Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Apelin and its receptor are expressed in many tissues and play an important role in maintaining the homeostasis of the cardiovascular system and body fluids. Also, the association of this system with many diseases, such as diabetes, hypertension, obesity, cancer, diabetic retinopathy, , has been determined. This system is considered a therapeutic goal in many mentioned diseases. G protein-coupled receptors (GPCRs) have the ability to form oligomers and dimers with themselves and other receptors. The formation of these oligomers is associated with a change in the signaling pathways of the receptors. Research on the oligo and dimers of these receptors can revolutionize the principles of pharmacology. The apelin receptor (APJ) is also a GPCR and has been shown to have the ability to form dimers and oligomers. This article discusses the dimerization and oligomerization of this receptor with its own receptor and other receptors, as well as the signaling pathways.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/1874467217666230818113538
2024-01-01
2024-11-26
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-e180823219999.html?itemId=/content/journals/cmp/10.2174/1874467217666230818113538&mimeType=html&fmt=ahah

References

  1. BaiM. Dimerization of G-protein-coupled receptors: Roles in signal transduction.Cell. Signal.200416217518610.1016/S0898‑6568(03)00128‑114636888
    [Google Scholar]
  2. MilliganG. WardR.J. MarsangoS. GPCR homo-oligomerization.Curr. Opin. Cell Biol.201957404710.1016/j.ceb.2018.10.00730453145
    [Google Scholar]
  3. LiuJ. TangH. XuC. ZhouS. ZhuX. LiY. PrézeauL. XuT. PinJ.P. RondardP. JiW. LiuJ. Biased signaling due to oligomerization of the G protein-coupled platelet-activating factor receptor.Nat. Commun.2022131636510.1038/s41467‑022‑34056‑436289206
    [Google Scholar]
  4. ReiterE. LefkowitzR.J. GRKs and β-arrestins: Roles in receptor silencing, trafficking and signaling.Trends Endocrinol. Metab.200617415916510.1016/j.tem.2006.03.00816595179
    [Google Scholar]
  5. O’HayreM. EichelK. AvinoS. ZhaoX. SteffenD.J. FengX. KawakamiK. AokiJ. MesserK. SunaharaR. InoueA. von ZastrowM. GutkindJ.S. Genetic evidence that β-arrestins are dispensable for the initiation of β 2 -adrenergic receptor signaling to ERK.Sci. Signal.201710484eaal339510.1126/scisignal.aal339528634209
    [Google Scholar]
  6. LuttrellL.M. WangJ. PlouffeB. SmithJ.S. YamaniL. KaurS. Jean-CharlesP.Y. GauthierC. LeeM.H. PaniB. KimJ. AhnS. RajagopalS. ReiterE. BouvierM. ShenoyS.K. LaporteS.A. RockmanH.A. LefkowitzR.J. Manifold roles of β-arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9.Sci. Signal.201811549eaat765010.1126/scisignal.aat765030254056
    [Google Scholar]
  7. RozenfeldR. DeviL.A. Exploring a role for heteromerization in GPCR signalling specificity.Biochem. J.20114331111810.1042/BJ2010045821158738
    [Google Scholar]
  8. Pérez de la MoraM. Borroto-EscuelaD.O. Crespo-RamírezM. Rejón-OrantesJ.C. Palacios-LagunasD.A. Martínez-MataM.K. Sánchez-LunaD. Tesoro-CruzE. FuxeK. Dysfunctional heteroreceptor complexes as novel targets for the treatment of major depressive and anxiety disorders.Cells20221111182610.3390/cells1111182635681521
    [Google Scholar]
  9. FarranB. An update on the physiological and therapeutic relevance of GPCR oligomers.Pharmacol. Res.201711730332710.1016/j.phrs.2017.01.00828087443
    [Google Scholar]
