Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Background

Cholangiopathies comprise a spectrum of diseases without curative treatments. Pharmacological treatments based on bile acid (BA) metabolism regulation represent promising therapeutic strategies for the treatment of cholangiopathies. Gentiopicroside (GPS), derived from the Chinese medicinal herb Gentianae Radix, exerts pharmacological effects on bile acid metabolism regulation and oxidative stress.

Objective

The present study aims to investigate the effect of GPS on 3,5-diethoxycarbonyl-1,4dihydrocollidine (DDC)-induced cholangiopathy.

Methods

Two independent animal experiments were designed to evaluate the comprehensive effect of GPS on chronic DDC diet-induced cholangiopathy, including bile duct obliteration, ductular reaction, BA metabolism reprogramming, liver fibrosis, oxidative stress and inflammatory responses.

Results

In the first pharmacological experiment, three doses of GPS (5, 25 and 125 mg/kg) were injected intraperitoneally into mice fed a DDC diet for 14 days. DDC induced a typical ductular reaction, increased periductal fibrosis and mixed inflammatory cell infiltration in the portal areas. GPS treatment showed dose-dependent improvements in the ductular reaction, BA metabolism, fibrosis, oxidative stress and inflammatory response. In the second experiment, a high dose of GPS was injected intraperitoneally into control mice for 28 days, resulting in no obvious histologic changes and significant serologic abnormalities in liver function. However, GPS inhibited DDC-induced oxidative stress, serum and hepatic BA accumulation, proinflammatory cytokine production, and immunocyte infiltration. Specifically, the GPS-treated groups showed decreased infiltration of monocyte-derived macrophages and CD4+ and CD8+ T lymphocytes, as well as preserved Kupffer cells.

Conclusion

GPS alleviated chronic DDC diet-induced cholangiopathy disorder by improving the ductular reaction, periductal fibrosis, oxidative stress and inflammatory response. Its dosage-dependent pharmacological effects indicated that GPS warrants its further evaluation in clinical trials for cholangiopathy.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429251911231011092145
2023-10-19
2024-11-22
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E18761429251911.html?itemId=/content/journals/cmp/10.2174/0118761429251911231011092145&mimeType=html&fmt=ahah

