Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Background

Breast cancer (BC), as a heterogenous disease, is the most common cancer among women worldwide. Triple-negative breast cancer (TNBC) is the most aggressive and malignant subtype with a poor prognosis and a high rate of relapse and metastasis that is closely linked to epithelial–mesenchymal transition (EMT). It is well-documented that miRNAs play oncogenic (oncomiR) or tumor-suppressive (TS-miR) roles in controlling apoptosis (apoptomiR), differentiation, cell proliferation, invasion, migration, . Regarding the regulatory roles of miRNAs in the expression levels of various genes, dysfunction or deregulated expression of these molecules can lead to various disorders, including various types of cancers, such as BC. Many miRNAs have been identified with critical contributions in the initiation and development of different types of BCs due to their influence on the p53 signaling network.

Objective

The aim of this review was to discuss several important deregulated miRNAs that are involved in the p53 signaling pathway in BC, especially the TNBC subtype. Finally, miRNAs’ involvement in tumor properties and their applications as diagnostic, prognostic, and therapeutic agents have been elaborated in detail.

Results

The miRNA expression profile of BC is involved in tumor-grade estrogen receptor (ER) and progesterone receptor (PR) expression, and other pathological properties from luminal A to TNBC/basal-like subtypes p53 signaling pathways.

Conclusion

Developing our knowledge about miRNA expression profile in BC, as well as molecular mechanisms of initiation and progression of BC can help to find new prognostic, diagnostic, and therapeutic biomarkers, which can lead to a suitable treatment for BC patients.

© 2024 The Author(s). Published by Bentham Open. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429263841230926014118
2024-01-01
2024-11-22
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E18761429263841.html?itemId=/content/journals/cmp/10.2174/0118761429263841230926014118&mimeType=html&fmt=ahah

References

  1. YinL. DuanJ-J. BianX-W. YuS-c. Triple-negative breast cancer molecular subtyping and treatment progress.Breast Cancer Res.2020221113
    [Google Scholar]
  2. CosentinoG. PlantamuraI. TagliabueE. IorioM.V. CataldoA. Breast cancer drug resistance: Overcoming the challenge by capitalizing on microrna and tumor microenvironment interplay.Cancers20211315369110.3390/cancers1315369134359591
    [Google Scholar]
  3. IlbeigiS. NaeimzadehY. Davoodabadi FarahaniM. Rafiee MonjeziM. DastsoozH. DaraeiA. FarahaniF. DastgheibA. MansooriY. Bagher TabeiS.M. Clinical values of two estrogen receptor signaling targeted lncRNAs in invasive ductal breast carcinoma.Klin. Onkol.202134538239110.48095/ccko202138234702045
    [Google Scholar]
  4. AgboolaR. OkikiadeA. Afolayan-OloyeO. The role of MicroRNAs regulated breast cancer stem cells in the pathogenesis, prognosis and aggressiveness of breast cancer.Adv. Res.202324411810.9734/air/2023/v24i4943
    [Google Scholar]
  5. Al-thoubaityF.K. Molecular classification of breast cancer: A retrospective cohort study.Ann. Med. Surg.202049444810.1016/j.amsu.2019.11.02131890196
    [Google Scholar]
  6. CoatesA.S. WinerE.P. GoldhirschA. GelberR.D. GnantM. Piccart-GebhartM. ThürlimannB. SennH.J. AndréF. BaselgaJ. BerghJ. BonnefoiH. BursteinH. CardosoF. Castiglione-GertschM. CoatesA.S. ColleoniM. CuriglianoG. DavidsonN.E. Di LeoA. EjlertsenB. ForbesJ.F. GalimbertiV. GelberR.D. GnantM. GoldhirschA. GoodwinP. HarbeckN. HayesD.F. HuoberJ. HudisC.A. IngleJ.N. JassemJ. JiangZ. KarlssonP. MorrowM. OrecchiaR. Kent OsborneC. PartridgeA.H. de la PeñaL. Piccart-GebhartM.J. PritchardK.I. RutgersE.J.T. SedlmayerF. SemiglazovV. ShaoZ-M. SmithI. ThürlimannB. ToiM. TuttA. VialeG. von MinckwitzG. WatanabeT. WhelanT. WinerE.P. XuB. Tailoring therapies—improving the management of early breast cancer: St gallen international expert consensus on the primary therapy of early breast cancer 2015.Ann. Oncol.20152681533154610.1093/annonc/mdv22125939896
    [Google Scholar]
  7. GoldhirschA. WinerE.P. CoatesA.S. GelberR.D. Piccart-GebhartM. ThürlimannB. SennH.J. AlbainK.S. AndréF. BerghJ. BonnefoiH. Bretel-MoralesD. BursteinH. CardosoF. Castiglione-GertschM. CoatesA.S. ColleoniM. CostaA. CuriglianoG. DavidsonN.E. Di LeoA. EjlertsenB. ForbesJ.F. GelberR.D. GnantM. GoldhirschA. GoodwinP. GossP.E. HarrisJ.R. HayesD.F. HudisC.A. IngleJ.N. JassemJ. JiangZ. KarlssonP. LoiblS. MorrowM. NamerM. Kent OsborneC. PartridgeA.H. Penault-LlorcaF. PerouC.M. Piccart-GebhartM.J. PritchardK.I. RutgersE.J.T. SedlmayerF. SemiglazovV. ShaoZ-M. SmithI. ThürlimannB. ToiM. TuttA. UntchM. VialeG. WatanabeT. WilckenN. WinerE.P. WoodW.C. Personalizing the treatment of women with early breast cancer: Highlights of the St gallen international expert consensus on the primary therapy of early breast cancer 2013.Ann. Oncol.20132492206222310.1093/annonc/mdt30323917950
    [Google Scholar]
  8. di GennaroA. DamianoV. BrisottoG. ArmellinM. PerinT. ZucchettoA. GuardascioneM. SpainkH.P. DoglioniC. Snaar-JagalskaB.E. SantarosaM. MaestroR. A p53/miR-30a/ZEB2 axis controls triple negative breast cancer aggressiveness.Cell Death Differ.201825122165218010.1038/s41418‑018‑0103‑x29666469
    [Google Scholar]
  9. JangM.H. KimH.J. GwakJ.M. ChungY.R. ParkS.Y. Prognostic value of microRNA-9 and microRNA-155 expression in triple-negative breast cancer.Hum. Pathol.201768697810.1016/j.humpath.2017.08.02628882698
    [Google Scholar]
  10. JudesG. RifaïK. DauresM. DuboisL. BignonY.J. Penault-LlorcaF. Bernard-GallonD. High-throughput «Omics» technologies: New tools for the study of triple-negative breast cancer.Cancer Lett.20163821778510.1016/j.canlet.2016.03.00126965997
    [Google Scholar]
  11. KhorsandM. Mostafavi-PourZ. RazbanV. KhajehS. ZareR. Combinatorial effects of telmisartan and docetaxel on cell viability and metastatic gene expression in human prostate and breast cancer cells.Mol. Biol. Res. Commun.2022111112035463822
    [Google Scholar]
  12. KavousipourS. MokarramP. BarazeshM. ArabizadehE. RazbanV. MostafavipourZ. MohammadiS. AbolmaaliS.S. Effect of CD44 aptamer on snail metastasis factor and aggressiveness of MDA-MB-231 breast cancer cell line.Shiraz E Med. J.202021510.5812/semj.94641
    [Google Scholar]
  13. TsaiH.P. HuangS.F. LiC.F. ChienH.T. ChenS.C. Differential microRNA expression in breast cancer with different onset age.PLoS One2018131e019119510.1371/journal.pone.019119529324832
    [Google Scholar]
  14. KurozumiS. YamaguchiY. KurosumiM. OhiraM. MatsumotoH. HoriguchiJ. Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes.J. Hum. Genet.2017621152410.1038/jhg.2016.8927439682
    [Google Scholar]
  15. GanH.H. GunsalusK.C. The role of tertiary structure in microRNA target recognition. MicroRNA Target Identification.Springer2019436410.1007/978‑1‑4939‑9207‑2_4
    [Google Scholar]
  16. KaurA. MackinS.T. SchlosserK. WongF.L. ElharramM. DellesC. StewartD.J. DayanN. LandryT. PiloteL. Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease.Cardiovasc. Res.202011661113112410.1093/cvr/cvz30231782762
    [Google Scholar]
  17. KozomaraA. BirgaoanuM. Griffiths-JonesS. miRBase: From microRNA sequences to function.Nucleic Acids Res.201947D1D155D16210.1093/nar/gky114130423142