  10. FerréS. FrancoR. Oligomerization of G-protein-coupled receptors: A reality.Curr. Opin. Pharmacol.20101011510.1016/j.coph.2009.11.00220015687
    [Google Scholar]
  11. GalvezT. DutheyB. KniazeffJ. BlahosJ. RovelliG. BettlerB. PrézeauL. PinJ-P. Allosteric interactions between GB1 andGB2 subunits are required for optimalGABAB receptor function.EMBO J.20012092152215910.1093/emboj/20.9.215211331581
    [Google Scholar]
  12. PalmerR.K. The pharmacology and signaling of bitter, sweet, and umami taste sensing.Mol. Interv.200772879810.1124/mi.7.2.917468389
    [Google Scholar]
  13. PrinsterS.C. HagueC. HallR.A. Heterodimerization of g protein-coupled receptors: Specificity and functional significance.Pharmacol. Rev.200557328929810.1124/pr.57.3.116109836
    [Google Scholar]
  14. JordanB.A. DeviL.A. G-protein-coupled receptor heterodimerization modulates receptor function.Nature1999399673769770010.1038/2144110385123
    [Google Scholar]
  15. WardR.J. PedianiJ.D. GodinA.G. MilliganG. Regulation of oligomeric organization of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor observed by spatial intensity distribution analysis.J. Biol. Chem.201529020128441285710.1074/jbc.M115.64472425825490
    [Google Scholar]
  16. AbdAllaS. LotherH. el MassieryA. QuittererU. Increased AT1 receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness.Nat. Med.2001791003100910.1038/nm0901‑100311533702
    [Google Scholar]
  17. TatemotoK. HosoyaM. HabataY. FujiiR. KakegawaT. ZouM.X. KawamataY. FukusumiS. HinumaS. KitadaC. KurokawaT. OndaH. FujinoM. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor.Biochem. Biophys. Res. Commun.1998251247147610.1006/bbrc.1998.94899792798
    [Google Scholar]
  18. O’CarrollA.M. LolaitS.J. HarrisL.E. PopeG.R. The apelin receptor APJ: Journey from an orphan to a multifaceted regulator of homeostasis.J. Endocrinol.20132191R13R3510.1530/JOE‑13‑022723943882
    [Google Scholar]
  19. O’DowdB.F. HeiberM. ChanA. HengH.H.Q. TsuiL.C. KennedyJ.L. ShiX. PetronisA. GeorgeS.R. NguyenT. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11.Gene19931361-235536010.1016/0378‑1119(93)90495‑O8294032
    [Google Scholar]
  20. LeeD.K. ChengR. NguyenT. FanT. KariyawasamA.P. LiuY. OsmondD.H. GeorgeS.R. O’DowdB.F. Characterization of apelin, the ligand for the APJ receptor.J. Neurochem.2000741344110.1046/j.1471‑4159.2000.0740034.x10617103
    [Google Scholar]
  21. YangP. MaguireJ.J. DavenportA.P. Apelin, Elabela/Toddler, and biased agonists as novel therapeutic agents in the cardiovascular system.Trends Pharmacol. Sci.201536956056710.1016/j.tips.2015.06.00226143239
    [Google Scholar]
  22. MedhurstA.D. JenningsC.A. RobbinsM.J. DavisR.P. EllisC. WinbornK.Y. LawrieK.W.M. HervieuG. RileyG. BolakyJ.E. HerrityN.C. MurdockP. DarkerJ.G. Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin.J. Neurochem.20038451162117210.1046/j.1471‑4159.2003.01587.x12603839
    [Google Scholar]
  23. PopeG.R. RobertsE.M. LolaitS.J. O’CarrollA.M. Central and peripheral apelin receptor distribution in the mouse: Species differences with rat.Peptides201233113914810.1016/j.peptides.2011.12.00522197493
    [Google Scholar]
  24. KleinzM.J. SkepperJ.N. DavenportA.P. Immunocytochemical localisation of the apelin receptor, APJ, to human cardiomyocytes, vascular smooth muscle and endothelial cells.Regul. Pept.2005126323324010.1016/j.regpep.2004.10.01915664671
    [Google Scholar]