References

  1. TamP.K.H. YiuR.S. LendahlU. AnderssonE.R. Cholangiopathies - Towards a molecular understanding.EBioMedicine20183538139310.1016/j.ebiom.2018.08.02430236451
    [Google Scholar]
  2. LazaridisK.N. StrazzaboscoM. LaRussoN.F. The cholangiopathies: Disorders of biliary epithelia.Gastroenterology200412751565157710.1053/j.gastro.2004.08.00615521023
    [Google Scholar]
  3. BanalesJ.M. HuebertR.C. KarlsenT. StrazzaboscoM. LaRussoN.F. GoresG.J. Cholangiocyte pathobiology.Nat. Rev. Gastroenterol. Hepatol.201916526928110.1038/s41575‑019‑0125‑y30850822
    [Google Scholar]
  4. DurchscheinF KronesE PollheimerMJ Genetic loss of the muscarinic M3 receptor markedly alters bile formation and cholestatic liver injury in mice.Hepatol Res201848E68E77
    [Google Scholar]
  5. OhiraH TakahashiA ZeniyaM Clinical practice guidelines for autoimmune hepatitis.Hepatol Res202220221377610.1111/hepr.13776
    [Google Scholar]
  6. Salas-SilvaS. Simoni-NievesA. Lopez-RamirezJ. BucioL. Gómez-QuirozL.E. Gutiérrez-RuizM.C. RomaM.G. Cholangiocyte death in ductopenic cholestatic cholangiopathies: Mechanistic basis and emerging therapeutic strategies.Life Sci.201921832433910.1016/j.lfs.2018.12.04430610870
    [Google Scholar]
  7. TrussoniC.E. O’HaraS.P. LaRussoN.F. Cellular senescence in the cholangiopathies: A driver of immunopathology and a novel therapeutic target.Semin. Immunopathol.2022444527544
    [Google Scholar]
  8. MenonS. HoltA. Large-duct cholangiopathies: Aetiology, diagnosis and treatment.Frontline Gastroenterol.201910328429110.1136/flgastro‑2018‑10109831288256
    [Google Scholar]
  9. DumortierJ. ContiF. ScoazecJ.Y. Posttransplant immune-mediated cholangiopathies.Curr. Opin. Gastroenterol.20223829810310.1097/MOG.000000000000081535098931
    [Google Scholar]
  10. CarielloM. GadaletaR.M. MoschettaA. The gut-liver axis in cholangiopathies: Focus on bile acid based pharmacological treatment.Curr. Opin. Gastroenterol.202238213614310.1097/MOG.000000000000080735034082
    [Google Scholar]
  11. ZhangX. ZhanG. JinM. ZhangH. DangJ. ZhangY. GuoZ. ItoY. Botany, traditional use, phytochemistry, pharmacology, quality control, and authentication of Radix Gentianae Macrophyllae -A traditional medicine: A review.Phytomedicine20184614216310.1016/j.phymed.2018.04.02030097114
    [Google Scholar]
  12. XuS. KongF. SunZ. XiY. QiF. SunJ. Hepatoprotective effect and metabonomics studies of radix gentianae in rats with acute liver injury.Pharm. Biol.20215911170117810.1080/13880209.2021.196941434465274
    [Google Scholar]
  13. RenL. SunD. ZhouX. YangY. HuangX. LiY. WangC. LiY. Chronic treatment with the modified Longdan Xiegan Tang attenuates olanzapine-induced fatty liver in rats by regulating hepatic de novo lipogenesis and fatty acid beta-oxidation-associated gene expression mediated by SREBP-1c, PPAR-alpha and AMPK-alpha.J. Ethnopharmacol.201923217618710.1016/j.jep.2018.12.03430590197
    [Google Scholar]
  14. MihailovićV. KatanićJ. MišićD. StankovićV. MihailovićM. UskokovićA. ArambašićJ. SolujićS. MladenovićM. StankovićN. Hepatoprotective effects of secoiridoid-rich extracts from Gentiana cruciata L. against carbon tetrachloride induced liver damage in rats.Food Funct.2014581795180310.1039/C4FO00088A24912992
    [Google Scholar]
  15. MihailovicV MihailovicM UskokovicA Hepatoprotective effects of Gentiana asclepiadea L. extracts against carbon tetrachloride induced liver injury in rats.Food Chem. Toxicol.2013528390
    [Google Scholar]
  16. ZhangY. YangX. WangS. SongS. YangX. Gentiopicroside prevents alcoholic liver damage by improving mitochondrial dysfunction in the rat model.Phytother. Res.20213542230225110.1002/ptr.698133300653
