Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

The potential role of metabolic reprogramming in fibrogenesis has recently attracted interest. Extracellular matrix stiffness, inflammation, and subsequent oxidative stress are essential mediators in the causation of fibrosis. The prevention of post-surgical adhesion is a challenge in medicine. It is defined as a fibrotic disorder in which adhesive bands develop after abdominal or pelvic surgery. Despite many studies related to the pathogenesis of post-surgical adhesion (PSA), many unknowns exist. Therefore, evaluating different pathways may help characterize and identify the cause of fibrotic scar formation post-operation. Glucose and lipid metabolism are crucial metabolic pathways in the cell’s energy production that may be targeted by hypoxia-induced factor alpha and profibrotic cytokines such as TGF-β to mediate fibrogenesis. Inhibition of upregulated metabolic pathways may be a viable strategy for ameliorating post-surgical adhesion. In this review, we have discussed the potential role of altered glucose and lipid metabolism in extracellular matrix (ECM) stiffness and oxidative stress as crucial mediators in fibrosis.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429246636230919122745
2024-01-01
2024-11-29
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-e18761429246636.html?itemId=/content/journals/cmp/10.2174/0118761429246636230919122745&mimeType=html&fmt=ahah

References

  1. SandovalP. Jiménez-HeffernanJ.A. Guerra-AzconaG. Pérez-LozanoM.L. Rynne-VidalÁ. Albar-VizcaínoP. Gil-VeraF. MartínP. CoronadoM.J. BarcenaC. DotorJ. MajanoP.L. PeraltaA.A. López-CabreraM. Mesothelial-to-mesenchymal transition in the pathogenesis of post-surgical peritoneal adhesions.J. Pathol.20162391485910.1002/path.469527071481
    [Google Scholar]
  2. ColemanM.G. McLainA.D. MoranB.J. Impact of previous surgery on time taken for incision and division of adhesions during laparotomy.Dis. Colon Rectum20004391297129910.1007/BF0223744111005501
    [Google Scholar]
  3. HolmdahlL RisbergB. Adhesions: Prevention and complications in general surgery.Europ. J. Surg.19971633169174
    [Google Scholar]
  4. FaubertB. SolmonsonA. DeBerardinisR.J. Metabolic reprogramming and cancer progression.Science20203686487eaaw547310.1126/science.aaw547332273439
    [Google Scholar]
  5. Beloribi-DjefafliaS. VasseurS. GuillaumondF. Lipid metabolic reprogramming in cancer cells.Oncogenesis201651e18910.1038/oncsis.2015.4926807644
    [Google Scholar]
  6. SrivastavaS.P. LiJ. KitadaM. FujitaH. YamadaY. GoodwinJ.E. KanasakiK. KoyaD. SIRT3 deficiency leads to induction of abnormal glycolysis in diabetic kidney with fibrosis.Cell Death Dis.201891099710.1038/s41419‑018‑1057‑030250024
    [Google Scholar]
  7. DingH. JiangL. XuJ. BaiF. ZhouY. YuanQ. LuoJ. ZenK. YangJ. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis.Am. J. Physiol. Renal Physiol.20173133F561F57510.1152/ajprenal.00036.201728228400
    [Google Scholar]
  8. ZhaoX. KwanJ.Y.Y. YipK. LiuP.P. LiuF.F. Targeting metabolic dysregulation for fibrosis therapy.Nat. Rev. Drug Discov.2020191577510.1038/s41573‑019‑0040‑531548636
    [Google Scholar]
  9. GeH. TianM. PeiQ. TanF. PeiH. Extracellular matrix stiffness: New areas affecting cell metabolism.Front. Oncol.20211163199110.3389/fonc.2021.63199133718214