  25. FolinoA. MontaroloP.G. SamajaM. RastaldoR. Effects of apelin on the cardiovascular system.Heart Fail. Rev.201520450551810.1007/s10741‑015‑9475‑x25652330
    [Google Scholar]
  26. Chaves-AlmagroC. Castan-LaurellI. DrayC. KnaufC. ValetP. MasriB. Apelin receptors: From signaling to antidiabetic strategy.Eur. J. Pharmacol.2015763Pt B14915910.1016/j.ejphar.2015.05.01726007641
    [Google Scholar]
  27. HuG. WangZ. ZhangR. SunW. ChenX. The role of apelin/apelin receptor in energy metabolism and water homeostasis: A Comprehensive narrative review.Front. Physiol.20211263288610.3389/fphys.2021.63288633679444
    [Google Scholar]
  28. BaiB. YanX. ChengB. WangX. DingL. LiuH. ChenJ. Lateral intracerebroventricular injection of Apelin-13 inhibits apoptosis after cerebral ischemia/reperfusion injury.Neural Regen. Res.201510576677110.4103/1673‑5374.15724326109951
    [Google Scholar]
  29. YangY. LvS.Y. LyuS.K. WuD. ChenQ. The protective effect of apelin on ischemia/reperfusion injury.Peptides201563434610.1016/j.peptides.2014.11.00125447414
    [Google Scholar]
  30. ChngS.C. HoL. TianJ. ReversadeB. ELABELA: A hormone essential for heart development signals via the apelin receptor.Dev. Cell201327667268010.1016/j.devcel.2013.11.00224316148
    [Google Scholar]
  31. ReadC. NyimanuD. WilliamsT. L. HugginsD. J. SulenticP. MacraeR. G. C. YangP. GlenR. C. MaguireJ. J. DavenportA. P. International union of basic and clinical pharmacology. CVII. Structure and pharmacology of the apelin receptor with a recommendation that elabela/toddler is a second endogenous peptide ligand.Pharmacol. Rev.201971446750210.1124/pr.119.017533
    [Google Scholar]
  32. PauliA. NorrisM. L. ValenE. ChewG.-L. GagnonJ. A. ZimmermanS. MitchellA. MaJ. DubrulleJ. ReyonD. TsaiS. Q. JoungJ. K. SaghatelianA. SchierA. F. Toddler: An embryonic signal that promotes cell movement via apelin receptors.Science 20143436172124863610.1126/science.1248636
    [Google Scholar]
  33. ScimiaM.C. HurtadoC. RayS. MetzlerS. WeiK. WangJ. WoodsC.E. PurcellN.H. CatalucciD. AkasakaT. BuenoO.F. VlasukG.P. KalimanP. BodmerR. SmithL.H. AshleyE. MercolaM. BrownJ.H. Ruiz-LozanoP. APJ acts as a dual receptor in cardiac hypertrophy.Nature2012488741139439810.1038/nature1126322810587
    [Google Scholar]
  34. WildeC. MitgauJ. SuchýT. SchönebergT. LiebscherI. Translating the force-mechano-sensing GPCRs.Am. J. Physiol. Cell Physiol.20223226C1047C106010.1152/ajpcell.00465.202135417266
    [Google Scholar]
  35. ChunH.J. AliZ.A. KojimaY. KunduR.K. SheikhA.Y. AgrawalR. ZhengL. LeeperN.J. PearlN.E. PattersonA.J. AndersonJ.P. TsaoP.S. LenardoM.J. AshleyE.A. QuertermousT. Apelin signaling antagonizes Ang II effects in mouse models of atherosclerosis.J. Clin. Invest.2008118103343335410.1172/JCI3487118769630
    [Google Scholar]
  36. LiY. ChenJ. BaiB. DuH. LiuY. LiuH. Heterodimerization of human apelin and kappa opioid receptors: Roles in signal transduction.Cell. Signal.2012245991100110.1016/j.cellsig.2011.12.01222200678
    [Google Scholar]
  37. BaiB. LiuL. ZhangN. WangC. JiangY. ChenJ. Heterodimerization of human apelin and bradykinin 1 receptors: Novel signal transduction characteristics.Cell. Signal.20142671549155910.1016/j.cellsig.2014.03.02224686079
    [Google Scholar]
  38. BaiB. CaiX. JiangY. KarterisE. ChenJ. Heterodimerization of apelin receptor and neurotensin receptor 1 induces phosphorylation of ERK 1/2 and cell proliferation via Gαq‐mediated mechanism.J. Cell. Mol. Med.201418102071208110.1111/jcmm.1240425164432