    [Google Scholar]
  17. JinM. FengH. WangY. YanS. ShenB. LiZ. QinH. WangQ. LiJ. LiuG. Gentiopicroside ameliorates oxidative stress and lipid accumulation through nuclear factor erythroid 2-related factor 2 activation.Oxid. Med. Cell. Longev.2020202011310.1155/2020/294074632655764
    [Google Scholar]
  18. HeK. MaY.B. CaoT.W. WangH.L. JiangF.Q. GengC.A. ZhangX.M. ChenJ.J. Seven new secoiridoids with anti-hepatitis B virus activity from Swertia angustifolia.Planta Med.201278881482010.1055/s‑0031‑129838122441835
    [Google Scholar]
  19. TangX. YangQ. YangF. GongJ. HanH. YangL. WangZ. Target profiling analyses of bile acids in the evaluation of hepatoprotective effect of gentiopicroside on ANIT-induced cholestatic liver injury in mice.J. Ethnopharmacol.2016194637110.1016/j.jep.2016.08.04927582267
    [Google Scholar]
  20. XuL. ShengT. LiuX. ZhangT. WangZ. HanH. Analyzing the hepatoprotective effect of the Swertia cincta Burkill extract against ANIT-induced cholestasis in rats by modulating the expression of transporters and metabolic enzymes.J. Ethnopharmacol.2017209919910.1016/j.jep.2017.07.03128734962
    [Google Scholar]
  21. FuchsC.D. TraunerM. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology.Nat. Rev. Gastroenterol. Hepatol.202219743245010.1038/s41575‑021‑00566‑735165436
    [Google Scholar]
  22. HanH XuL XiongK ZhangT WangZ. Exploration of hepatoprotective effect of gentiopicroside on alpha-naphthylisothiocyanate-induced cholestatic liver injury in rats by comprehensive proteomic and metabolomic signatures.Cellular Physiol. Biochem.20184913041910.1159/000493409
    [Google Scholar]
  23. MariottiV. CadamuroM. SpirliC. FiorottoR. StrazzaboscoM. FabrisL. Animal models of cholestasis: An update on inflammatory cholangiopathies.Biochim. Biophys. Acta Mol. Basis Dis.20191865595496410.1016/j.bbadis.2018.07.02530398152
    [Google Scholar]
  24. GijbelsE PietersA De MuynckK VinkenM DevisscherL Rodent models of cholestatic liver disease: A practical guide for translational research.Liver Int. : official J. Int. Assoc. Study Liver202141656568210.1111/liv.14800
    [Google Scholar]
  25. HaoJ. ShenX. LuK. XuY. ChenY. LiuJ. ShaoX. ZhuC. DingY. XieX. WuJ. YangQ. Costunolide alleviated DDC induced ductular reaction and inflammatory response in murine model of cholestatic liver disease.J. Tradit. Complement. Med.202313434535710.1016/j.jtcme.2023.02.00837396159
    [Google Scholar]
  26. PoseE. Sancho-BruP. CollM. 3,5-Diethoxycarbonyl-1,4-dihydrocollidine diet: a rodent model in cholestasis research.Methods Mol. Biol.2019198124925710.1007/978‑1‑4939‑9420‑5_1631016659
    [Google Scholar]
  27. MiyaoM OzekiM AbiruH Bile canalicular abnormalities in the early phase of a mouse model of sclerosing cholangitis.Digestive Liver Disease20134521622510.1016/j.dld.2012.09.007
    [Google Scholar]
  28. FickertP. StögerU. FuchsbichlerA. MoustafaT. MarschallH.U. WeigleinA.H. TsybrovskyyO. JaeschkeH. ZatloukalK. DenkH. TraunerM. A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis.Am. J. Pathol.2007171252553610.2353/ajpath.2007.06113317600122
    [Google Scholar]
  29. JemailL. MiyaoM. KotaniH. KawaiC. MinamiH. AbiruH. TamakiK. Pivotal roles of Kupffer cells in the progression and regression of DDC-induced chronic cholangiopathy.Sci. Rep.201881641510.1038/s41598‑018‑24825‑x29686325
    [Google Scholar]
