJ.H.M. MeijermanI. Milk thistle’s active components silybin and isosilybin: Novel inhibitors of PXR-mediated CYP3A4 induction.Drug Metab. Dispos.20134181494150410.1124/dmd.113.05097123674609
    [Google Scholar]
  199. WangC. HuoX.K. LuanZ.L. CaoF. TianX.G. ZhaoX.Y. SunC.P. FengL. NingJ. ZhangB.J. MaX.C. Alismanin A, a triterpenoid with a C 34 skeleton from alisma orientale as a natural agonist of human pregnane X receptor.Org. Lett.201719205645564810.1021/acs.orglett.7b0273829016144
    [Google Scholar]
  200. SynoldT.W. DussaultI. FormanB.M. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux.Nat. Med.20017558459010.1038/8791211329060
    [Google Scholar]
  201. TabbM.M. KholodovychV. GrünF. ZhouC. WelshW.J. BlumbergB. Highly chlorinated PCBs inhibit the human xenobiotic response mediated by the steroid and xenobiotic receptor (SXR).Environ. Health Perspect.2004112216316910.1289/ehp.656014754570
    [Google Scholar]
  202. SuiY. MengZ. ChenJ. LiuJ. HernandezR. GonzalesM.B. GwagT. MorrisA.J. ZhouC. Effects of dicyclohexyl phthalate exposure on PXR activation and lipid homeostasis in mice.Environ. Health Perspect.20211291212700110.1289/EHP926234851150
    [Google Scholar]
  203. AttemaB. JanssenA.W.F. RijkersD. van SchothorstE.M. HooiveldG.J.E.J. KerstenS. Exposure to low-dose perfluorooctanoic acid promotes hepatic steatosis and disrupts the hepatic transcriptome in mice.Mol. Metab.20226610160210.1016/j.molmet.2022.10160236115532
    [Google Scholar]
  204. LinW. WangY.M. ChaiS.C. LvL. ZhengJ. WuJ. ZhangQ. WangY.D. GriffinP.R. ChenT. SPA70 is a potent antagonist of human pregnane X receptor.Nat. Commun.20178174110.1038/s41467‑017‑00780‑528963450
    [Google Scholar]
  205. HeL. LiY. ZengN. StilesB.L. Regulation of basal expression of hepatic PEPCK and G6Pase by AKT2.Biochem. J.202047751021103110.1042/BCJ2019057032096546
    [Google Scholar]
  206. ZhaoL.Y. XuJ.Y. ShiZ. EnglertN.A. ZhangS.Y. Pregnane X receptor (PXR) deficiency improves high fat diet-induced obesity via induction of fibroblast growth factor 15 (FGF15) expression.Biochem. Pharmacol.201714219420310.1016/j.bcp.2017.07.01928756207
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429259143230927110556
Loading
/content/journals/cmp/10.2174/0118761429259143230927110556
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test