    [Google Scholar]
  39. WangD. WangY. ShanM. ChenJ. WangH. SunB. JinC. LiX. YinY. SongC. XiaoC. LiJ. WangT. CaiX. Apelin receptor homodimer inhibits apoptosis in vascular dementia.Exp. Cell Res.2021407111273910.1016/j.yexcr.2021.11273934343559
    [Google Scholar]
  40. CaiX. BaiB. ZhangR. WangC. ChenJ. Apelin receptor homodimer-oligomers revealed by single-molecule imaging and novel G protein-dependent signaling.Sci. Rep.2017714033510.1038/srep4033528091541
    [Google Scholar]
  41. St-GelaisF. JompheC. TrudeauL-É. The role of neurotensin in central nervous system pathophysiology: What is the evidence?J. Psychiatry Neurosci.200631422924516862241
    [Google Scholar]
  42. VincentJ.P. MazellaJ. KitabgiP. Neurotensin and neurotensin receptors.Trends Pharmacol. Sci.199920730230910.1016/S0165‑6147(99)01357‑710390649
    [Google Scholar]
  43. LiuH. TianY. JiB. LuH. XinQ. JiangY. DingL. ZhangJ. ChenJ. BaiB. Heterodimerization of the kappa opioid receptor and neurotensin receptor 1 contributes to a novel β-arrestin-2–biased pathway.Biochim. Biophys. Acta Mol. Cell Res.20161863112719273810.1016/j.bbamcr.2016.07.00927523794
    [Google Scholar]
  44. SakuraiT. The role of orexin in motivated behaviours.Nat. Rev. Neurosci.2014151171973110.1038/nrn383725301357
    [Google Scholar]
  45. ChieffiS. CarotenutoM. MondaV. ValenzanoA. VillanoI. PrecenzanoF. TafuriD. SalernoM. FilippiN. NuccioF. RubertoM. De LucaV. CipolloniL. CibelliG. MollicaM.P. IaconoD. NigroE. MondaM. MessinaG. MessinaA. Orexin system: The key for a healthy life.Front. Physiol.2017835710.3389/fphys.2017.0035728620314
    [Google Scholar]
  46. WanL. XuF. LiuC. JiB. ZhangR. WangP. WuF. PanY. YangC. WangC. ChenJ. Transmembrane peptide 4 and 5 of APJ are essential for its heterodimerization with OX1R.Biochem. Biophys. Res. Commun.2020521240841310.1016/j.bbrc.2019.10.14631668922
    [Google Scholar]
  47. BaiB. ChenX. ZhangR. WangX. JiangY. LiD. WangZ. ChenJ. Dual-agonist occupancy of orexin receptor 1 and cholecystokinin A receptor heterodimers decreases G-protein-dependent signaling and migration in the human colon cancer cell line HT-29.Biochim. Biophys. Acta Mol. Cell Res.2017186471153116410.1016/j.bbamcr.2017.03.00328288880
    [Google Scholar]
  48. ChenJ. ZhangR. ChenX. WangC. CaiX. LiuH. JiangY. LiuC. BaiB. Heterodimerization of human orexin receptor 1 and kappa opioid receptor promotes protein kinase A/cAMP-response element binding protein signaling via a Gαs-mediated mechanism.Cell. Signal.20152771426143810.1016/j.cellsig.2015.03.02725866368
    [Google Scholar]
  49. SunX. IidaS. YoshikawaA. SenbonmatsuR. ImanakaK. MaruyamaK. NishimuraS. InagamiT. SenbonmatsuT. Non-activated APJ suppresses the angiotensin II type 1 receptor, whereas apelin-activated APJ acts conversely.Hypertens. Res.201134670170610.1038/hr.2011.1921412239
    [Google Scholar]
  50. ChandrasekaranB. DarO. McDonaghT. The role of apelin in cardiovascular function and heart failure.Eur. J. Heart Fail.200810872573210.1016/j.ejheart.2008.06.00218583184
    [Google Scholar]
  51. IshidaJ. HashimotoT. HashimotoY. NishiwakiS. IguchiT. HaradaS. SugayaT. MatsuzakiH. YamamotoR. ShiotaN. OkunishiH. KiharaM. UmemuraS. SugiyamaF. YagamiK. KasuyaY. MochizukiN. FukamizuA. Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo.J. Biol. Chem.200427925262742627910.1074/jbc.M40414920015087458
    [Google Scholar]