    [Google Scholar]
  18. TangL. Recapitulating miRNA biogenesis in cells.Nat. Methods20221913510.1038/s41592‑021‑01385‑z35017737
    [Google Scholar]
  19. NammianP. RazbanV. TabeiS.M.B. Asadi-YousefabadS.L. MicroRNA-126: Dual role in angiogenesis dependent diseases.Curr. Pharm. Des.202026384883489310.2174/138161282666620050412073732364067
    [Google Scholar]
  20. WeiX. KeH. WenA. GaoB. ShiJ. FengY. Structural basis of microRNA processing by Dicer-like 1.Nat. Plants20217101389139610.1038/s41477‑021‑01000‑134593993
    [Google Scholar]
  21. SalimU. KumarA. KulshreshthaR. VivekanandanP. Biogenesis, characterization, and functions of mirtrons.Wiley Interdiscip. Rev. RNA2022131e168010.1002/wrna.168034155810
    [Google Scholar]
  22. WangF. LvP. LiuX. ZhuM. QiuX. microRNA-214 enhances the invasion ability of breast cancer cells by targeting p53.Int. J. Mol. Med.20153551395140210.3892/ijmm.2015.212325738546
    [Google Scholar]
  23. LiuJ. ZhangC. ZhaoY. FengZ. MicroRNA control of p53.J. Cell. Biochem.2017118171410.1002/jcb.2560927216701
    [Google Scholar]
  24. JanssonM.D. LundA.H. MicroRNA and cancer.Mol. Oncol.20126659061010.1016/j.molonc.2012.09.00623102669
    [Google Scholar]
  25. AbdallaF. SinghB. BhatH.K. MicroRNAs and gene regulation in breast cancer.J. Biochem. Mol. Toxicol.20203411e2256710.1002/jbt.2256732729651
    [Google Scholar]
  26. WangL. WangJ. MicroRNA-mediated breast cancer metastasis: From primary site to distant organs.Oncogene201231202499251110.1038/onc.2011.44421963843
    [Google Scholar]
  27. PiaseckaD. BraunM. KordekR. SadejR. RomanskaH. MicroRNAs in regulation of triple-negative breast cancer progression.J. Cancer Res. Clin. Oncol.201814481401141110.1007/s00432‑018‑2689‑229923083
    [Google Scholar]
  28. Oztemur IslakogluY. NoyanS. AydosA. Gur DedeogluB. Meta-microRNA biomarker signatures to classify breast cancer subtypes.OMICS2018221170971610.1089/omi.2018.015730388053
    [Google Scholar]
  29. ChenS. ThorneR.F. ZhangX.D. WuM. LiuL. Non-coding RNAs, guardians of the p53 galaxy.Semin Cancer Biol202175728310.1016/j.semcancer.2020.09.002
    [Google Scholar]
  30. DumayA. FeugeasJ.P. WittmerE. Lehmann-CheJ. BertheauP. EspiéM. PlassaL.F. CottuP. MartyM. AndréF. SotiriouC. PusztaiL. de ThéH. Distinct tumor protein p53 mutants in breast cancer subgroups.Int. J. Cancer201313251227123110.1002/ijc.2776722886769
    [Google Scholar]
  31. MenciaR. GonzaloL. TossoliniI. ManavellaP.A. Keeping up with the miRNAs: Current paradigms of the biogenesis pathway.J. Exp. Bot.20227472213222735959860
    [Google Scholar]
  32. PartinA.C. NgoT.D. HerrellE. JeongB.C. HonG. NamY. Heme enables proper positioning of Drosha and DGCR8 on primary microRNAs.Nat. Commun.201781173710.1038/s41467‑017‑01713‑y29170488
    [Google Scholar]
  33. LiuJ. ZhouF. GuanY. MengF. ZhaoZ. SuQ. BaoW. WangX. ZhaoJ. HuoZ. ZhangL. ZhouS. ChenY. WangX. The biogenesis of miRNAs and their role in the development of amyotrophic lateral sclerosis.Cells202211357210.3390/cells1103057235159383
    [Google Scholar]
  34. ShoffnerG.M. PengZ. GuoF. Structures of microRNA-precursor apical junctions and loops reveal non-canonical base pairs important for processing.bioRxiv2020Preprint.10.1101/2020.05.05.078014
    [Google Scholar]
  35. MohrA.M. MottJ.L. Overview of microRNA biology.Semin Liver Dis.2015351311
    [Google Scholar]
  36. JinS. ZengX. FangJ. LinJ. ChanS.Y. ErzurumS.C. ChengF. A network-based approach to uncover microRNA-mediated disease comorbidities and potential pathobiological implications.NPJ Syst. Biol. Appl.2019514110.1038/s41540‑019‑0115‑231754458
    [Google Scholar]
  37. NegriniM. CalinG.A. Breast cancer metastasis: A microRNA story.Breast Cancer Res.200810230310.1186/bcr186718373886
    [Google Scholar]
  38. Di AgostinoS. The impact of mutant p53 in the non-coding RNA world.Biomolecules202010347210.3390/biom1003047232204575
    [Google Scholar]
  39. BabikirH.A. AfjeiR. PaulmuruganR. MassoudT.F. Restoring guardianship of the genome: Anticancer drug strategies to reverse oncogenic mutant p53 misfolding.Cancer Treat. Rev.201871193110.1016/j.ctrv.2018.09.00430336366
    [Google Scholar]
  40. NeilsenP.M. NollJ.E. MattiskeS. BrackenC.P. GregoryP.A. SchulzR.B. LimS.P. KumarR. SuetaniR.J. GoodallG.J. CallenD.F. Mutant p53 drives invasion in breast tumors through up-regulation of miR-155.Oncogene201332242992300010.1038/onc.2012.30522797073
    [Google Scholar]
  41. PantV. LozanoG. Limiting the power of p53 through the ubiquitin proteasome pathway.Genes Dev.201428161739175110.1101/gad.247452.11425128494
    [Google Scholar]
  42. YuD. XuZ. ChengX. QinJ. The role of miRNAs in MDMX-p53 interplay.J. Evid. Based Med.202114215216010.1111/jebm.1242833988919
    [Google Scholar]
  43. WangX. QiuH. TangR. SongH. PanH. FengZ. ChenL. miR‑30a inhibits epithelial‑mesenchymal transition and metastasis in triple‑negative breast cancer by targeting ROR1.Oncol. Rep.20183962635264310.3892/or.2018.637929693179
    [Google Scholar]
  44. ChengC.W. WangH.W. ChangC.W. ChuH.W. ChenC.Y. YuJ.C. ChaoJ.I. LiuH.F. DingS. ShenC.Y. MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer.Breast Cancer Res. Treat.201213431081109310.1007/s10549‑012‑2034‑422476851
    [Google Scholar]
  45. GregoryP.A. BertA.G. PatersonE.L. BarryS.C. TsykinA. FarshidG. VadasM.A. Khew-GoodallY. GoodallG.J. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1.Nat. Cell Biol.200810559360110.1038/ncb172218376396
    [Google Scholar]
  46. BerberU. YilmazI. NarliG. HaholuA. KucukodaciZ. DemirelD. miR-205 and miR-200c: Predictive micro RNAs for lymph node metastasis in triple negative breast cancer.J. Breast Cancer201417214314810.4048/jbc.2014.17.2.14325013435
    [Google Scholar]
  47. PiovanC. PalmieriD. Di LevaG. BraccioliL. CasaliniP. NuovoG. TortoretoM. SassoM. PlantamuraI. TriulziT. TaccioliC. TagliabueE. IorioM.V. CroceC.M. Oncosuppressive role of p53-induced miR-205 in triple negative breast cancer.Mol. Oncol.20126445847210.1016/j.molonc.2012.03.00322578566
    [Google Scholar]
  48. IliopoulosD. HirschH.A. StruhlK. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation.Cell2009139469370610.1016/j.cell.2009.10.01419878981
    [Google Scholar]
  49. YuF. YaoH. ZhuP. ZhangX. PanQ. GongC. HuangY. HuX. SuF. LiebermanJ. SongE. let-7 regulates self renewal and tumorigenicity of breast cancer cells.Cell200713161109112310.1016/j.cell.2007.10.05418083101
    [Google Scholar]
  50. YaoJ. ZhouE. WangY. XuF. ZhangD. ZhongD. microRNA-200a inhibits cell proliferation by targeting mitochondrial transcription factor A in breast cancer.DNA Cell Biol.201433529130010.1089/dna.2013.213224684598
    [Google Scholar]
  51. TsoukoE. WangJ. FrigoD.E. AydoğduE. WilliamsC. miR-200a inhibits migration of triple-negative breast cancer cells through direct repression of the EPHA2 oncogene.Carcinogenesis20153691051106010.1093/carcin/bgv08726088362
    [Google Scholar]
  52. FengT. XuD. TuC. LiW. NingY. DingJ. WangS. YuanL. XuN. QianK. WangY. QiC. miR-124 inhibits cell proliferation in breast cancer through downregulation of CDK4.Tumour Biol.20153685987599710.1007/s13277‑015‑3275‑825731732
    [Google Scholar]