    [Google Scholar]
  10. BerteroT. OldhamW.M. CottrillK.A. PisanoS. VanderpoolR.R. YuQ. ZhaoJ. TaiY. TangY. ZhangY.Y. RehmanS. SugaharaM. QiZ. GorcsanJ.III VargasS.O. SaggarR. SaggarR. WallaceW.D. RossD.J. HaleyK.J. WaxmanA.B. ParikhV.N. De MarcoT. HsueP.Y. MorrisA. SimonM.A. NorrisK.A. GaggioliC. LoscalzoJ. FesselJ. ChanS.Y. Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension.J. Clin. Invest.201612693313333510.1172/JCI8638727548520
    [Google Scholar]
  11. SunL. YangX. YuanZ. WangH. Metabolic reprogramming in immune response and tissue inflammation.Arterioscler. Thromb. Vasc. Biol.20204091990200110.1161/ATVBAHA.120.31403732698683
    [Google Scholar]
  12. HuX. XuQ. WanH. HuY. XingS. YangH. GaoY. HeZ. PI3K-Akt-mTOR/PFKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis.Lab. Invest.2020100680181110.1038/s41374‑020‑0404‑932051533
    [Google Scholar]
  13. LiJ. ZhaiX. SunX. CaoS. YuanQ. WangJ. Metabolic reprogramming of pulmonary fibrosis.Front. Pharmacol.202213103189010.3389/fphar.2022.103189036452229
    [Google Scholar]
  14. XieN. TanZ. BanerjeeS. CuiH. GeJ. LiuR.M. BernardK. ThannickalV.J. LiuG. Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis.Am. J. Respir. Crit. Care Med.2015192121462147410.1164/rccm.201504‑0780OC26284610
    [Google Scholar]
  15. GoodwinJ. ChoiH. HsiehM. NeugentM.L. AhnJ.M. HayengaH.N. SinghP.K. ShackelfordD.B. LeeI.K. ShulaevV. DharS. TakedaN. KimJ. Targeting hypoxia-inducible factor-1α/pyruvate dehydrogenase kinase 1 axis by dichloroacetate suppresses bleomycin-induced pulmonary fibrosis.Am. J. Respir. Cell Mol. Biol.201858221623110.1165/rcmb.2016‑0186OC28915065
    [Google Scholar]
  16. KhomichO. IvanovA.V. BartoschB. Metabolic hallmarks of hepatic stellate cells in liver fibrosis.Cells2019912410.3390/cells901002431861818
    [Google Scholar]
  17. WynnT.A. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases.J. Clin. Invest.2007117352452910.1172/JCI3148717332879
    [Google Scholar]
  18. XueM. JacksonC.J. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring.Adv. Wound Care20154311913610.1089/wound.2013.048525785236
    [Google Scholar]
  19. FosterD.S. MarshallC.D. GulatiG.S. ChintaM.S. NguyenA. SalhotraA. JonesR.E. BurchamA. LerbsT. CuiL. KingM.E. TitanA.L. RansomR.C. ManjunathA. HuM.S. BlackshearC.P. MascharakS. MooreA.L. NortonJ.A. KinC.J. SheltonA.A. JanuszykM. GurtnerG.C. WernigG. LongakerM.T. Elucidating the fundamental fibrotic processes driving abdominal adhesion formation.Nat. Commun.2020111406110.1038/s41467‑020‑17883‑132792541
    [Google Scholar]
  20. GuyotC. LepreuxS. CombeC. DoudnikoffE. Bioulac-SageP. BalabaudC. DesmoulièreA. Hepatic fibrosis and cirrhosis: The (myo)fibroblastic cell subpopulations involved.Int. J. Biochem. Cell Biol.200638213515116257564
    [Google Scholar]
  21. LiuY. Renal fibrosis: New insights into the pathogenesis and therapeutics.Kidney Int.200669221321710.1038/sj.ki.500005416408108
    [Google Scholar]
  22. VargaJ. AbrahamD. Systemic sclerosis: A prototypic multisystem fibrotic disorder.J. Clin. Invest.2007117355756710.1172/JCI3113917332883
    [Google Scholar]
  23. ThannickalV.J. ToewsG.B. WhiteE.S. LynchJ.P.III MartinezF.J. Mechanisms of pulmonary fibrosis.Annu. Rev. Med.200455139541710.1146/annurev.med.55.091902.10381014746528