  52. SiddiqueeK. HamptonJ. McAnallyD. MayL.T. SmithL.H. The apelin receptor inhibits the angiotensin II type 1 receptor via allosteric trans-inhibition.Br. J. Pharmacol.201316851104111710.1111/j.1476‑5381.2012.02192.x22935142
    [Google Scholar]
  53. HashimotoT. KiharaM. ImaiN. YoshidaS. ShimoyamadaH. YasuzakiH. IshidaJ. ToyaY. KiuchiY. HirawaN. TamuraK. YazawaT. KitamuraH. FukamizuA. UmemuraS. Requirement of apelin-apelin receptor system for oxidative stress-linked atherosclerosis.Am. J. Pathol.200717151705171210.2353/ajpath.2007.07047117884970
    [Google Scholar]
  54. LiuC. SuT. LiF. LiL. QinX. PanW. FengF. ChenF. LiaoD. ChenL. PI3K/Akt signaling transduction pathway is involved in rat vascular smooth muscle cell proliferation induced by apelin-13.Acta Biochim. Biophys. Sin.201042639640210.1093/abbs/gmq03520539939
    [Google Scholar]
  55. Yeganeh-HajahmadiM. NajafipourH. FarzanehF. Esmaeili-MahaniS. JoukarS. Effect of apelin on cardiac contractility in acute reno-vascular hypertension: The role of apelin receptor and kappa opioid receptor heterodimerization.Iran. J. Basic Med. Sci.201821121305131530627376
    [Google Scholar]
  56. Yeganeh-HajahmadiM. NajafipourH. RostamzadehF. The differential effects of low and high doses of apelin through opioid receptors on the blood pressure of rats with renovascular hypertension.Hypertens. Res.201740873273710.1038/hr.2017.2828275232
    [Google Scholar]
  57. Barki-HarringtonL. LuttrellL.M. RockmanH.A. Dual inhibition of β-adrenergic and angiotensin II receptors by a single antagonist: A functional role for receptor-receptor interaction in vivo.Circulation2003108131611161810.1161/01.CIR.0000092166.30360.7812963634
    [Google Scholar]
  58. KaoT.K. OuY.C. LiaoS.L. ChenW.Y. WangC.C. ChenS.Y. ChiangA.N. ChenC.J. Opioids modulate post-ischemic progression in a rat model of stroke.Neurochem. Int.20085261256126510.1016/j.neuint.2008.01.00718294735
    [Google Scholar]
  59. ChenC.H. ToungT.J.K. HurnP.D. KoehlerR.C. BhardwajA. Ischemic neuroprotection with selective κ-opioid receptor agonist is gender specific.Stroke20053671557156110.1161/01.STR.0000169928.76321.3d15933260
    [Google Scholar]
  60. QiW. SmithF.G. Kappa opioids modulate the arterial baroreflex control of heart rate in conscious young sheep.Can. J. Physiol. Pharmacol.200785881181710.1139/Y07‑07417901891
    [Google Scholar]
  61. WangC. BianW. XiaC. ZhangT. GuillemotF. JingN. Visualization of bHLH transcription factor interactions in living mammalian cell nuclei and developing chicken neural tube by FRET.Cell Res.200616658559810.1038/sj.cr.731007616775630
    [Google Scholar]
  62. RostamzadehF. NajafipourH. Yeganeh-HajahmadiM. Esmaeili-mahaniS. JoukarS. IranpourM. Heterodimerization of apelin and opioid receptors and cardiac inotropic and lusitropic effects of apelin in 2K1C hypertension: Role of pERK1/2 and PKC.Life Sci.2017191243310.1016/j.lfs.2017.09.04428987634
    [Google Scholar]
  63. XuN. WangH. FanL. ChenQ. Supraspinal administration of apelin-13 induces antinociception via the opioid receptor in mice.Peptides20093061153115710.1016/j.peptides.2009.02.01119463749
    [Google Scholar]
  64. PradoG.N. TaylorL. ZhouX. RicuperoD. MierkeD.F. PolgarP. Mechanisms regulating the expression, self-maintenance, and signaling-function of the bradykinin B2 and B1 receptors.J. Cell. Physiol.2002193327528610.1002/jcp.1017512384980
    [Google Scholar]
  65. HowlJ. PayneS.J. Bradykinin receptors as a therapeutic target.Expert Opin. Ther. Targets20037227728510.1517/14728222.7.2.27712667103