  53. LiangY.J. WangQ.Y. ZhouC.X. YinQ.Q. HeM. YuX.T. CaoD.X. ChenG.Q. HeJ.R. ZhaoQ. MiR-124 targets slug to regulate epithelial–mesenchymal transition and metastasis of breast cancer.Carcinogenesis201334371372210.1093/carcin/bgs38323250910
    [Google Scholar]
  54. DongG. LiangX. WangD. GaoH. WangL. WangL. LiuJ. DuZ. High expression of miR-21 in triple-negative breast cancers was correlated with a poor prognosis and promoted tumor cell in vitro proliferation.Med. Oncol.20143175710.1007/s12032‑014‑0057‑x24930006
    [Google Scholar]
  55. YanL.X. HuangX.F. ShaoQ. HuangM.A.Y. DengL. WuQ.L. ZengY.X. ShaoJ.Y. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis.RNA200814112348236010.1261/rna.103480818812439
    [Google Scholar]
  56. D’IppolitoE. PlantamuraI. BongiovanniL. CasaliniP. BaroniS. PiovanC. OrlandiR. GualeniA.V. GloghiniA. RossiniA. CrestaS. TessariA. De BraudF. Di LevaG. TripodoC. IorioM.V. miR-9 and miR-200 regulate PDGFRβ-Mediated endothelial differentiation of tumor cells in triple-negative breast cancer.Cancer Res.201676185562557210.1158/0008‑5472.CAN‑16‑014027402080
    [Google Scholar]
  57. GwakJ.M. KimH.J. KimE.J. ChungY.R. YunS. SeoA.N. LeeH.J. ParkS.Y. MicroRNA-9 is associated with epithelial-mesenchymal transition, breast cancer stem cell phenotype, and tumor progression in breast cancer.Breast Cancer Res. Treat.20141471394910.1007/s10549‑014‑3069‑525086633
    [Google Scholar]
  58. JohanssonJ. BergT. KurzejamskaE. PangM-F. TaborV. JanssonM. RoswallP. PietrasK. SundM. ReligaP. FuxeJ. MiR-155-mediated loss of C/EBPβ shifts the TGF-β response from growth inhibition to epithelial-mesenchymal transition, invasion and metastasis in breast cancer.Oncogene201332505614562410.1038/onc.2013.32223955085
    [Google Scholar]
  59. WangQ. LiC. ZhuZ. TengY. CheX. WangY. MaY. WangY. ZhengH. LiuY. QuX. miR-155-5p antagonizes the apoptotic effect of bufalin in triple-negative breast cancer cells.Anticancer Drugs201627191610.1097/CAD.000000000000029626398931
    [Google Scholar]
  60. Czyzyk-KrzeskaM.F. ZhangX. MiR-155 at the heart of oncogenic pathways.Oncogene201433667767810.1038/onc.2013.2623416982
    [Google Scholar]
  61. GarciaA.I. BuissonM. BertrandP. RimokhR. RouleauE. LopezB.S. LidereauR. MikaélianI. MazoyerS. Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers.EMBO Mol. Med.20113527929010.1002/emmm.20110013621472990
    [Google Scholar]
  62. SiC. YuQ. YaoY. Effect of miR-146a-5p on proliferation and metastasis of triple-negative breast cancer via regulation of SOX5.Exp. Ther. Med.20181554515452110.3892/etm.2018.594529731835
    [Google Scholar]
  63. KumaraswamyE. WendtK.L. AugustineL.A. SteckleinS.R. SibalaE.C. LiD. GunewardenaS. JensenR.A. BRCA1 regulation of epidermal growth factor receptor (EGFR) expression in human breast cancer cells involves microRNA-146a and is critical for its tumor suppressor function.Oncogene201534334333434610.1038/onc.2014.36325417703
    [Google Scholar]
  64. BeckerL.E. LuZ. ChenW. XiongW. KongM. LiY. A systematic screen reveals MicroRNA clusters that significantly regulate four major signaling pathways.PLoS One2012711e4847410.1371/journal.pone.004847423144891
    [Google Scholar]
  65. BeckerL.E. TakwiA.A.L. LuZ. LiY. The role of miR-200a in mammalian epithelial cell transformation.Carcinogenesis201536121210.1093/carcin/bgu20225239643
    [Google Scholar]
  66. ChoiS.K. KimH.S. JinT. HwangE.H. JungM. MoonW.K. Overexpression of the miR-141/200c cluster promotes the migratory and invasive ability of triple-negative breast cancer cells through the activation of the FAK and PI3K/AKT signaling pathways by secreting VEGF-A.BMC Cancer201616157010.1186/s12885‑016‑2620‑727484639
    [Google Scholar]
  67. DamianoV. BrisottoG. BorgnaS. di GennaroA. ArmellinM. PerinT. GuardascioneM. MaestroR. SantarosaM. Epigenetic silencing of miR-200c in breast cancer is associated with aggressiveness and is modulated by ZEB1.Genes Chromosomes Cancer201756214715810.1002/gcc.2242227717206
    [Google Scholar]
  68. HuangQ.D. ZhengS.R. CaiY.J. ChenD.L. ShenY.Y. LinC.Q. HuX.Q. WangX.H. ShiH. GuoG.L. IMP3 promotes TNBC stem cell property through miRNA-34a regulation.Eur. Rev. Med. Pharmacol. Sci.20182292688269629771420
    [Google Scholar]
  69. BehzadM. AliM. SolmazS. ElhamB. BehzadB. Micro RNA 34a and Let-7a expression in human breast cancers is associated with apoptotic expression genes.Asian Pac. J. Cancer Prev.20161741887189010.7314/APJCP.2016.17.4.188727221871
    [Google Scholar]
  70. RenY. HanX. YuK. SunS. ZhenL. LiZ. WangS. microRNA-200c downregulates XIAP expression to suppress proliferation and promote apoptosis of triple-negative breast cancer cells.Mol. Med. Rep.201410131532110.3892/mmr.2014.222224821285
    [Google Scholar]
  71. HurstD.R. EdmondsM.D. ScottG.K. BenzC.C. VaidyaK.S. WelchD.R. Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis.Cancer Res.20096941279128310.1158/0008‑5472.CAN‑08‑355919190326
    [Google Scholar]
  72. LiuR. LiuC. ChenD. YangW.H. LiuX. LiuC.G. DugasC.M. TangF. ZhengP. LiuY. WangL. FOXP3 Controls an miR-146/NF-κB negative feedback loop that inhibits apoptosis in breast cancer cells.Cancer Res.20157581703171310.1158/0008‑5472.CAN‑14‑210825712342
    [Google Scholar]
  73. YadavP. MirzaM. NandiK. JainS.K. KazaR.C.M. KhuranaN. RayP.C. SaxenaA. Serum microRNA-21 expression as a prognostic and therapeutic biomarker for breast cancer patients.Tumour Biol.20163711152751528210.1007/s13277‑016‑5361‑y27696295
    [Google Scholar]
  74. Di AgostinoS. VahabiM. TurcoC. FontemaggiG. Secreted non-coding RNAs: Functional impact on the tumor microenvironment and clinical relevance in triple-negative breast cancer.Noncoding RNA202281510.3390/ncrna801000535076579
    [Google Scholar]
  75. MacKenzieT.A. SchwartzG.N. CalderoneH.M. GraveelC.R. WinnM.E. HostetterG. WellsW.A. SempereL.F. Stromal expression of miR-21 identifies high-risk group in triple-negative breast cancer.Am. J. Pathol.2014184123217322510.1016/j.ajpath.2014.08.02025440114
    [Google Scholar]
  76. GazinskaP. GrigoriadisA. BrownJ.P. MillisR.R. MeraA. GillettC.E. HolmbergL.H. TuttA.N. PinderS.E. Comparison of basal-like triple-negative breast cancer defined by morphology, immunohistochemistry and transcriptional profiles.Mod. Pathol.201326795596610.1038/modpathol.2012.24423392436
    [Google Scholar]
  77. StevensK.N. VachonC.M. CouchF.J. Genetic susceptibility to triple-negative breast cancer.Cancer Res.20137372025203010.1158/0008‑5472.CAN‑12‑169923536562
    [Google Scholar]
  78. AmirfallahA. KnutsdottirH. ArasonA. HilmarsdottirB. JohannssonO.T. AgnarssonB.A. BarkardottirR.B. ReynisdottirI. Hsa-miR-21-3p associates with breast cancer patient survival and targets genes in tumor suppressive pathways.PLoS One20211611e026032710.1371/journal.pone.026032734797887
    [Google Scholar]
  79. NajjaryS. MohammadzadehR. MokhtarzadehA. MohammadiA. KojabadA.B. BaradaranB. Role of miR-21 as an authentic oncogene in mediating drug resistance in breast cancer.Gene202073814445310.1016/j.gene.2020.14445332035242
    [Google Scholar]
  80. LuZ. LiuM. StribinskisV. KlingeC.M. RamosK.S. ColburnN.H. LiY. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene.Oncogene200827314373437910.1038/onc.2008.7218372920
    [Google Scholar]
  81. FangH. XieJ. ZhangM. ZhaoZ. WanY. YaoY. miRNA-21 promotes proliferation and invasion of triple-negative breast cancer cells through targeting PTEN.Am. J. Transl. Res.20179395396128386324
