Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Background

Research has revealed that the expression of PD-L1 is significantly upregulated in tumour cells and that the binding of programmed cell death protein 1 (PD-1) to programmed cell death 1 ligand 1 (PD-L1) inhibits the response of T cells, thereby suppressing tumour immunity. Therefore, blocking PD-L1/PD-1 signalling has become an important target in clinical immunotherapy. Some old drugs, namely, non-anticancer drugs, have also been found to have antitumour effects, and maprotiline is one of them. Maprotiline is a tetracyclic antidepressant that has been widely used to treat depression. However, it has not yet been reported whether maprotiline can exert an antitumour effect on melanoma.

Objective

This study aimed to investigate the antitumour efficacy of maprotiline in mice with melanoma.

Methods

In this study, female C57BL/6 mice were used to establish a tumour-bearing animal model. After treatment with maprotiline, the survival rate of mice was recorded daily. The expression of relevant proteins was detected by Western blotting, the proportion of immune cells was detected by flow cytometry, and the infiltration of immune cells in tumour tissue was detected by immunofluorescence staining.

Results

Maprotiline was found to inhibit the proliferation and migration of B16 cells while increasing cell apoptosis. Importantly, treatment with maprotiline decreased the expression of PD-L1 and increased the proportion of CD4+ T cells, CD8+ T cells, and NK cells in the spleen. It also increased the infiltration of CD4+ and CD8+ T cells in tumour tissue.

Conclusion

Our research findings suggest that maprotiline enhances the antitumour immune response in mouse melanoma by inhibiting PD-L1 expression. This study may discover a new PD-L1 inhibitor, providing a novel therapeutic option for the clinical treatment of tumours.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429259562230925055749
2023-10-13
2025-01-23
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E18761429259562.html?itemId=/content/journals/cmp/10.2174/0118761429259562230925055749&mimeType=html&fmt=ahah