    [Google Scholar]
  24. LeaskA. TGFβ, cardiac fibroblasts, and the fibrotic response.Cardiovasc. Res.200774220721210.1016/j.cardiores.2006.07.01216919613
    [Google Scholar]
  25. KimK.K. SheppardD. ChapmanH.A. TGF-β1 signaling and tissue fibrosis.Cold Spring Harb. Perspect. Biol.2018104a02229310.1101/cshperspect.a02229328432134
    [Google Scholar]
  26. HinzB. PhanS.H. ThannickalV.J. GalliA. Bochaton-PiallatM.L. GabbianiG. The myofibroblast.Am. J. Pathol.200717061807181610.2353/ajpath.2007.07011217525249
    [Google Scholar]
  27. ten DijkeP. ArthurH.M. Extracellular control of TGFβ signalling in vascular development and disease.Nat. Rev. Mol. Cell Biol.200781185786910.1038/nrm226217895899
    [Google Scholar]
  28. HalliwellB. GutteridgeJ.M. Free radicals in biology and medicine.USAOxford university press201510.1093/acprof:oso/9780198717478.001.0001
    [Google Scholar]
  29. AgarwalA. AllamaneniS.S.R. Role of free radicals in female reproductive diseases and assisted reproduction.Reprod. Biomed. Online20049333834710.1016/S1472‑6483(10)62151‑715353087
    [Google Scholar]
  30. AwonugaA.O. BelotteJ. AbuanzehS. FletcherN.M. DiamondM.P. SaedG.M. Advances in the pathogenesis of adhesion development: The role of oxidative stress.Reprod. Sci.201421782383610.1177/193371911452255024520085
    [Google Scholar]
  31. YungL. LeungF. YaoX. ChenZ.Y. HuangY. Reactive oxygen species in vascular wall.Cardiovasc. Hematol. Disord. Drug Targets20066111910.2174/18715290677609265916724932
    [Google Scholar]
  32. CrimiE. IgnarroL.J. NapoliC. Microcirculation and oxidative stress.Free Radic. Res.200741121364137510.1080/1071576070173283018075839
    [Google Scholar]
  33. SaedG.M. DiamondM.P. Molecular characterization of postoperative adhesions: The adhesion phenotype.J. Am. Assoc. Gynecol. Laparosc.200411330731410.1016/S1074‑3804(05)60041‑215559339
    [Google Scholar]
  34. LiY.Q. BallingerJ.R. NordalR.A. SuZ.F. WongC.S. Hypoxia in radiation-induced blood-spinal cord barrier breakdown.Cancer Res.20016183348335411309291
    [Google Scholar]
  35. ReedK.L. HeydrickS.J. AaronsC.B. PrushikS. GowerA.C. StucchiA.F. BeckerJ.M. A neurokinin-1 receptor antagonist that reduces intra-abdominal adhesion formation decreases oxidative stress in the peritoneum.Am. J. Physiol. Gastrointest. Liver Physiol.20072933G544G55110.1152/ajpgi.00226.200717627972
    [Google Scholar]
  36. HeydrickS.J. ReedK.L. CohenP.A. AaronsC.B. GowerA.C. BeckerJ.M. StucchiA.F. Intraperitoneal administration of methylene blue attenuates oxidative stress, increases peritoneal fibrinolysis, and inhibits intraabdominal adhesion formation.J. Surg. Res.2007143231131910.1016/j.jss.2006.11.01217826794
    [Google Scholar]
  37. ShuklaA. RasikA.M. ShankarR. Nitric oxide inhibits wounds collagen synthesis.Mol. Cell. Biochem.19992001/2273310.1023/A:100697751314610569180
    [Google Scholar]
  38. JiangZ.L. ZhuX. DiamondM.P. Abu-SoudH.M. SaedG.M. Nitric oxide synthase isoforms expression in fibroblasts isolated from human normal peritoneum and adhesion tissues.Fertil. Steril.200890376977410.1016/j.fertnstert.2007.07.131318440510
    [Google Scholar]