    [Google Scholar]
  82. YuX. LiR. ShiW. JiangT. WangY. LiC. QuX. Silencing of MicroRNA-21 confers the sensitivity to tamoxifen and fulvestrant by enhancing autophagic cell death through inhibition of the PI3K-AKT-mTOR pathway in breast cancer cells.Biomed. Pharmacother.201677374410.1016/j.biopha.2015.11.00526796263
    [Google Scholar]
  83. SharmaS. PatnaikP.K. AronovS. KulshreshthaR. ApoptomiRs of breast cancer: Basics to clinics.Front. Genet.2016717510.3389/fgene.2016.0017527746811
    [Google Scholar]
  84. WangH. TanZ. HuH. LiuH. WuT. ZhengC. WangX. LuoZ. WangJ. LiuS. LuZ. TuJ. microRNA-21 promotes breast cancer proliferation and metastasis by targeting LZTFL1.BMC Cancer201919173810.1186/s12885‑019‑5951‑331351450
    [Google Scholar]
  85. ArisanE.D. RencuzogullariO. Cieza-BorrellaC. Miralles ArenasF. DwekM. LangeS. Uysal-OnganerP. MiR-21 Is required for the epithelial–mesenchymal transition in MDA-MB-231 breast cancer cells.Int. J. Mol. Sci.2021224155710.3390/ijms2204155733557112
    [Google Scholar]
  86. QiL. BartJ. TanL.P. PlatteelI. SluisT. HuitemaS. HarmsG. FuL. HollemaH. BergA. Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma.BMC Cancer20099116310.1186/1471‑2407‑9‑16319473551
    [Google Scholar]
  87. LiS. YangX. YangJ. ZhenJ. ZhangD. Serum microRNA-21 as a potential diagnostic biomarker for breast cancer: a systematic review and meta-analysis.Clin. Exp. Med.2016161293510.1007/s10238‑014‑0332‑325516467
    [Google Scholar]
  88. ZelliV. CompagnoniC. CapelliR. CannitaK. SidoniT. FicorellaC. CapalboC. ZazzeroniF. TessitoreA. AlesseE. Circulating microRNAs as prognostic and therapeutic biomarkers in breast cancer molecular subtypes.J. Pers. Med.20201039810.3390/jpm1003009832842653
    [Google Scholar]
  89. MatheA. ScottR. Avery-KiejdaK. MiRNAs and other epigenetic changes as biomarkers in triple negative breast cancer.Int. J. Mol. Sci.20151612283472837610.3390/ijms16122609026633365
    [Google Scholar]
  90. NaoremL.D. MuthaiyanM. VenkatesanA. Identification of dysregulated miRNAs in triple negative breast cancer: A meta-analysis approach.J. Cell. Physiol.20192347117681177910.1002/jcp.2783930488443
    [Google Scholar]
  91. HasanzadehA. Mesrian TanhaH. GhaediK. MadaniM. Aberrant expression of miR-9 in benign and malignant breast tumors.Mol. Cell. Probes201630527928410.1016/j.mcp.2016.10.00527725294
    [Google Scholar]
  92. SabitH. CevikE. TombulogluH. Abdel-GhanyS. TombulogluG. EstellerM. Triple negative breast cancer in the era of miRNA.Crit. Rev. Oncol. Hematol.202115710319610.1016/j.critrevonc.2020.10319633307198
    [Google Scholar]
  93. JiangS. ZhangH.W. LuM.H. HeX.H. LiY. GuH. LiuM.F. WangE.D. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene.Cancer Res.20107083119312710.1158/0008‑5472.CAN‑09‑425020354188
    [Google Scholar]
  94. KongW. YangH. HeL. ZhaoJ. CoppolaD. DaltonW.S. ChengJ.Q. MicroRNA-155 is regulated by the transforming growth factor β/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA.Mol. Cell. Biol.200828226773678410.1128/MCB.00941‑0818794355
    [Google Scholar]
  95. PasculliB. BarbanoR. FontanaA. BiaginiT. Di ViestiM.P. RendinaM. ValoriV.M. MorrittiM. BravacciniS. RavaioliS. MaielloE. GrazianoP. MurgoR. CopettiM. MazzaT. FazioV.M. EstellerM. ParrellaP. Hsa-miR-155-5p up-regulation in breast cancer and its relevance for treatment with poly [ADP-Ribose] polymerase 1 (PARP-1) inhibitors.Front. Oncol.202010141510.3389/fonc.2020.0141532903519
    [Google Scholar]
  96. TengG. PapavasiliouF.N. Shhh! Silencing by microRNA-155.Philos. Trans. R. Soc. Lond. B Biol. Sci.2009364151763163710.1098/rstb.2008.020919008191
    [Google Scholar]
  97. KongW. HeL. CoppolaM. GuoJ. EspositoN.N. CoppolaD. ChengJ.Q. MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer.J. Biol. Chem.201028523178691787910.1074/jbc.M110.10105520371610
    [Google Scholar]
  98. OuyangM. LiY. YeS. MaJ. LuL. LvW. ChangG. LiX. LiQ. WangS. WangW. MicroRNA profiling implies new markers of chemoresistance of triple-negative breast cancer.PLoS One201495e9622810.1371/journal.pone.009622824788655
    [Google Scholar]
  99. YuD. LvM. ChenW. ZhongS. ZhangX. ChenL. MaT. TangJ. ZhaoJ. Role of miR-155 in drug resistance of breast cancer.Tumour Biol.20153631395140110.1007/s13277‑015‑3263‑z25744731
    [Google Scholar]
  100. TucciP. AgostiniM. GrespiF. MarkertE.K. TerrinoniA. VousdenK.H. MullerP.A.J. DötschV. KehrloesserS. SayanB.S. GiacconeG. LoweS.W. TakahashiN. VandenabeeleP. KnightR.A. LevineA.J. MelinoG. Loss of p63 and its microRNA-205 target results in enhanced cell migration and metastasis in prostate cancer.Proc. Natl. Acad. Sci.201210938153121531710.1073/pnas.111097710922949650
    [Google Scholar]
  101. KawaguchiT. YanL. QiQ. PengX. GabrielE.M. YoungJ. LiuS. TakabeK. Overexpression of suppressive microRNAs, miR-30a and miR-200c are associated with improved survival of breast cancer patients.Sci. Rep.2017711594510.1038/s41598‑017‑16112‑y29162923
    [Google Scholar]
  102. XiongJ. WeiB. YeQ. LiuW. MiR-30a-5p/UBE3C axis regulates breast cancer cell proliferation and migration.Biochem. Biophys. Res. Commun.201951631013101810.1016/j.bbrc.2016.03.06927003255
    [Google Scholar]
  103. ParfenyevS. SinghA. FedorovaO. DaksA. KulshreshthaR. BarlevN.A. Interplay between p53 and non-coding RNAs in the regulation of EMT in breast cancer.Cell Death Dis.20211211710.1038/s41419‑020‑03327‑733414456
    [Google Scholar]
  104. CastillaM.Á. Díaz-MartínJ. SarrióD. Romero-PérezL. López-GarcíaM.Á. VieitesB. BiscuolaM. Ramiro-FuentesS. IsackeC.M. PalaciosJ. MicroRNA-200 family modulation in distinct breast cancer phenotypes.PLoS One2012710e4770910.1371/journal.pone.004770923112837
    [Google Scholar]
  105. ChangC.J. ChaoC.H. XiaW. YangJ.Y. XiongY. LiC.W. YuW.H. RehmanS.K. HsuJ.L. LeeH.H. LiuM. ChenC.T. YuD. HungM.C. p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs.Nat. Cell Biol.201113331732310.1038/ncb217321336307
    [Google Scholar]
  106. ChaoC.H. WangC.Y. WangC.H. ChenT.W. HsuH.Y. HuangH.W. LiC.W. MaiR.T. Mutant p53 attenuates oxidative phosphorylation and facilitates cancer stemness through downregulating miR-200c–PCK2 Axis in basal-like breast cancer.Mol. Cancer Res.202119111900191610.1158/1541‑7786.MCR‑21‑009834312289
    [Google Scholar]
  107. WangB. LiJ. SunM. SunL. ZhangX. MiRNA expression in breast cancer varies with lymph node metastasis and other clinicopathologic features.IUBMB Life201466537137710.1002/iub.127324846313
    [Google Scholar]
  108. ZhouH. GaoL. YuZ. HongS. ZhangZ. QiuZ. LncRNA HOTAIR promotes renal interstitial fibrosis by regulating Notch1 pathway via the modulation of miR-124.Nephrology201924447248010.1111/nep.1339429717517
    [Google Scholar]
  109. LiangR. LiY. WangM. TangS.C. XiaoG. SunX. LiG. DuN. LiuD. RenH. MiR-146a promotes the asymmetric division and inhibits the self-renewal ability of breast cancer stem-like cells via indirect upregulation of Let-7.Cell Cycle201817121445145610.1080/15384101.2018.148917629954239
    [Google Scholar]
  110. SandhuR. ReinJ. D’ArcyM. HerschkowitzJ.I. HoadleyK.A. TroesterM.A. Overexpression of miR-146a in basal-like breast cancer cells confers enhanced tumorigenic potential in association with altered p53 status.Carcinogenesis201435112567257510.1093/carcin/bgu17525123132