References

  1. AmbrosiL. KhanS. CarvajalR.D. YangJ. Novel targets for the treatment of melanoma.Curr. Oncol. Rep.201921119710.1007/s11912‑019‑0849‑431696329
    [Google Scholar]
  2. JanC. R. SuJ. A. TengC. C. SheuM. L. LinP. Y. ChiM. C. ChangC. H. LiaoW. C. KuoC. C. ChouC. T. Mechanism of maprotiline-induced apoptosis: Role of [Ca2+](i), ERK, JNK and caspase-3 signaling pathways.Toxicology2013304112
    [Google Scholar]
  3. BrandesL.J. ArronR.J. BogdanovicR.P. TongJ. ZaborniakC.L. HoggG.R. WarringtonR.C. FangW. LaBellaF.S. Stimulation of malignant growth in rodents by antidepressant drugs at clinically relevant doses.Cancer Res.19925213379638001617649
    [Google Scholar]
  4. ShapovalovY. ZettelM. SpielmanS. C. Amico-RuvioS. A. KellyE. A. SipeG. O. DickersonI. M. MajewskaA. K. BrownE. B. Fluoxetine modulates breast cancer metastasis to the brain in a murine model.BMC Cancer20141459810.1186/1471‑2407‑14‑598
    [Google Scholar]
  5. HsuL. C. TuH. F. HsuF. T. YuehP. F. ChiangI. T. Beneficial effect of fluoxetine on anti-tumor progression on hepatocellular carcinoma and non-small cell lung cancer bearing animal model.Biomed. Pharmacother.2020126110054
    [Google Scholar]
  6. ZhaoT. WeiT. GuoJ. WangY. ShiX. GuoS. JiaX. JiaH. FengZ. PD-1-siRNA delivered by attenuated Salmonella enhances the antimelanoma effect of pimozide.Cell Death Dis.201910316410.1038/s41419‑019‑1418‑330778049
    [Google Scholar]
  7. WernliK.J. HamptonJ.M. Trentham-DietzA. NewcombP.A. Antidepressant medication use and breast cancer risk.Pharmacoepidemiol. Drug Saf.200918428429010.1002/pds.171919226540
    [Google Scholar]
  8. JabbourE. RavandiF. KebriaeiP. HuangX. ShortN.J. ThomasD. SasakiK. RyttingM. JainN. KonoplevaM. Garcia-ManeroG. ChamplinR. MarinD. KadiaT. CortesJ. EstrovZ. TakahashiK. PatelY. KhouriM.R. JacobJ. GarrisR. O’BrienS. KantarjianH. Salvage chemoimmunotherapy with inotuzumab ozogamicin combined with mini–hyper-CVD for patients with relapsed or refractory philadelphia chromosome–negative acute lymphoblastic leukemia.JAMA Oncol.20184223023410.1001/jamaoncol.2017.238028859185
    [Google Scholar]
  9. GruterW. PoldingerW. Maprotiline.Mod. Probl. Pharmacopsychiatry1982181748
    [Google Scholar]
  10. RafieeL. HajhashemiV. JavanmardS.H. Maprotiline inhibits COX2 and iNOS gene expression in lipopolysaccharide-stimulated U937 macrophages and carrageenan-induced paw edema in rats.Cent. Eur. J. Immunol.2019441152210.5114/ceji.2019.8401131114432
    [Google Scholar]
  11. Alburquerque-GonzálezB. Bernabé-GarcíaM. Montoro-GarcíaS. Bernabé-GarcíaÁ. RodriguesP.C. Ruiz SanzJ. López-CalderónF.F. LuqueI. NicolasF.J. CayuelaM.L. SaloT. Pérez-SánchezH. Conesa-ZamoraP. New role of the antidepressant imipramine as a Fascin1 inhibitor in colorectal cancer cells.Exp. Mol. Med.202052228129210.1038/s12276‑020‑0389‑x32080340
    [Google Scholar]
  12. ShuX. SunY. SunX. ZhouY. BianY. ShuZ. DingJ. LuM. HuG. The effect of fluoxetine on astrocyte autophagy flux and injured mitochondria clearance in a mouse model of depression.Cell Death Dis.201910857710.1038/s41419‑019‑1813‑931371719
    [Google Scholar]
  13. CloonanS.M. DrozgowskaA. FayneD. WilliamsD.C. The antidepressants maprotiline and fluoxetine have potent selective antiproliferative effects against Burkitt lymphoma independently of the norepinephrine and serotonin transporters.Leuk. Lymphoma201051352353910.3109/1042819090355211220141432
    [Google Scholar]
  14. RibasA. WolchokJ.D. Cancer immunotherapy using checkpoint blockade.Science201835963821350135510.1126/science.aar406029567705
    [Google Scholar]
  15. SunC. MezzadraR. SchumacherT.N. Regulation and function of the PD-L1 checkpoint.Immunity201848343445210.1016/j.immuni.2018.03.01429562194
    [Google Scholar]
  16. ZarembaA. ZimmerL. GriewankK.G. UgurelS. RoeschA. SchadendorfD. LivingstoneE. Immuntherapie beim malignen melanom.Internist202061766967510.1007/s00108‑020‑00812‑132462249
    [Google Scholar]
  17. KwakG. KimD. NamG. WangS.Y. KimI.S. KimS.H. KwonI.C. YeoY. Programmed cell death protein ligand-1 silencing with polyethylenimine–dermatan sulfate complex for dual inhibition of melanoma growth.ACS Nano20171110101351014610.1021/acsnano.7b0471728985469