  39. RosenG.M. TsaiP. WeaverJ. PorasuphatanaS. RomanL.J. StarkovA.A. FiskumG. PouS. The role of tetrahydrobiopterin in the regulation of neuronal nitric-oxide synthase-generated superoxide.J. Biol. Chem.200227743402754028010.1074/jbc.M20085320012183447
    [Google Scholar]
  40. FletcherN.M. JiangZ.L. DiamondM.P. Abu-SoudH.M. SaedG.M. Hypoxia-generated superoxide induces the development of the adhesion phenotype.Free Radic. Biol. Med.200845453053610.1016/j.freeradbiomed.2008.05.00218538674
    [Google Scholar]
  41. HalliwellB. Oxygen and nitrogen are pro-carcinogens. Damage to DNA by reactive oxygen, chlorine and nitrogen species: Measurement, mechanism and the effects of nutrition.Mutat. Res. Genet. Toxicol. Environ. Mutagen.19994431-2375210.1016/S1383‑5742(99)00009‑510415430
    [Google Scholar]
  42. BalasubramanianB. PogozelskiW.K. TulliusT.D. DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone.Proc. Natl. Acad. Sci.199895179738974310.1073/pnas.95.17.97389707545
    [Google Scholar]
  43. ShavellV.I. SaedG.M. DiamondM.P. Review: Cellular metabolism: Contribution to postoperative adhesion development.Reprod. Sci.200916762763410.1177/193371910933282619293132
    [Google Scholar]
  44. CooksonV.J. ChapmanN.R. NF-kappaB function in the human myometrium during pregnancy and parturition.Histol. Histopathol.201025794595620503182
    [Google Scholar]
  45. CheginiN. The role of growth factors in peritoneal healing: Transforming growth factor beta (TGF-beta).Europ. J. Surg. Suppl.19975771723
    [Google Scholar]
  46. IvarssonM-L. HolmdahlL. FalkP. MölneJ. RisbergB. Characterization and fibrinolytic properties of mesothelial cells isolated from peritoneal lavage.Scand. J. Clin. Lab. Invest.199858319520410.1080/003655198501865809670343
    [Google Scholar]
  47. SaedG.M. DiamondM.P. Modulation of the expression of tissue plasminogen activator and its inhibitor by hypoxia in human peritoneal and adhesion fibroblasts.Fertil. Steril.200379116416810.1016/S0015‑0282(02)04557‑012524082
    [Google Scholar]
  48. SaedG.M. ZhangW. DiamondM.P. Molecular characterization of fibroblasts isolated from human peritoneum and adhesions.Fertil. Steril.200175476376810.1016/S0015‑0282(00)01799‑411287032
    [Google Scholar]
  49. SaedG.M. DiamondM.P. Differential expression of alpha smooth muscle cell actin in human fibroblasts isolated from intraperitoneal adhesions and normal peritoneal tissues.Fertil. Steril.200482Suppl. 31188119210.1016/j.fertnstert.2004.02.14715474094
    [Google Scholar]
  50. SaedGM ZhangW CheginiN HolmdahlL DiamondMP Alteration of type I and III collagen expression in human peritoneal mesothelial cells in response to hypoxia and transforming growth factor-beta1.Wound Repair Regen.19997650451010.1046/j.1524‑475X.1999.00504.x
    [Google Scholar]
  51. LuY WahlLM Oxidative stress augments the production of matrix metalloproteinase-1, cyclooxygenase-2, and prostaglandin E2 through enhancement of NF-kappa B activity in lipopolysaccharide-activated human primary monocytes.J. Immunol.200517581682516832
    [Google Scholar]
  52. XieH. SimonM.C. Oxygen availability and metabolic reprogramming in cancer.J. Biol. Chem.201729241168251683210.1074/jbc.R117.79997328842498
    [Google Scholar]
  53. SamantaD. SemenzaG.L. Metabolic adaptation of cancer and immune cells mediated by hypoxia-inducible factors.Biochim. Biophys. Acta Rev. Cancer201818701152210.1016/j.bbcan.2018.07.00230006019