    [Google Scholar]
  66. JiB. ShangL. WangC. WanL. ChengB. ChenJ. Roles for heterodimerization of APJ and B2R in promoting cell proliferation via ERK1/2-eNOS signaling pathway.Cell. Signal.20207310967110.1016/j.cellsig.2020.10967132407761
    [Google Scholar]
  67. SierraS. GuptaA. GomesI. FowkesM. RamA. BobeckE.N. DeviL.A. Targeting cannabinoid 1 and delta opioid receptor heteromers alleviates chemotherapy-induced neuropathic pain.ACS Pharmacol. Transl. Sci.20192421922910.1021/acsptsci.9b0000831565698
    [Google Scholar]
  68. FuxeK. Borroto-EscuelaD.O. TarakanovA.O. Romero-FernandezW. FerraroL. TanganelliS. Perez-AleaM. Di PalmaM. AgnatiL.F. Dopamine D2 heteroreceptor complexes and their receptor–receptor interactions in ventral striatum.Prog. Brain Res.201421111313910.1016/B978‑0‑444‑63425‑2.00005‑224968778
    [Google Scholar]
  69. TollL. BruchasM.R. Calo’G. CoxB.M. ZaveriN.T. Nociceptin/orphanin FQ receptor structure, signaling, ligands, functions, and interactions with opioid systems.Pharmacol. Rev.201668241945710.1124/pr.114.00920926956246
    [Google Scholar]
  70. BadalS. TurfusS. RajnarayananR. Wilson-ClarkeC. SandifordS.L. Analysis of natural product regulation of opioid receptors in the treatment of human disease.Pharmacol. Ther.2018184518010.1016/j.pharmthera.2017.10.02129097308
    [Google Scholar]
  71. LuJ.J. PolgarW.E. MannA. DasguptaP. SchulzS. ZaveriN.T. Differential in vitro pharmacological profiles of structurally diverse nociceptin receptor agonists in activating g protein and beta-arrestin signaling at the human nociceptin opioid receptor.Mol. Pharmacol.2021100171810.1124/molpharm.120.00007633958480
    [Google Scholar]
  72. MannA. MoulédousL. FromentC. O’NeillP.R. DasguptaP. GüntherT. BrunoriG. KiefferB.L. TollL. BruchasM.R. ZaveriN.T. SchulzS. Agonist-selective NOP receptor phosphorylation correlates in vitro and in vivo and reveals differential post-activation signaling by chemically diverse agonists.Sci. Signal.201912574eaau807210.1126/scisignal.aau807230914485
    [Google Scholar]
  73. WtorekK. JaneckaA. Potential of nociceptin/orphanin FQ peptide analogs for drug development.Chem. Biodivers.2021181e200087110.1002/cbdv.20200087133351271
    [Google Scholar]
  74. ChenJ. WangZ. ZhangR. YinH. WangP. WangC. JiangY. Heterodimerization of apelin and opioid receptor-like 1 receptors mediates apelin-13-induced G protein biased signaling.Life Sci.202332812189210.1016/j.lfs.2023.12189237364634
    [Google Scholar]
  75. WangH.L. HsuC.Y. HuangP.C. KuoY.L. LiA.H. YehT.H. TsoA.S. ChenY.L. Heterodimerization of opioid receptor-like 1 and µ-opioid receptors impairs the potency of µ receptor agonist.J. Neurochem.20059261285129410.1111/j.1471‑4159.2004.02921.x15748148
    [Google Scholar]
  76. EvansR.M. YouH. HameedS. AltierC. MezghraniA. BourinetE. ZamponiG.W. Heterodimerization of ORL1 and opioid receptors and its consequences for N-type calcium channel regulation.J. Biol. Chem.201028521032104010.1074/jbc.M109.04063419887453
    [Google Scholar]
  77. GriffithsP.R. LolaitS.J. HarrisL.E. PatonJ.F.R. O’CarrollA.M. Vasopressin V1a receptors mediate the hypertensive effects of [Pyr 1 ]apelin-13 in the rat rostral ventrolateral medulla.J. Physiol.2017595113303331810.1113/JP27417828255983
    [Google Scholar]
  78. GoazigoA.R-L. MorinvilleA. BurletA. Llorens-CortesC. BeaudetA. Dehydration-induced cross-regulation of apelin and vasopressin immunoreactivity levels in magnocellular hypothalamic neurons.Endocrinology200414594392440010.1210/en.2004‑038415166125