  30. XueH. FangS. ZhengM. WuJ. LiH. ZhangM. LiY. WangT. ShiR. MaY. Da-Huang-Xiao-Shi decoction protects against3, 5-diethoxycarbonyl-1,4-dihydroxychollidine-induced chronic cholestasis by upregulating bile acid metabolic enzymes and efflux transporters.J. Ethnopharmacol.202126911370610.1016/j.jep.2020.11370633346024
    [Google Scholar]
  31. NiuY.T. ZhaoY.P. JiaoY.F. ZhengJ. YangW.L. ZhouR. NiuY. SunT. LiY.X. YuJ.Q. Protective effect of gentiopicroside against dextran sodium sulfate induced colitis in mice.Int. Immunopharmacol.201639162210.1016/j.intimp.2016.07.00327394986
    [Google Scholar]
  32. YangS.Q. ChenY.D. LiH. HuiX. GaoW.Y. Geniposide and gentiopicroside suppress hepatic gluconeogenesis via regulation of AKT-FOXO1 pathway.Arch. Med. Res.201849531432210.1016/j.arcmed.2018.10.00530409503
    [Google Scholar]
  33. LiuZ GuY ShinA ZhangS GinhouxF. Analysis of myeloid cells in mouse tissues with flow cytometry.STAR protoc.20201110002910.1016/j.xpro.2020.100029
    [Google Scholar]
  34. CossarizzaA. ChangH.D. RadbruchA. AbrignaniS. AddoR. AkdisM. AndräI. AndreataF. AnnunziatoF. ArranzE. BacherP. BariS. BarnabaV. Barros-MartinsJ. BaumjohannD. BeccariaC.G. BernardoD. BoardmanD.A. BorgerJ. BöttcherC. BrockmannL. BurnsM. BuschD.H. CameronG. CammarataI. CassottaA. ChangY. ChirdoF.G. ChristakouE. Čičin-ŠainL. CookL. CorbettA.J. CornelisR. CosmiL. DaveyM.S. De BiasiS. De SimoneG. del ZottoG. DelacherM. Di RosaF. Di SantoJ. DiefenbachA. DongJ. DörnerT. DressR.J. DutertreC.A. EckleS.B.G. EedeP. EvrardM. FalkC.S. FeuererM. FillatreauS. Fiz-LopezA. FolloM. FouldsG.A. FröbelJ. GaglianiN. GallettiG. GangaevA. GarbiN. GarroteJ.A. GeginatJ. GherardinN.A. GibelliniL. GinhouxF. GodfreyD.I. GruarinP. HaftmannC. HansmannL. HarpurC.M. HaydayA.C. HeineG. HernándezD.C. HerrmannM. HoelskenO. HuangQ. HuberS. HuberJ.E. HuehnJ. HundemerM. HwangW.Y.K. IannaconeM. IvisonS.M. JäckH.M. JaniP.K. KellerB. KesslerN. KetelaarsS. KnopL. KnopfJ. KoayH.F. KobowK. KriegsmannK. KristyantoH. KruegerA. KuehneJ.F. Kunze-SchumacherH. KvistborgP. KwokI. LatorreD. LenzD. LevingsM.K. LinoA.C. LiottaF. LongH.M. LugliE. MacDonaldK.N. MaggiL. MainiM.K. MairF. MantaC. ManzR.A. MashreghiM.F. MazzoniA. McCluskeyJ. MeiH.E. MelchersF. MelzerS. MielenzD. MoninL. MorettaL. MulthoffG. MuñozL.E. Muñoz-RuizM. MuscateF. NataliniA. NeumannK. NgL.G. NiedobitekA. NiemzJ. AlmeidaL.N. NotarbartoloS. OstendorfL. PallettL.J. PatelA.A. PercinG.I. PeruzziG. PintiM. PockleyA.G. PrachtK. PrinzI. Pujol-AutonellI. PulvirentiN. QuatriniL. QuinnK.M. RadbruchH. RhysH. RodrigoM.B. RomagnaniC. SaggauC. SakaguchiS. SallustoF. SanderinkL. SandrockI. SchauerC. ScheffoldA. SchererH.U. SchiemannM. SchildbergF.A. SchoberK. SchoenJ. SchuhW. SchülerT. SchulzA.R. SchulzS. SchulzeJ. SimonettiS. SinghJ. SitnikK.M. StarkR. StarossomS. StehleC. SzelinskiF. TanL. TarnokA. TornackJ. TreeT.I.M. van BeekJ.J.P. van de VeenW. van GisbergenK. VascoC. VerheydenN.A. von BorstelA. Ward-HartstongeK.A. WarnatzK. WaskowC. WiedemannA. WilharmA. WingJ. WirzO. WittnerJ. YangJ.H.M. YangJ. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition).Eur. J. Immunol.202151122708314510.1002/eji.20217012634910301
    [Google Scholar]
  35. ChiM. ZhangH. WangY. SunX. YangQ. GuoC. Silibinin alleviates muscle atrophy caused by oxidative stress induced by cisplatin through ERK/FoxO and JNK/FoxO pathways.Oxid. Med. Cell. Longev.2022202212210.1155/2022/569422335096269
    [Google Scholar]
  36. XieX. LiH. WangY. WanZ. LuoS. ZhaoZ. LiuJ. WuX. LiX. LiX. Therapeutic effects of gentiopicroside on adjuvant-induced arthritis by inhibiting inflammation and oxidative stress in rats.Int. Immunopharmacol.20197610584010.1016/j.intimp.2019.10584031487614
    [Google Scholar]