    [Google Scholar]
  54. KimW.Y. SafranM. BuckleyM.R.M. EbertB.L. GlickmanJ. BosenbergM. ReganM. KaelinW.G.Jr Failure to prolyl hydroxylate hypoxia-inducible factor α phenocopies VHL inactivation in vivo.EMBO J.200625194650466210.1038/sj.emboj.760130016977322
    [Google Scholar]
  55. ZhangL. LiL. LiuH. PrabhakaranK. ZhangX. BorowitzJ.L. IsomG.E. HIF-1α activation by a redox-sensitive pathway mediates cyanide-induced BNIP3 upregulation and mitochondrial-dependent cell death.Free Radic. Biol. Med.200743111712710.1016/j.freeradbiomed.2007.04.00517561100
    [Google Scholar]
  56. AndrianifahananaM. HernandezD.M. YinX. KangJ.H. JungM.Y. WangY. YiE.S. RodenA.C. LimperA.H. LeofE.B. Profibrotic up‐regulation of glucose transporter 1 by TGF‐β involves activation of MEK and mammalian target of rapamycin complex 2 pathways.FASEB J.201630113733374410.1096/fj.201600428R27480571
    [Google Scholar]
  57. YinX. ChoudhuryM. KangJ.H. SchaefbauerK.J. JungM.Y. AndrianifahananaM. HernandezD.M. LeofE.B. Hexokinase 2 couples glycolysis with the profibrotic actions of TGF-β.Sci. Signal.201912612eaax406710.1126/scisignal.aax406731848318
    [Google Scholar]
  58. TangL. WuY. TianM. SjöströmC.D. JohanssonU. PengX.R. SmithD.M. HuangY. Dapagliflozin slows the progression of the renal and liver fibrosis associated with type 2 diabetes.Am. J. Physiol. Endocrinol. Metab.20173135E563E57610.1152/ajpendo.00086.201728811292
    [Google Scholar]
  59. LiC. ZhangJ. XueM. LiX. HanF. LiuX. XuL. LuY. ChengY. LiT. YuX. SunB. ChenL. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart.Cardiovasc. Diabetol.20191811510.1186/s12933‑019‑0816‑230710997
    [Google Scholar]
  60. LuY.Y. WuC.H. HongC.H. ChangK.L. LeeC.H. GLUT-1 enhances glycolysis, oxidative stress, and fibroblast proliferation in keloid.Life202111650510.3390/life1106050534070830
    [Google Scholar]
  61. LinS. SahaiA. ChughS.S. PanX. WallnerE.I. DaneshF.R. LomasneyJ.W. KanwarY.S. High glucose stimulates synthesis of fibronectin via a novel protein kinase C, Rap1b, and B-Raf signaling pathway.J. Biol. Chem.200227744417254173510.1074/jbc.M20395720012196513
    [Google Scholar]
  62. ChenY. ChoiS.S. MichelottiG.A. ChanI.S. Swiderska-SynM. KaracaG.F. XieG. MoylanC.A. GaribaldiF. PremontR. SulimanH.B. PiantadosiC.A. DiehlA.M. Hedgehog controls hepatic stellate cell fate by regulating metabolism.Gastroenterology2012143513191329.e1110.1053/j.gastro.2012.07.11522885334
    [Google Scholar]
  63. ZhaoX. PsarianosP. GhoraieL.S. YipK. GoldsteinD. GilbertR. WitterickI. PangH. HussainA. LeeJ.H. WilliamsJ. BratmanS.V. AillesL. Haibe-KainsB. LiuF.F. Metabolic regulation of dermal fibroblasts contributes to skin extracellular matrix homeostasis and fibrosis.Nat. Metab.20191114715710.1038/s42255‑018‑0008‑532694814
    [Google Scholar]
  64. Vander HeidenM.G. CantleyL.C. ThompsonC.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation.Science200932459301029103310.1126/science.116080919460998
    [Google Scholar]
  65. KottmannR.M. KulkarniA.A. SmolnyckiK.A. LydaE. DahanayakeT. SalibiR. HonnonsS. JonesC. IsernN.G. HuJ.Z. NathanS.D. GrantG. PhippsR.P. SimeP.J. Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor-β.Am. J. Respir. Crit. Care Med.2012186874075110.1164/rccm.201201‑0084OC22923663