    [Google Scholar]
  111. IaconaJ.R. LutzC.S. miR-146a-5p: Expression, regulation, and functions in cancer.Wiley Interdiscip. Rev. RNA2019104e153310.1002/wrna.153330895717
    [Google Scholar]
  112. Fkih M’hamedI. PrivatM. TrimecheM. Penault-LlorcaF. BignonY.J. KenaniA. miR-10b, miR-26a, miR-146a And miR-153 expression in triple negative vs non triple negative breast cancer: potential biomarkers.Pathol. Oncol. Res.201723481582710.1007/s12253‑017‑0188‑428101798
    [Google Scholar]
  113. BhaumikD. ScottG.K. SchokrpurS. PatilC.K. CampisiJ. BenzC.C. Expression of microRNA-146 suppresses NF-κB activity with reduction of metastatic potential in breast cancer cells.Oncogene200827425643564710.1038/onc.2008.17118504431
    [Google Scholar]
  114. LiuQ. WangW. YangX. ZhaoD. LiF. WangH. MicroRNA-146a inhibits cell migration and invasion by targeting RhoA in breast cancer.Oncol. Rep.201636118919610.3892/or.2016.478827175941
    [Google Scholar]
  115. ChangH.Y. LeeC.H. LiY.S. HuangJ.T. LanS.H. WangY.F. LaiW.W. WangY.C. LinY.J. LiuH.S. ChengH.C. MicroRNA-146a suppresses tumor malignancy via targeting vimentin in esophageal squamous cell carcinoma cells with lower fibronectin membrane assembly.J. Biomed. Sci.202027110210.1186/s12929‑020‑00693‑433248456
    [Google Scholar]
  116. LuoD. WilsonJ.M. HarvelN. LiuJ. PeiL. HuangS. HawthornL. ShiH. A systematic evaluation of miRNA:mRNA interactions involved in the migration and invasion of breast cancer cells.J. Transl. Med.20131115710.1186/1479‑5876‑11‑5723497265
    [Google Scholar]
  117. ImaniS. WuR.C. FuJ. MicroRNA-34 family in breast cancer: From research to therapeutic potential.J. Cancer20189203765377510.7150/jca.2557630405848
    [Google Scholar]
  118. AdamsB.D. WaliV.B. ChengC.J. InukaiS. BoothC.J. AgarwalS. RimmD.L. GyőrffyB. SantarpiaL. PusztaiL. SaltzmanW.M. SlackF.J. miR-34a silences c-SRC to attenuate tumor growth in triple-negative breast cancer.Cancer Res.201676492793910.1158/0008‑5472.CAN‑15‑232126676753
    [Google Scholar]
  119. LiL. XieX. LuoJ. LiuM. XiS. GuoJ. KongY. WuM. GaoJ. XieZ. TangJ. WangX. WeiW. YangM. HungM.C. XieX. Targeted expression of miR-34a using the T-VISA system suppresses breast cancer cell growth and invasion.Mol. Ther.201220122326233410.1038/mt.2012.20123032974
    [Google Scholar]
  120. ShabanN.Z. IbrahimN.K. SaadaH.N. El-RashidyF.H. ShaabanH.M. FarragM.A. ElDebaikyK. KodousA.S. miR-34a and miR-21 as biomarkers in evaluating the response of chemo-radiotherapy in Egyptian breast cancer patients.J. Radia. Res. App. Sci.202215328529210.1016/j.jrras.2022.08.001
    [Google Scholar]
  121. DengX. CaoM. ZhangJ. HuK. YinZ. ZhouZ. XiaoX. YangY. ShengW. WuY. ZengY. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer.Biomaterials201435144333434410.1016/j.biomaterials.2014.02.00624565525
    [Google Scholar]
  122. LodyginD. TarasovV. EpanchintsevA. BerkingC. KnyazevaT. KörnerH. KnyazevP. DieboldJ. HermekingH. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer.Cell Cycle20087162591260010.4161/cc.7.16.653318719384
    [Google Scholar]
  123. HermekingH. The miR-34 family in cancer and apoptosis.Cell Death Differ.201017219319910.1038/cdd.2009.5619461653
    [Google Scholar]
  124. DengS WangM WangC ZengY QinX TanY p53 downregulates PD-L1 expression via miR-34a to inhibit the growth of triple-negative breast cancer cells: A potential clinical immunotherapeutic target.Mol Biol Rep.2022501577587
    [Google Scholar]
  125. ImaniS. WeiC. ChengJ. Asaduzzaman KhanM. FuS. YangL. TaniaM. ZhangX. XiaoX. ZhangX. FuJ. MicroRNA-34a targets epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs) and inhibits breast cancer cell migration and invasion.Oncotarget2017813213622137910.18632/oncotarget.1521428423483
    [Google Scholar]
  126. SiemensH. JackstadtR. HüntenS. KallerM. MenssenA. GötzU. HermekingH. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions.Cell Cycle201110244256427110.4161/cc.10.24.1855222134354
    [Google Scholar]
  127. De CarolisS. BertoniS. NatiM. D’AnelloL. PapiA. TeseiA. CriccaM. BonaféM. Carbonic anhydrase 9 mRNA/microRNA34a interplay in hypoxic human mammospheres.J. Cell. Physiol.201623171534154110.1002/jcp.2524526553365
    [Google Scholar]
  128. SongP. YeL.F. ZhangC. PengT. ZhouX.H. Long non-coding RNA XIST exerts oncogenic functions in human nasopharyngeal carcinoma by targeting miR-34a-5p.Gene2016592181410.1016/j.gene.2016.07.05527461945
    [Google Scholar]
  129. JiY. WangM. LiX. CuiF. The long noncoding RNA NEAT1 targets miR-34a-5p and drives nasopharyngeal carcinoma progression via Wnt/β-catenin signaling.Yonsei Med. J.201960433634510.3349/ymj.2019.60.4.33630900419
    [Google Scholar]
  130. PlantamuraI. CataldoA. CosentinoG. IorioM.V. MiR-205 in breast cancer: State of the art.Int. J. Mol. Sci.20202212710.3390/ijms2201002733375067
    [Google Scholar]
  131. RadojicicJ. ZaravinosA. VrekoussisT. KafousiM. SpandidosD.A. StathopoulosE.N. MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer.Cell Cycle201110350751710.4161/cc.10.3.1475421270527
    [Google Scholar]
  132. GuanB. LiQ. ShenL. RaoQ. WangY. ZhuY. ZhouX.J. LiX.H. MicroRNA-205 directly targets Krüppel-like factor 12 and is involved in invasion and apoptosis in basal-like breast carcinoma.Int. J. Oncol.201649272073410.3892/ijo.2016.357327278159
    [Google Scholar]
  133. XiaoY. WangZ. LiY. WuJ. TaoH. LiA. MiR-205 targets integrin-α5 and inhibits triple-negative breast cancer metastasis.Cancer. Lett.201843319920910.1158/1538‑7445.AM2018‑26
    [Google Scholar]
  134. LeeJ-Y. ParkM.K. ParkJ-H. LeeH.J. ShinD.H. KangY. LeeC.H. KongG. Loss of the polycomb protein Mel-18 enhances the epithelial–mesenchymal transition by ZEB1 and ZEB2 expression through the downregulation of miR-205 in breast cancer.Oncogene201433101325133510.1038/onc.2013.5323474752
    [Google Scholar]
  135. WuH. ZhuS. MoY.Y. Suppression of cell growth and invasion by miR-205 in breast cancer.Cell Res.200919443944810.1038/cr.2009.1819238171
    [Google Scholar]
  136. XiaoY. HumphriesB. YangC. WangZ. MiR-205 dysregulations in breast cancer: The complexity and opportunities.Noncoding RNA2019545310.3390/ncrna504005331752366
    [Google Scholar]
  137. HuoL. WangY. GongY. KrishnamurthyS. WangJ. DiaoL. LiuC.G. LiuX. LinF. SymmansW.F. WeiW. ZhangX. SunL. AlvarezR.H. UenoN.T. FouadT.M. HaranoK. DebebB.G. WuY. ReubenJ. CristofanilliM. ZuoZ. MicroRNA expression profiling identifies decreased expression of miR-205 in inflammatory breast cancer.Mod. Pathol.201629433034610.1038/modpathol.2016.3826916073
    [Google Scholar]
  138. De ColaA VolpeS BudaniM FerracinM LattanzioR TurdoA miR-205-5p-mediated downregulation of ErbB/HER receptors in breast cancer stem cells results in targeted therapy resistance.Cell death & disease.201567e1823
    [Google Scholar]
  139. HouP ZhaoY LiZ YaoR MaM GaoY LincRNA-ROR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis.Cell death & disease.201456128710.1038/cddis.2014.249
    [Google Scholar]
  140. Avery-KiejdaK.A. BrayeS.G. MatheA. ForbesJ.F. ScottR.J. Decreased expression of key tumour suppressor microRNAs is associated with lymph node metastases in triple negative breast cancer.BMC Cancer20141415110.1186/1471‑2407‑14‑5124479446
    [Google Scholar]
  141. ChangH-T. LiS-C. HoM-R. PanH-W. GerL-P. HuL-Y. Comprehensive analysis of microRNAs in breast cancer.BMC Genomics201213718