  37. FragoulisA SchenkelJ HerzogM Nrf2 ameliorates DDC-induced sclerosing cholangitis and biliary fibrosis and improves the regenerative capacity of the liver.Toxicol. Sci.2019169485498
    [Google Scholar]
  38. JiangA. OkabeH. PopovicB. PreziosiM.E. Pradhan-SunddT. PoddarM. SinghS. BellA. EnglandS.G. NagarajanS. MongaS.P. Loss of Wnt secretion by macrophages promotes hepatobiliary injury after administration of 3,5-diethoxycarbonyl-1, 4-dihydrocollidine diet.Am. J. Pathol.2019189359060310.1016/j.ajpath.2018.11.01030610845
    [Google Scholar]
  39. YangR ZhaoQ HuDD XiaoXR HuangJF LiF Metabolomic analysis of cholestatic liver damage in mice.Food Chem. Toxicol.201812025326010.1016/j.fct.2018.07.022
    [Google Scholar]
  40. LiW.K. WangG.F. WangT.M. LiY.Y. LiY.F. LuX.Y. WangY.H. ZhangH. LiuP. WuJ.S. MaY.M. Protective effect of herbal medicine Huangqi decoction against chronic cholestatic liver injury by inhibiting bile acid-stimulated inflammation in DDC-induced mice.Phytomedicine20196215294810.1016/j.phymed.2019.15294831129431
    [Google Scholar]
  41. GlaserF. JohnC. EngelB. HöhB. WeidemannS. DieckhoffJ. SteinS. BeckerN. CasarC. SchuranF.A. WieschendorfB. PretiM. JessenF. FrankeA. CarambiaA. LohseA.W. IttrichH. HerkelJ. HeerenJ. SchrammC. SchwingeD. Liver infiltrating T cells regulate bile acid metabolism in experimental cholangitis.J. Hepatol.201971478379210.1016/j.jhep.2019.05.03031207266
    [Google Scholar]
  42. CamilleriM. Bile acid detergency: Permeability, inflammation, and effects of sulfation.Am. J. Physiol. Gastrointest. Liver Physiol.20223225G480G48810.1152/ajpgi.00011.202235258349
    [Google Scholar]
  43. ZhengS. CaoP. YinZ. WangX. ChenY. YuM. XuB. LiaoC. DuanY. ZhangS. HanJ. YangX. Apigenin protects mice against 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced cholestasis.Food Funct.20211252323233410.1039/D0FO02910F33620063
    [Google Scholar]
  44. WoolbrightBL Inflammation: Cause or consequence of chronic cholestatic liver injury.Food Chem. Toxicol.2020137111133
    [Google Scholar]
  45. WuR ZhangY ChengQ The effect of biliary obstruction, biliary drainage and bile reinfusion on bile acid metabolism and gut microbiota in mice.Liver Int.20224213514810.1111/liv.15047
    [Google Scholar]
  46. TeradaM. HorisawaK. MiuraS. TakashimaY. OhkawaY. SekiyaS. Matsuda-ItoK. SuzukiA. Kupffer cells induce Notch-mediated hepatocyte conversion in a common mouse model of intrahepatic cholangiocarcinoma.Sci. Rep.2016613469110.1038/srep3469127698452
    [Google Scholar]
  47. TraunerM. NevensF. ShiffmanM. DrenthJ.P.H. BowlusC. BlascoV.M.V. AndreoneP. PencekR. MalechaE.S. MacconellL. ShapiroD. Durable response in the markers of cholestasis through 36 months of open-label extension study of obeticholic acid in primary biliary cholangitis.J. Hepatol.201868S224S22510.1016/S0168‑8278(18)30665‑2
    [Google Scholar]
  48. LiangZ. ChenX. ShiJ. HuH. XueY. UngC.O.L. Efficacy and safety of traditional Chinese medicines for non-alcoholic fatty liver disease: A systematic literature review of randomized controlled trials.Chin. Med.2021161910.1186/s13020‑020‑00422‑x33430929
    [Google Scholar]
  49. ZhuJ. SeoJ.E. WangS. AshbyK. BallardR. YuD. NingB. AgarwalR. BorlakJ. TongW. ChenM. The development of a database for herbal and dietary supplement induced liver toxicity.Int. J. Mol. Sci.20181910295510.3390/ijms1910295530274144
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429251911231011092145
Loading
/content/journals/cmp/10.2174/0118761429251911231011092145
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test