    [Google Scholar]
  66. IsonoM. ChenS. Won HongS. Carmen Iglesias-de la CruzM. ZiyadehF.N. Smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF-β-induced fibronectin in mesangial cells.Biochem. Biophys. Res. Commun.200229651356136510.1016/S0006‑291X(02)02084‑312207925
    [Google Scholar]
  67. LiaoX. SongL. ZhangL. WangH. TongQ. XuJ. YangG. YangS. ZhengH. LAMP3 regulates hepatic lipid metabolism through activating PI3K/Akt pathway.Mol. Cell. Endocrinol.201847016016710.1016/j.mce.2017.10.01029056532
    [Google Scholar]
  68. GuoD. BellE. MischelP. ChakravartiA. Targeting SREBP-1-driven lipid metabolism to treat cancer.Curr. Pharm. Des.201420152619262610.2174/1381612811319999048623859617
    [Google Scholar]
  69. BiswasS. LunecJ. BartlettK. Non-glucose metabolism in cancer cells-is it all in the fat?Cancer Metastasis Rev.2012313-468969810.1007/s10555‑012‑9384‑622706846
    [Google Scholar]
  70. CalvisiD.F. WangC. HoC. LaduS. LeeS.A. MattuS. DestefanisG. DeloguS. ZimmermannA. EricssonJ. BrozzettiS. StanisciaT. ChenX. DombrowskiF. EvertM. Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma.Gastroenterology2011140310711083.e510.1053/j.gastro.2010.12.00621147110
    [Google Scholar]
  71. FujisawaK. TakamiT. SasaiN. MatsumotoT. YamamotoN. SakaidaI. Metabolic alterations in spheroid-cultured hepatic stellate cells.Int. J. Mol. Sci.20202110345110.3390/ijms2110345132414151
    [Google Scholar]
  72. HeubleinS. MayrD. MeindlA. KircherA. JeschkeU. DitschN. Vitamin D receptor, Retinoid X receptor and peroxisome proliferator-activated receptor γ are overexpressed in BRCA1 mutated breast cancer and predict prognosis.J. Exp. Clin. Cancer Res.20173615710.1186/s13046‑017‑0517‑128427429
    [Google Scholar]
  73. ShuZ. GaoY. ZhangG. ZhouY. CaoJ. WanD. ZhuX. XiongW. A functional interaction between Hippo-YAP signalling and SREBPs mediates hepatic steatosis in diabetic mice.J. Cell. Mol. Med.20192353616362810.1111/jcmm.1426230821074
    [Google Scholar]
  74. KeR. XuQ. LiC. LuoL. HuangD. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism.Cell Biol. Int.201842438439210.1002/cbin.1091529205673
    [Google Scholar]
  75. GlatzJ.F.C. LuikenJ.J.F.P. BonenA. Membrane fatty acid transporters as regulators of lipid metabolism: Implications for metabolic disease.Physiol. Rev.201090136741710.1152/physrev.00003.200920086080
    [Google Scholar]
  76. O’NeillH.M. LallyJ.S. GalicS. ThomasM. AziziP.D. FullertonM.D. SmithB.K. PulinilkunnilT. ChenZ. SamaanM.C. JorgensenS.B. DyckJ.R.B. HollowayG.P. HawkeT.J. van DenderenB.J. KempB.E. SteinbergG.R. AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice.Diabetologia20145781693170210.1007/s00125‑014‑3273‑124913514
    [Google Scholar]
  77. KramerP.A. RaviS. ChackoB. JohnsonM.S. Darley-UsmarV.M. A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: Implications for their use as bioenergetic biomarkers.Redox Biol.2014220621010.1016/j.redox.2013.12.02624494194
    [Google Scholar]
  78. BustosR SobrinoF Stimulation of glycolysis as an activation signal in rat peritoneal macrophages. Effect of glucocorticoids on this process.Biochem. J.1992282(Pt 1)299303
    [Google Scholar]