    [Google Scholar]
  142. ChoudhuryS.N. LiY. miR-21 and let-7 in the Ras and NF-κB pathways.MicroRNA201211656910.2174/221153661120101006525048092
    [Google Scholar]
  143. ZhangD.G. ZhengJ.N. PeiD.S. P53/microRNA-34-induced metabolic regulation: New opportunities in anticancer therapy.Mol. Cancer201413111510.1186/1476‑4598‑13‑11529304823
    [Google Scholar]
  144. HauA. CeppiP. PeterM.E. CD95 is part of a let-7/p53/miR-34 regulatory network.PLoS One2012711e4963610.1371/journal.pone.004963623166734
    [Google Scholar]
  145. BarhD. MalhotraR. RaviB. SindhuraniP. MicroRNA let-7: An emerging next-generation cancer therapeutic.Curr. Oncol.2010171708010.3747/co.v17i1.35620179807
    [Google Scholar]
  146. RavehE. MatoukI.J. GilonM. HochbergA. The H19 Long non-coding RNA in cancer initiation, progression and metastasis: A proposed unifying theory.Mol. Cancer201514118410.1186/s12943‑015‑0458‑226536864
    [Google Scholar]
  147. WangM. LiY. XiaoG.D. ZhengX.Q. WangJ.C. XuC.W. QinS. RenH. TangS.C. SunX. H19 regulation of oestrogen induction of symmetric division is achieved by antagonizing Let-7c in breast cancer stem-like cells.Cell Prolif.2019521e1253410.1111/cpr.1253430338598
    [Google Scholar]
  148. PengF LiT-T WangK-L XiaoG-Q WangJ-H ZhaoH-D H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance.Cell death & disease2018812569
    [Google Scholar]
  149. MartelloG. RosatoA. FerrariF. ManfrinA. CordenonsiM. DupontS. EnzoE. GuzzardoV. RondinaM. SpruceT. ParentiA.R. DaidoneM.G. BicciatoS. PiccoloS. A MicroRNA targeting dicer for metastasis control.Cell201014171195120710.1016/j.cell.2010.05.01720603000
    [Google Scholar]
  150. Kleivi SahlbergK. BottaiG. NaumeB. BurwinkelB. CalinG.A. Børresen-DaleA.L. SantarpiaL. A serum microRNA signature predicts tumor relapse and survival in triple-negative breast cancer patients.Clin. Cancer Res.20152151207121410.1158/1078‑0432.CCR‑14‑201125547678
    [Google Scholar]
  151. NabihH.K. Crosstalk between NRF2 and Dicer through metastasis regulating MicroRNAs; mir-34a, mir-200 family and mir-103/107 family.Arch. Biochem. Biophys.202068610832610.1016/j.abb.2020.10832632142889
    [Google Scholar]
  152. XiongB. LeiX. ZhangL. FuJ. miR-103 regulates triple negative breast cancer cells migration and invasion through targeting olfactomedin.Biomed. Pharmacother.2017891401140810.1016/j.biopha.2017.02.02828320108
    [Google Scholar]
  153. KanabeB.O. OzaslanM. AzizS.A. Al-AttarM.S. Kılıçİ.H. KhailanyR.A. Expression patterns of LncRNA-GAS5 and its target APOBEC3C gene through miR-103 in breast cancer patients.Cell. Mol. Biol.202167351010.14715/cmb/2021.67.3.234933738
    [Google Scholar]
  154. WangX WuX YanL ShaoJ. Serum miR-103 as a potential diagnostic biomarker for breast cancer.Nan fang yi ke da xue xue bao= Journal of Southern Medical University.20123256314
    [Google Scholar]
  155. MaryamM. NaemiM. HasaniS.S. A comprehensive review on oncogenic miRNAs in breast cancer.J. Genet.202110012133764337
    [Google Scholar]
  156. ChenP.S. SuJ.L. ChaS.T. TarnW.Y. WangM.Y. HsuH.C. LinM.T. ChuC.Y. HuaK.T. ChenC.N. KuoT.C. ChangK.J. HsiaoM. ChangY.W. ChenJ.S. YangP.C. KuoM.L. miR-107 promotes tumor progression by targeting the let-7 microRNA in mice and humans.J. Clin. Invest.201112193442345510.1172/JCI4539021841313
    [Google Scholar]
  157. ChenY. LuoY. TianQ. ZengD. miR-103 Derived from bone marrow mesenchymal stem cell (BMSC) retards the chemo-resistance through targeted-regulation of tp53 regulated inhibitor of apoptosis 1 (TRIAP1) in breast cancer.J. Biomater. Tissue Eng.20221261175118110.1166/jbt.2022.3018
    [Google Scholar]
  158. SalamaY. TakahashiS. TsudaY. OkadaY. HattoriK. HeissigB. YO2 induces melanoma cell apoptosis through p53-mediated lrp1 downregulation.Cancers202215128810.3390/cancers1501028836612285
    [Google Scholar]
  159. LeslieP.L. FranklinD.A. LiuY. ZhangY. p53 regulates the expression of LRP1 and apoptosis through a stress intensity-dependent MicroRNA feedback loop.Cell Rep.20182461484149510.1016/j.celrep.2018.07.01030089260
    [Google Scholar]
  160. ZhangZ. ZhangB. LiW. FuL. FuL. ZhuZ. DongJ.T. Epigenetic silencing of miR-203 upregulates SNAI2 and contributes to the invasiveness of malignant breast cancer cells.Genes Cancer20112878279110.1177/194760191142974322393463
    [Google Scholar]
  161. McKennaD.J. McDadeS.S. PatelD. McCanceD.J. MicroRNA 203 expression in keratinocytes is dependent on regulation of p53 levels by E6.J. Virol.20108420106441065210.1128/JVI.00703‑1020702634
    [Google Scholar]
  162. FunamizuN. LacyC.R. KamadaM. YanagaK. ManomeY. MicroRNA-203 induces apoptosis by upregulating Puma expression in colon and lung cancer cells.Int. J. Oncol.20154751981198810.3892/ijo.2015.317826397233
    [Google Scholar]
  163. PivaR. SpandidosD.A. GambariR. From microRNA functions to microRNA therapeutics: Novel targets and novel drugs in breast cancer research and treatment.Int. J. Oncol.201343498599410.3892/ijo.2013.205923939688
    [Google Scholar]
  164. LambertiniE. LolliA. VezzaliF. PenolazziL. GambariR. PivaR. Correlation between Slug transcription factor and miR-221 in MDA-MB-231 breast cancer cells.BMC Cancer201212144510.1186/1471‑2407‑12‑44523031797
    [Google Scholar]
  165. FornariF. MilazzoM. GalassiM. CallegariE. VeroneseA. MiyaakiH. SabbioniS. MantovaniV. MarascoE. ChiecoP. NegriniM. BolondiL. GramantieriL. p53/mdm2 feedback loop sustains miR-221 expression and dictates the response to anticancer treatments in hepatocellular carcinoma.Mol. Cancer Res.201412220321610.1158/1541‑7786.MCR‑13‑0312‑T24324033
    [Google Scholar]
  166. AroraH. QureshiR. ParkW.Y. miR-506 regulates epithelial mesenchymal transition in breast cancer cell lines.PLoS One201385e6427310.1371/journal.pone.006427323717581
    [Google Scholar]
  167. WangX.X. GuoG.C. QianX.K. DouD.W. ZhangZ. XuX.D. DuanX. PeiX.H. miR-506 attenuates methylation of lncRNA MEG3 to inhibit migration and invasion of breast cancer cell lines via targeting SP1 and SP3.Cancer Cell Int.201818117110.1186/s12935‑018‑0642‑830386180
    [Google Scholar]
  168. SunL. LiY. YangB. Downregulated long non-coding RNA MEG3 in breast cancer regulates proliferation, migration and invasion by depending on p53’s transcriptional activity.Biochem. Biophys. Res. Commun.2016478132332910.1016/j.bbrc.2016.05.03127166155
    [Google Scholar]
  169. YinM. RenX. ZhangX. LuoY. WangG. HuangK. FengS. BaoX. HuangK. HeX. LiangP. WangZ. TangH. HeJ. ZhangB. Selective killing of lung cancer cells by miRNA-506 molecule through inhibiting NF-κB p65 to evoke reactive oxygen species generation and p53 activation.Oncogene201534669170310.1038/onc.2013.59724469051
    [Google Scholar]
  170. SchwickertA. WeghakeE. BrüggemannK. EngbersA. BrinkmannB.F. KemperB. SeggewißJ. StockC. EbnetK. KieselL. RiethmüllerC. GötteM. microRNA miR-142-3p inhibits breast cancer cell invasiveness by synchronous targeting of WASL, integrin alpha V, and additional cytoskeletal elements.PLoS One20151012e014399310.1371/journal.pone.014399326657485
    [Google Scholar]
  171. GodfreyJ.D. MortonJ.P. WilczynskaA. SansomO.J. BushellM.D. MiR-142-3p is downregulated in aggressive p53 mutant mouse models of pancreatic ductal adenocarcinoma by hypermethylation of its locus.Cell Death Dis.20189664410.1038/s41419‑018‑0628‑429844410