    [Google Scholar]
  18. KaleV.P. HabibH. ChitrenR. PatelM. PramanikK.C. JonnalagaddaS.C. ChallagundlaK. PandeyM.K. Old drugs, new uses: Drug repurposing in hematological malignancies.Semin. Cancer Biol.20206824224832151704
    [Google Scholar]
  19. MudduluruG. WaltherW. KobeltD. DahlmannM. TreeseC. AssarafY. G. SteinU. Repositioning of drugs for intervention in tumor progression and metastasis: Old drugs for new targets.Drug Resist. Updat.2016261027
    [Google Scholar]
  20. GerhardsN. M. RottenbergS. New tools for old drugs: Functional genetic screens to optimize current chemotherapy.Drug Resist. Updat.2018363046
    [Google Scholar]
  21. MartensS. HofmansS. DeclercqW. AugustynsK. VandenabeeleP. Inhibitors targeting RIPK1/RIPK3: Old and new drugs.Trends Pharmacol. Sci.202041320922410.1016/j.tips.2020.01.00232035657
    [Google Scholar]
  22. WangY. LiuW. LiuM. WangH. ZhouL. ChenJ. SunH. WeiX. FanM. YangM. LiuZ. YangZ. ZhongJ. LuC. ZhaoT. JiaH. Nifuroxazide in combination with CpG ODN exerts greater efficacy against hepatocellular carcinoma.Int. Immunopharmacol.202210810891110.1016/j.intimp.2022.108911
    [Google Scholar]
  23. HsuS.S. ChenW.C. LoY.K. ChengJ.S. YehJ.H. ChengH.H. ChenJ.S. ChangH.T. JiannB.P. HuangJ.K. JanC.R. Effect of the antidepressant maprotiline on Ca2+ movement and proliferation in human prostate cancer cells.Clin. Exp. Pharmacol. Physiol.200431744444910.1111/j.1440‑1681.2004.04024.x15236632
    [Google Scholar]
  24. FanY. BergmannA. Apoptosis-induced compensatory proliferation. The Cell is dead. Long live the Cell!Trends Cell Biol.2008181046747310.1016/j.tcb.2008.08.00118774295
    [Google Scholar]
  25. HaysE. BonavidaB. YY1 regulates cancer cell immune resistance by modulating PD-L1 expression.Drug Resist. Updat.2019431028
    [Google Scholar]
  26. ConstantinidouA. AlifierisC. TrafalisD. T. Targeting programmed cell death -1 (PD-1) and ligand (PD-L1): A new era in cancer active immunotherapy.Pharmacol. Ther.201919484106
    [Google Scholar]
  27. HermanowiczJ. SiekluckaB. NosekK. PawlakD. Intracellular mechanisms of tumor cells’ immunoresistance.Acta Biochim. Pol.202067214314832320192
    [Google Scholar]
  28. HuZ. YeL. XingY. HuJ. XiT. Combined SEP and anti-PD-L1 antibody produces a synergistic antitumor effect in B16-F10 melanoma-bearing mice.Sci. Rep.20188121710.1038/s41598‑017‑18641‑y29317734
    [Google Scholar]
  29. LiuB. ArakawaY. YokogawaR. TokunagaS. TeradaY. MurataD. MatsuiY. FujimotoK. FukuiN. TanjiM. MineharuY. MinamiguchiS. MiyamotoS. PD-1/PD-L1 expression in a series of intracranial germinoma and its association with Foxp3+ and CD8+ infiltrating lymphocytes.PLoS One2018134e019459410.1371/journal.pone.019459429617441
    [Google Scholar]
  30. ChabaudM. PaillonN. GausK. HivrozC. Mechanobiology of antigen-induced T cell arrest.Biol. Cell2020112719621210.1111/boc.20190009332275779
    [Google Scholar]
  31. MeleroI. RouzautA. MotzG.T. CoukosG. T-cell and NK-cell infiltration into solid tumors: A key limiting factor for efficacious cancer immunotherapy.Cancer Discov.20144552252610.1158/2159‑8290.CD‑13‑098524795012
    [Google Scholar]
  32. HsuJ. HodginsJ.J. MaratheM. NicolaiC.J. Bourgeois-DaigneaultM.C. TrevinoT.N. AzimiC.S. ScheerA.K. RandolphH.E. ThompsonT.W. ZhangL. IannelloA. MathurN. JardineK.E. KirnG.A. BellJ.C. McBurneyM.W. RauletD.H. ArdolinoM. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade.J. Clin. Invest.2018128104654466810.1172/JCI9931730198904
    [Google Scholar]
  33. DuS.S. ChenG.W. YangP. ChenY.X. HuY. ZhaoQ.Q. ZhangY. LiuR. ZhengD.X. ZhouJ. FanJ. ZengZ.C. Radiation therapy promotes hepatocellular carcinoma immune cloaking via PD-L1 upregulation induced by cGAS-STING activation.Int. J. Radiat. Oncol. Biol. Phys.202211251243125510.1016/j.ijrobp.2021.12.16234986380
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429259562230925055749
Loading
/content/journals/cmp/10.2174/0118761429259562230925055749
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Antitumour immune response; Maprotiline; Melanoma; Mouse melanoma; PD-L1; Tumor immunity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test