  79. CasbonA.J. LongM.E. DunnK.W. AllenL.A.H. DinauerM.C. Effects of IFN-γ on intracellular trafficking and activity of macrophage NADPH oxidase flavocytochrome b558.J. Leukoc. Biol.201292486988210.1189/jlb.051224422822009
    [Google Scholar]
  80. GriffithsH.R. GaoD. PararasaC. Redox regulation in metabolic programming and inflammation.Redox Biol.201712505710.1016/j.redox.2017.01.02328212523
    [Google Scholar]
  81. DüvelK. YeciesJ.L. MenonS. RamanP. LipovskyA.I. SouzaA.L. TriantafellowE. MaQ. GorskiR. CleaverS. Vander HeidenM.G. MacKeiganJ.P. FinanP.M. ClishC.B. MurphyL.O. ManningB.D. Activation of a metabolic gene regulatory network downstream of mTOR complex 1.Mol. Cell201039217118310.1016/j.molcel.2010.06.02220670887
    [Google Scholar]
  82. MengX. YuZ. XuW. ChaiJ. FangS. MinP. ChenY. ZhangY. ZhangZ. Control of fibrosis and hypertrophic scar formation via glycolysis regulation with IR780.Burns Trauma202210tkac01510.1093/burnst/tkac01535769829
    [Google Scholar]
  83. Rodríguez-GarcíaA. SamsóP. FontovaP. Simon-MolasH. ManzanoA. CastañoE. RosaJ.L. Martinez-OutshoornU. VenturaF. Navarro-SabatéÀ. BartronsR. TGF-β1 targets Smad, p38 MAPK, and PI3K/Akt signaling pathways to induce PFKFB3 gene expression and glycolysis in glioblastoma cells.FEBS J.2017284203437345410.1111/febs.1420128834297
    [Google Scholar]
  84. CumminsE.P. KeoghC.E. CreanD. TaylorC.T. The role of HIF in immunity and inflammation.Mol. Aspects Med.201647-48243410.1016/j.mam.2015.12.00426768963
    [Google Scholar]
  85. HigginsD.F. KimuraK. IwanoM. HaaseV.H. Hypoxia-inducible factor signaling in the development of tissue fibrosis.Cell Cycle2008791128113210.4161/cc.7.9.580418418042
    [Google Scholar]
  86. ZhuX. JiangL. LongM. WeiX. HouY. DuY. Metabolic reprogramming and renal fibrosis.Front. Med.2021874692010.3389/fmed.2021.74692034859009
    [Google Scholar]
  87. DelgadoM.E. CárdenasB.I. FarranN. FernandezM. Metabolic reprogramming of liver fibrosis.Cells20211012360410.3390/cells1012360434944111
    [Google Scholar]
  88. YilmazB. AksakalO. GungorT. SirvanL. SutN. KelekciS. SoysalS. MollamahmutogluL. Metformin and atorvastatin reduce adhesion formation in a rat uterine horn model.Reprod. Biomed. Online200918343644210.1016/S1472‑6483(10)60106‑X19298747
    [Google Scholar]
  89. GagnonL. LeducM. ThibodeauJ.F. ZhangM.Z. GrouixB. Sarra-BournetF. GagnonW. HinceK. TremblayM. GeertsL. KennedyC.R.J. HébertR.L. GutsolA. HoltermanC.E. KamtoE. GervaisL. OuboudinarJ. RichardJ. FeltonA. LaverdureA. SimardJ.C. LétourneauS. CloutierM.P. LeblondF.A. AbbottS.D. PenneyC. DuceppeJ.S. ZacharieB. DupuisJ. CalderoneA. NguyenQ.T. HarrisR.C. LaurinP. A newly discovered antifibrotic pathway regulated by two fatty acid receptors: GPR40 and GPR84.Am. J. Pathol.201818851132114810.1016/j.ajpath.2018.01.00929454750
    [Google Scholar]
  90. Fatehi HassanabadA. ZarzyckiA.N. JeonK. DenisetJ.F. FedakP.W.M. Post-operative adhesions: A comprehensive review of mechanisms.Biomedicines20219886710.3390/biomedicines908086734440071
    [Google Scholar]
  91. KasmiK.C.E. StenmarkK.R. Contribution of metabolic reprogramming to macrophage plasticity and function. Seminars in immunology.Elsevier2015
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429246636230919122745
Loading
/content/journals/cmp/10.2174/0118761429246636230919122745
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test