    [Google Scholar]
  172. RakhaE.A. ElsheikhS.E. AleskandaranyM.A. HabashiH.O. GreenA.R. PoweD.G. El-SayedM.E. BenhasounaA. BrunetJ.S. AkslenL.A. EvansA.J. BlameyR. Reis-FilhoJ.S. FoulkesW.D. EllisI.O. Triple-negative breast cancer: Distinguishing between basal and nonbasal subtypes.Clin. Cancer Res.20091572302231010.1158/1078‑0432.CCR‑08‑213219318481
    [Google Scholar]
  173. ChangS. WangR.H. AkagiK. KimK.A. MartinB.K. CavalloneL. HainesD.C. BasikM. MaiP. PoggiE. IsaacsC. LooiL.M. MunK.S. GreeneM.H. ByersS.W. TeoS.H. DengC.X. SharanS.K. Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155.Nat. Med.201117101275128210.1038/nm.245921946536
    [Google Scholar]
  174. PastrelloC. PoleselJ. Della PuppaL. VielA. MaestroR. Association between hsa-mir-146a genotype and tumor age-of-onset in BRCA1/BRCA2-negative familial breast and ovarian cancer patients.Carcinogenesis201031122124212610.1093/carcin/bgq18420810544
    [Google Scholar]
  175. TanicM. ZajacM. Gómez-LópezG. BenítezJ. Martínez-DelgadoB. Integration of BRCA1-mediated miRNA and mRNA profiles reveals microRNA regulation of TRAF2 and NFκB pathway.Breast Cancer Res. Treat.20121341415110.1007/s10549‑011‑1905‑422167321
    [Google Scholar]
  176. ReyisdottirST ReynisdottirST StefanssonOA BödvarsdottirSK PalssonA EyfjördJE Abstract A33: Expression of BRCA2 and Mir-21 in sporadic and BRCA2 mutated breast cancer in Iceland.Mole. Can. Res.2016142A33
    [Google Scholar]
  177. AcetoN. SausgruberN. BrinkhausH. GaidatzisD. Martiny-BaronG. MazzarolG. ConfalonieriS. QuartoM. HuG. BalwierzP.J. PachkovM. ElledgeS.J. van NimwegenE. StadlerM.B. Bentires-AljM. Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop.Nat. Med.201218452953710.1038/nm.264522388088
    [Google Scholar]
  178. IsadaA. KonnoS. HizawaN. TamariM. HirotaT. HaradaM. MaedaY. HattoriT. TakahashiA. NishimuraM. A functional polymorphism (−603A → G) in the tissue factor gene promoter is associated with adult-onset asthma.J. Hum. Genet.201055316717410.1038/jhg.2010.420150920
    [Google Scholar]
  179. JangMH KimHJ GwakJM ChungYR ParkSYJHP Prognostic value of microRNA-9 and microRNA-155 expression in triple-negative breast cancer.201768697810.1016/j.humpath.2017.08.026
    [Google Scholar]
  180. XiangX. ZhuangX. JuS. ZhangS. JiangH. MuJ. ZhangL. MillerD. GrizzleW. ZhangH-G. miR-155 promotes macroscopic tumor formation yet inhibits tumor dissemination from mammary fat pads to the lung by preventing EMT.Oncogene201130313440345310.1038/onc.2011.5421460854
    [Google Scholar]
  181. de RinaldisE. GazinskaP. MeraA. ModrusanZ. FedorowiczG.M. BurfordB. GillettC. MarraP. GrigoriadisA. DornanD. HolmbergL. PinderS. TuttA. Integrated genomic analysis of triple-negative breast cancers reveals novel microRNAs associated with clinical and molecular phenotypes and sheds light on the pathways they control.BMC Genomics201314164310.1186/1471‑2164‑14‑64324059244
    [Google Scholar]
  182. GaspariniP. LovatF. FassanM. CasadeiL. CascioneL. JacobN.K. CarasiS. PalmieriD. CostineanS. ShapiroC.L. HuebnerK. CroceC.M. Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation.Proc. Natl. Acad. Sci. USA2014111124536454110.1073/pnas.140260411124616504
    [Google Scholar]
  183. MandkeP WyattN FraserJ BatesB BerberichSJ MarkeyMP MicroRNA-34a modulates MDM4 expression via a target site in the open reading frame.PLoS One20127842034
    [Google Scholar]
  184. OkadaN. LinC.P. RibeiroM.C. BitonA. LaiG. HeX. BuP. VogelH. JablonsD.M. KellerA.C. WilkinsonJ.E. HeB. SpeedT.P. HeL. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression.Genes Dev.201428543845010.1101/gad.233585.11324532687
    [Google Scholar]
  185. GwakJM KimHJ KimEJ ChungYR YunS SeoAN MicroRNA-9 is associated with epithelial-mesenchymal transition, breast cancer stem cell phenotype, and tumor progression in breast cancer.201414713949
    [Google Scholar]
  186. MaL. YoungJ. PrabhalaH. PanE. MestdaghP. MuthD. Teruya-FeldsteinJ. ReinhardtF. OnderT.T. ValastyanS. WestermannF. SpelemanF. VandesompeleJ. WeinbergR.A. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis.Nat. Cell Biol.201012324725610.1038/ncb202420173740
    [Google Scholar]
  187. JinC. Yan LuQ. LinY. MaL. Reciprocal regulation of Hsa-miR-1 and long noncoding RNA MALAT1 promotes triple-negative breast cancer development.Tumour Biol.20163767383739410.1007/s13277‑015‑4605‑626676637
    [Google Scholar]
  188. TangQ. OuyangH. HeD. YuC. TangG. MicroRNA-based potential diagnostic, prognostic and therapeutic applications in triple-negative breast cancer.Artif. Cells Nanomed. Biotechnol.20194712800280910.1080/21691401.2019.163879131284781
    [Google Scholar]
  189. ThakurS. GroverR.K. GuptaS. YadavA.K. DasB.C. Identification of specific miRNA signature in paired sera and tissue samples of Indian women with triple negative breast cancer.PLoS One2016117e015894610.1371/journal.pone.015894627404381
    [Google Scholar]
  190. ImaniS. ZhangX. HosseinifardH. FuS. FuJ. The diagnostic role of microRNA-34a in breast cancer: A systematic review and meta-analysis.Oncotarget2017814231772318710.18632/oncotarget.1552028423566
    [Google Scholar]
  191. MohamedA.A. AllamA.E. ArefA.M. MahmoudM.O. EldesokyN.A. FawazyN. SakrY. SobeihM.E. AlbogamiS. FayadE. AlthobaitiF. JafriI. AlsharifG. El-SayedM. AbdelgelielA.S. Abdel AzizR.S. Evaluation of expressed micrornas as prospective biomarkers for detection of breast cancer.Diagnostics202212478910.3390/diagnostics1204078935453838
    [Google Scholar]
  192. HeneghanH.M. MillerN. KellyR. NewellJ. KerinM.J. Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease.Oncologist201015767368210.1634/theoncologist.2010‑010320576643
    [Google Scholar]
  193. SochorM. BasovaP. PestaM. DusilkovaN. BartosJ. BurdaP. PospisilV. StopkaT. Oncogenic MicroRNAs: miR-155, miR-19a, miR-181b, and miR-24 enable monitoring of early breast cancer in serum.BMC Cancer201414144810.1186/1471‑2407‑14‑44824938880
    [Google Scholar]
  194. SongX. LiuZ. YuZ. LncRNA NEF is downregulated in triple negative breast cancer and correlated with poor prognosis.Acta Biochim. Biophys. Sin.201951438639210.1093/abbs/gmz02130839051
    [Google Scholar]
  195. KongW. HeL. RichardsE.J. ChallaS. XuC-X. Permuth-WeyJ. LancasterJ.M. CoppolaD. SellersT.A. DjeuJ.Y. ChengJ.Q. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer.Oncogene201433667968910.1038/onc.2012.63623353819
    [Google Scholar]
  196. LüL. MaoX. ShiP. HeB. XuK. ZhangS. WangJ. MicroRNAs in the prognosis of triple-negative breast cancer.Medicine20179622e708510.1097/MD.000000000000708528562579
    [Google Scholar]
  197. GodfreyS.S. MicroRNAs in triple-negative breast cancer: A potential biomarker.North Carolina Agricultural and Technical State University2015
    [Google Scholar]
  198. TurashviliG. LightbodyE.D. TyryshkinK. SenGuptaS.K. ElliottB.E. MadarnasY. GhaffariA. DayA. NicolC.J.B. Novel prognostic and predictive microRNA targets for triple-negative breast cancer.FASEB J.201832115937595410.1096/fj.201800120R29812973
    [Google Scholar]
  199. RothC. RackB. MüllerV. JanniW. PantelK. SchwarzenbachH. Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer.Breast Cancer Res.2010126R9010.1186/bcr276621047409
    [Google Scholar]
