Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702
side by side viewer icon HTML

Abstract

Background

Lung cancer is a leading cause of cancer mortality. It is one of the most abundant cancer types clinically, with 2 million new cases diagnosed yearly.

Aims

Using clinically collected non-small cell lung cancer (NSCLC) samples, we sought to hypothesize an innovative intact signaling cascade for the disorder.

Methods

We dissected snap-frozen NSCLC tissues along with sibling-paired nearby non-tumorous tissues from 108 NSCLC patients. We measured the expression levels of miR-451/ETV4/MMP13 using qRT-PCR and did a thorough investigation of the molecular mechanism for the signaling axis in NSCLC cell line A549. We also studied the epithelial-mesenchymal transition (EMT) process.

Results

The activity of miR-451 was significantly decreased in NSCLC tissues, while the expression levels of ETV4 and MMP13 were remarkably increased. At the same time, miR-451 levels maintained a declining trend across TNM stage I–III. Inversely, ETV4 and MMP13 increased as the TNM stage increased. The miR-451/ETV4/MMP13 signaling axis was closely associated with prognosis in NSCLC patients. Based on experiments, ETV4 was a direct targeting factor for miRNA-451. Meanwhile, ETV4 promoted the tumor properties of NSCLC cells by directly activating MMP13. Silencing MMP13 blocked the EMT progress of NSCLC cells.

Conclusion

Overall, we hypothesized an impeccable signaling pathway for NSCLC from a new aspect, and this can offer alternative insights for a better understanding of the disorder.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/1874467217666230721123554
2024-01-01
2024-11-26
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-e210723218988.html?itemId=/content/journals/cmp/10.2174/1874467217666230721123554&mimeType=html&fmt=ahah