    [Google Scholar]
  79. Hus-CitharelA. BodineauL. FrugièreA. JoubertF. BoubyN. Llorens-CortesC. Apelin counteracts vasopressin-induced water reabsorption via cross talk between apelin and vasopressin receptor signaling pathways in the rat collecting duct.Endocrinology2014155114483449310.1210/en.2014‑125725157454
    [Google Scholar]
  80. MilliganG. G protein-coupled receptor hetero-dimerization: Contribution to pharmacology and function.Br. J. Pharmacol.2009158151410.1111/j.1476‑5381.2009.00169.x19309353
    [Google Scholar]
  81. NaganoK. KwonC. IshidaJ. HashimotoT. KimJ.D. KishikawaN. MuraoM. KimuraK. KasuyaY. KimuraS. ChenY.C. TsuchimochiH. ShiraiM. PearsonJ.T. FukamizuA. Cooperative action of APJ and α1A-adrenergic receptor in vascular smooth muscle cells induces vasoconstriction.J. Biochem.2019166538339210.1093/jb/mvz07131504625
    [Google Scholar]
  82. LiuF. WanQ. PristupaZ.B. YuX.M. WangY.T. NiznikH.B. Direct protein–protein coupling enables cross-talk between dopamine D5 and γ-aminobutyric acid A receptors.Nature2000403676727428010.1038/3500201410659839
    [Google Scholar]
  83. de la MoraM.P. FerréS. FuxeK. GABA-dopamine receptor-receptor interactions in neostriatal membranes of the rat.Neurochem. Res.19972281051105410.1023/A:10224392128369239761
    [Google Scholar]
  84. WangM. WongA.H. LiuF. Interactions between NMDA and dopamine receptors: A potential therapeutic target.Brain Res.2012147615416310.1016/j.brainres.2012.03.02922472597
    [Google Scholar]
  85. LavineN. EthierN. OakJ.N. PeiL. LiuF. TrieuP. ReboisR.V. BouvierM. HébertT.E. Van TolH.H.M. G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase.J. Biol. Chem.200227748460104601910.1074/jbc.M20503520012297500
    [Google Scholar]
  86. LeeF.J.S. PeiL. MoszczynskaA. VukusicB. FletcherP.J. LiuF. Dopamine transporter cell surface localization facilitated by a direct interaction with the dopamine D2 receptor.EMBO J.20072682127213610.1038/sj.emboj.760165617380124
    [Google Scholar]
  87. Di PalmaM. SartiniS. LattanziD. CuppiniR. Pita-RodriguezM. Diaz-CarmenateY. NarvaezM. FuxeK. Borroto-EscuelaD.O. AmbroginiP. Evidence for the existence of A2AR-TrkB heteroreceptor complexes in the dorsal hippocampus of the rat brain: Potential implications of A2AR and TrkB interplay upon ageing.Mech. Ageing Dev.202019011128910.1016/j.mad.2020.11128932565059
    [Google Scholar]
  88. Borroto-EscuelaD.O. Romero-FernandezW. Pérez-AleaM. NarvaezM. TarakanovA.O. MudóG. AgnatiL.F. CiruelaF. BelluardoN. FuxeK. The existence of FGFR1–5-HT1A receptor heterocomplexes in midbrain 5-ht neurons of the rat: Relevance for neuroplasticity.J. Neurosci.201232186295630310.1523/JNEUROSCI.4203‑11.2012
    [Google Scholar]
  89. AntushevichH. WójcikM. Review: Apelin in disease.Clin. Chim. Acta201848324124810.1016/j.cca.2018.05.01229750964
    [Google Scholar]
  90. BulengerS. MarulloS. BouvierM. Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation.Trends Pharmacol. Sci.200526313113710.1016/j.tips.2005.01.00415749158
    [Google Scholar]
/content/journals/cmp/10.2174/1874467217666230818113538
Loading
/content/journals/cmp/10.2174/1874467217666230818113538
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Apelin receptor; APJ; Dimerization; Homodimerization; Oligomerization; Signaling pathway
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test