  200. HuoD. ClaytonW.M. YoshimatsuT.F. ChenJ. OlopadeO.I. Identification of a circulating MicroRNA signature to distinguish recurrence in breast cancer patients.Oncotarget2016734552315524810.18632/oncotarget.1048527409424
    [Google Scholar]
  201. ChirshevE. ObergK.C. IoffeY.J. UnternaehrerJ.J. Let - 7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer.Clin. Transl. Med.2019812410.1186/s40169‑019‑0240‑y31468250
    [Google Scholar]
  202. SunX. TangS.C. XuC. WangC. QinS. DuN. LiuJ. ZhangY. LiX. LuoG. ZhouJ. XuF. RenH. DICER1 regulated let-7 expression levels in p53-induced cancer repression requires cyclin D1.J. Cell. Mol. Med.20151961357136510.1111/jcmm.1252225702703
    [Google Scholar]
  203. LeeJ.A. LeeH.Y. LeeE.S. KimI. BaeJ.W. Prognostic implications of microRNA-21 overexpression in invasive ductal carcinomas of the breast.J. Breast Cancer201114426927510.4048/jbc.2011.14.4.26922323912
    [Google Scholar]
  204. GongC. YaoY. WangY. LiuB. WuW. ChenJ. SuF. YaoH. SongE. Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer.J. Biol. Chem.201128621191271913710.1074/jbc.M110.21688721471222
    [Google Scholar]
  205. MeiM. RenY. ZhouX. YuanX. HanL. WangG. JiaZ. PuP. KangC. YaoZ. Downregulation of miR-21 enhances chemotherapeutic effect of taxol in breast carcinoma cells.Technol. Cancer Res. Treat.201091778610.1177/15330346100090010920082533
    [Google Scholar]
  206. AngiusA. Cossu-RoccaP. ArruC. MuroniM.R. RalloV. CarruC. UvaP. PiraG. OrrùS. De MiglioM.R. Modulatory role of microRNAs in triple negative breast cancer with basal-like phenotype.Cancers20201211329810.3390/cancers1211329833171872
    [Google Scholar]
  207. JafriM.A. ZaidiS.K. AnsariS.A. Al-QahtaniM.H. ShayJ.W. MicroRNAs as potential drug targets for therapeutic intervention in colorectal cancer.Expert Opin. Ther. Targets201519121705172310.1517/14728222.2015.106981626189482
    [Google Scholar]
  208. DingL. GuH. XiongX. AoH. CaoJ. LinW. YuM. LinJ. CuiQ. MicroRNAs involved in carcinogenesis, prognosis, therapeutic resistance, and applications in human triple-negative breast cancer.Cells2019812149210.3390/cells812149231766744
    [Google Scholar]
  209. ShuD. LiH. ShuY. XiongG. CarsonW.E.III HaqueF. XuR. GuoP. Systemic delivery of anti-miRNA for suppression of triple negative breast cancer utilizing RNA nanotechnology.ACS Nano20159109731974010.1021/acsnano.5b0247126387848
    [Google Scholar]
  210. YinH. XiongG. GuoS. XuC. XuR. GuoP. ShuD. Delivery of anti-miRNA for triple-negative breast cancer therapy using RNA nanoparticles targeting stem cell marker CD133.Mol. Ther.20192771252126110.1016/j.ymthe.2019.04.01831085078
    [Google Scholar]
  211. DevulapallyR. SekarN.M. SekarT.V. FoygelK. MassoudT.F. WillmannJ.K. PaulmuruganR. Polymer nanoparticles mediated codelivery of antimiR-10b and antimiR-21 for achieving triple negative breast cancer therapy.ACS Nano2015932290230210.1021/nn507465d25652012
    [Google Scholar]
  212. ZhengS.R. GuoG.L. ZhaiQ. ZouZ.Y. ZhangW. Effects of miR-155 antisense oligonucleotide on breast carcinoma cell line MDA-MB-157 and implanted tumors.Asian Pac. J. Cancer Prev.20131442361236610.7314/APJCP.2013.14.4.236123725141
    [Google Scholar]
  213. GucalpA TrainaTA Triple-negative breast cancer: Adjuvant therapeutic options.Chemother Res Pract2011201169620810.1155/2011/696208
    [Google Scholar]
  214. HeH. TianW. ChenH. JiangK. MiR-944 functions as a novel oncogene and regulates the chemoresistance in breast cancer.Tumour Biol.20163721599160710.1007/s13277‑015‑3844‑x26298722
    [Google Scholar]
  215. WangJ. YangM. LiY. HanB. The role of MicroRNAs in the chemoresistance of breast cancer.Drug Dev. Res.201576736837410.1002/ddr.2127526310899
    [Google Scholar]
  216. ZhengY. LvX. WangX. WangB. ShaoX. HuangY. ShiL. ChenZ. HuangJ. HuangP. miR-181b promotes chemoresistance in breast cancer by regulating Bim expression.Oncol. Rep.201635268369010.3892/or.2015.441726572075
    [Google Scholar]
  217. SiW. ShenJ. ZhengH. FanW. The role and mechanisms of action of microRNAs in cancer drug resistance.Clin. Epigenetics20191112510.1186/s13148‑018‑0587‑830744689
    [Google Scholar]
  218. KhanM.A. JainV.K. RizwanullahM. AhmadJ. JainK. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: A review on drug discovery and future challenges.Drug Discov. Today201924112181219110.1016/j.drudis.2019.09.00131520748
    [Google Scholar]
  219. PawarA. PrabhuP. Nanosoldiers: A promising strategy to combat triple negative breast cancer.Biomed. Pharmacother.201911031934110.1016/j.biopha.2018.11.12230529766
    [Google Scholar]
  220. NaginiS. Breast cancer: current molecular therapeutic targets and new players.Curr. Med. Chem. Anticancer.201717215216310.2174/1871520616666160502122724
    [Google Scholar]
  221. HossainF. SorrentinoC. UcarD.A. PengY. MatossianM. WyczechowskaD. CrabtreeJ. ZabaletaJ. MorelloS. Del ValleL. BurowM. Collins-BurowB. PannutiA. MinterL.M. GoldeT.E. OsborneB.A. MieleL. Notch signaling regulates mitochondrial metabolism and NF-κB activity in triple-negative breast cancer cells via IKKα-dependent non-canonical pathways.Front. Oncol.2018857510.3389/fonc.2018.0057530564555
    [Google Scholar]
  222. DeNardoD.G. BrennanD.J. RexhepajE. RuffellB. ShiaoS.L. MaddenS.F. GallagherW.M. WadhwaniN. KeilS.D. JunaidS.A. RugoH.S. HwangE.S. JirströmK. WestB.L. CoussensL.M. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy.Cancer Discov.201111546710.1158/2159‑8274.CD‑10‑002822039576
    [Google Scholar]
  223. WangQ. ChengY. WangY. FanY. LiC. ZhangY. WangY. DongQ. MaY. TengY. QuX. LiuY. Tamoxifen reverses epithelial–mesenchymal transition by demethylating miR-200c in triple-negative breast cancer cells.BMC Cancer201717149210.1186/s12885‑017‑3457‑428724364
    [Google Scholar]
  224. OzawaP.M.M. AlkhilaiwiF. CavalliI.J. MalheirosD. de Souza Fonseca RibeiroE.M. CavalliL.R. Extracellular vesicles from triple-negative breast cancer cells promote proliferation and drug resistance in non-tumorigenic breast cells.Breast Cancer Res. Treat.2018172371372310.1007/s10549‑018‑4925‑530173296
    [Google Scholar]
  225. BonettiP. ClimentM. PanebiancoF. TordonatoC. SantoroA. MarziM.J. PelicciP.G. VenturaA. NicassioF. Dual role for miR-34a in the control of early progenitor proliferation and commitment in the mammary gland and in breast cancer.Oncogene201938336037410.1038/s41388‑018‑0445‑330093634
    [Google Scholar]
  226. ChenZ. ChenJ. KeshamouniV.G. KanapathipillaiM. Polyarginine and its analogues inhibit p53 mutant aggregation and cancer cell proliferation in vitro.Biochem. Biophys. Res. Commun.2017489213013410.1016/j.bbrc.2017.05.11128536076
    [Google Scholar]
  227. AlyamiN.M. MicroRNAs role in breast cancer: Theranostic application in Saudi arabia.Front. Oncol.20211171775910.3389/fonc.2021.71775934760689
    [Google Scholar]
  228. AggarwalV. PriyankaK. TuliH.S. Emergence of circulating MicroRNAs in breast cancer as diagnostic and therapeutic efficacy biomarkers.Mol. Diagn. Ther.202024215317310.1007/s40291‑020‑00447‑w32067191
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429263841230926014118
Loading
/content/journals/cmp/10.2174/0118761429263841230926014118
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Biomarker; Drug resistance; MiRNA; P53; Triple-negative breast cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test