References

  1. ThaiA.A. SolomonB.J. SequistL.V. GainorJ.F. HeistR.S. Lung cancer.Lancet20213981029953555410.1016/S0140‑6736(21)00312‑334273294
    [Google Scholar]
  2. SchabathM.B. CoteM.L. Cancer progress and priorities: Lung cancer.Cancer Epidemiol. Biomarkers Prev.201928101563157910.1158/1055‑9965.EPI‑19‑022131575553
    [Google Scholar]
  3. Ruiz-CorderoR. DevineW.P. Targeted therapy and checkpoint immunotherapy in lung cancer.Surg. Pathol. Clin.2020131173310.1016/j.path.2019.11.00232005431
    [Google Scholar]
  4. MaoY. YangD. HeJ. KrasnaM.J. Epidemiology of lung cancer.Surg. Oncol. Clin. N. Am.201625343944510.1016/j.soc.2016.02.00127261907
    [Google Scholar]
  5. AlexanderM. KimS.Y. ChengH. Update 2020: Management of non-small cell lung cancer.Lung2020198689790710.1007/s00408‑020‑00407‑533175991
    [Google Scholar]
  6. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2016.CA Cancer J. Clin.201666173010.3322/caac.2133226742998
    [Google Scholar]
  7. NasimF. SabathB.F. EapenG.A. Lung cancer.Med. Clin. North Am.2019103346347310.1016/j.mcna.2018.12.00630955514
    [Google Scholar]
  8. WadowskaK. Bil-LulaI. TrembeckiŁ. Śliwińska-MossońM. Genetic markers in lung cancer diagnosis: A review.Int. J. Mol. Sci.20202113456910.3390/ijms2113456932604993
    [Google Scholar]
  9. Correia de SousaM. GjorgjievaM. DolickaD. SobolewskiC. FotiM. Deciphering miRNAs’ Action through miRNA editing.Int. J. Mol. Sci.20192024624910.3390/ijms2024624931835747
    [Google Scholar]
  10. ZhangZ. GaoX. MaM. ZhaoC. ZhangY. GuoS. CircRNA_101237 promotes NSCLC progression via the miRNA-490-3p/MAPK1 axis.Sci. Rep.2020101902410.1038/s41598‑020‑65920‑232494004
    [Google Scholar]
  11. ChenY. MinL. RenC. XuX. YangJ. SunX. WangT. WangF. SunC. ZhangX. miRNA-148a serves as a prognostic factor and suppresses migration and invasion through Wnt1 in non-small cell lung cancer.PLoS One2017122e017175110.1371/journal.pone.017175128199399
    [Google Scholar]
  12. XinJ.H. CowieA. LachanceP. HassellJ.A. Molecular cloning and characterization of PEA3, a new member of the Ets oncogene family that is differentially expressed in mouse embryonic cells.Genes Dev.19926348149610.1101/gad.6.3.4811547944
    [Google Scholar]
  13. OhS. ShinS. JanknechtR. ETV1, 4 and 5: An oncogenic subfamily of ETS transcription factors.Biochim. Biophys. Acta20121826111222425584
    [Google Scholar]
  14. FontanetP.A. RíosA.S. AlsinaF.C. ParatchaG. LeddaF. Pea3 transcription factors, Etv4 and Etv5, Are required for proper hippocampal dendrite development and plasticity.Cereb. Cortex201828123624910.1093/cercor/bhw37227909004
    [Google Scholar]
  15. LuB.C. CebrianC. ChiX. KuureS. KuoR. BatesC.M. ArberS. HassellJ. MacNeilL. HoshiM. JainS. AsaiN. TakahashiM. Schmidt-OttK.M. BaraschJ. D’AgatiV. CostantiniF. Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis.Nat. Genet.200941121295130210.1038/ng.47619898483
    [Google Scholar]
  16. Ross-InnesC.S. StarkR. TeschendorffA.E. HolmesK.A. AliH.R. DunningM.J. BrownG.D. GojisO. EllisI.O. GreenA.R. AliS. ChinS.F. PalmieriC. CaldasC. CarrollJ.S. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer.Nature2012481738138939310.1038/nature1073022217937
    [Google Scholar]
  17. YuenH.F. ChanY.K. GrillsC. McCruddenC.M. GunasekharanV. ShiZ. WongA.S.Y. LappinT.R. ChanK.W. FennellD.A. KhooU.S. JohnstonP.G. El-TananiM. Polyomavirus enhancer activator 3 protein promotes breast cancer metastatic progression through Snail-induced epithelial-mesenchymal transition.J. Pathol.20112241788910.1002/path.285921404275
    [Google Scholar]
  18. FreijeJ.M. Díez-ItzaI. BalbínM. SánchezL.M. BlascoR. ToliviaJ. López-OtínC. Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas.J. Biol. Chem.199426924167661677310.1016/S0021‑9258(19)89457‑78207000
    [Google Scholar]
  19. FirlejV. LadamF. BrysbaertG. DumontP. FuksF. de LaunoitY. BeneckeA. Chotteau-LelievreA. Reduced tumorigenesis in mouse mammary cancer cells following inhibition of Pea3- or Erm-dependent transcription.J. Cell Sci.2008121203393340210.1242/jcs.02720118827017
    [Google Scholar]
  20. ObenaufA.C. MassaguéJ. Surviving at a distance: Organ-specific metastasis.Trends Cancer201511769110.1016/j.trecan.2015.07.00928741564
    [Google Scholar]
  21. DumortierM. LadamF. DamourI. VacherS. BiècheI. MarchandN. de LaunoitY. TulasneD. Chotteau-LelièvreA. ETV4 transcription factor and MMP13 metalloprotease are interplaying actors of breast tumorigenesis.Breast Cancer Res.20182017310.1186/s13058‑018‑0992‑029996935
    [Google Scholar]
  22. DumaN. Santana-DavilaR. MolinaJ.R. Non–small cell lung cancer: Epidemiology, screening, diagnosis, and treatment.Mayo Clin. Proc.20199481623164010.1016/j.mayocp.2019.01.01331378236
    [Google Scholar]
  23. LadamF. DamourI. DumontP. KherroucheZ. de LaunoitY. TulasneD. Chotteau-LelievreA. Loss of a negative feedback loop involving pea3 and cyclin d2 is required for pea3-induced migration in transformed mammary epithelial cells.Mol. Cancer Res.201311111412142410.1158/1541‑7786.MCR‑13‑022923989931
    [Google Scholar]
  24. FirlejV. BocquetB. DesbiensX. de LaunoitY. Chotteau-LelièvreA. Pea3 transcription factor cooperates with USF-1 in regulation of the murine bax transcription without binding to an Ets-binding site.J. Biol. Chem.2005280288789810.1074/jbc.M40801720015466854
    [Google Scholar]
  25. KaczorowskaA. MiękusN. StefanowiczJ. Adamkiewicz-DrożyńskaE. Selected matrix metalloproteinases (MMP-2, MMP-7) and their inhibitor (TIMP-2) in adult and pediatric cancer.Diagnostics202010854710.3390/diagnostics1008054732751899
    [Google Scholar]
  26. KnäuperV. López-OtinC. SmithB. KnightG. MurphyG. Biochemical characterization of human collagenase-3.J. Biol. Chem.199627131544155010.1074/jbc.271.3.15448576151
    [Google Scholar]
  27. LiW. JiaM. WangJ. LuJ. DengJ. TangJ. LiuC. association of MMP9-1562C/T and MMP13-77A/G polymorphisms with non-small cell lung cancer in southern chinese population.Biomolecules20199310710.3390/biom903010730889876
    [Google Scholar]
  28. BabaeiG. AzizS.G.G. JaghiN.Z.Z. EMT, cancer stem cells and autophagy; The three main axes of metastasis.Biomed. Pharmacother.202113311090910.1016/j.biopha.2020.11090933227701
    [Google Scholar]
  29. ArunaL. LiL.M. Overexpression of golgi membrane protein 1 promotes non-small-cell carcinoma aggressiveness by regulating the matrix metallopeptidase 13.Am. J. Cancer Res.20188355156529637008
    [Google Scholar]
  30. BaiH. WuS. miR-451: A novel biomarker and potential therapeutic target for cancer.OncoTargets Ther.201912110691108210.2147/OTT.S23096331908476
    [Google Scholar]
  31. LiuY. LiH. LiL.H. TangJ.B. ShengY.L. Mir-451 inhibits proliferation and migration of non-small cell lung cancer cells via targeting LKB1/AMPK.Eur. Rev. Med. Pharmacol. Sci.201923327428031389598
    [Google Scholar]
  32. ShenY.Y. CuiJ.Y. YuanJ. WangX. MiR-451a suppressed cell migration and invasion in non-small cell lung cancer through targeting ATF2.Eur. Rev. Med. Pharmacol. Sci.201822175554556130229828
    [Google Scholar]
/content/journals/cmp/10.2174/1874467217666230721123554
Loading
/content/journals/cmp/10.2174/1874467217666230721123554
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ETV4, Lung cancer; miR-451; MMP13; Non-small cell lung cancer; TNM stage I–III
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test