Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Tumor necrosis factor-alpha (TNFα) is a pleiotropic pro-inflammatory cytokine of the TNF superfamily. It regulates key cellular processes such as death, and proliferation besides its well-known role in immune response through activation of various intracellular signaling pathways (such as MAPK, Akt, NF-κB, .) complex formation by ligand-activated TNFα receptors. TNFα tightly regulates the activity of key signaling proteins their phosphorylation and/or ubiquitination which culminate in specific cellular responses. Deregulated TNFα signaling is implicated in inflammatory diseases, neurological disorders, and cancer. TNFα has been shown to exert opposite effects on cancer cells since it activates pro-survival as well as anti-survival pathways depending on various contexts such as cell type, concentration, cell density, . A detailed understanding of TNFα signaling phenomena is crucial for understanding its pleiotropic role in malignancies and its potential as a drug target or an anticancer therapeutic. This review enlightens complex cellular signaling pathways activated by TNFα and further discusses its role in various cancers.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/1874467217666230908111754
2024-01-01
2025-01-23
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-e080923220828.html?itemId=/content/journals/cmp/10.2174/1874467217666230908111754&mimeType=html&fmt=ahah

References

  1. HanahanD. Hallmarks of cancer: New dimensions.Cancer Discov.2022121314610.1158/2159‑8290.CD‑21‑105935022204
    [Google Scholar]
  2. WangX. LinY. Tumor necrosis factor and cancer, buddies or foes?Acta Pharmacol. Sin.200829111275128810.1111/j.1745‑7254.2008.00889.x18954521
    [Google Scholar]
  3. WangL. DuF. WangX. TNF-alpha induces two distinct caspase-8 activation pathways.Cell2008133469370310.1016/j.cell.2008.03.03618485876
    [Google Scholar]
  4. WajantH. SiegmundD. TNFR1 and TNFR2 in the control of the life and death balance of macrophages.Front. Cell Dev. Biol.201979110.3389/fcell.2019.0009131192209
    [Google Scholar]
  5. SalomonB.L. LeclercM. ToselloJ. RoninE. PiaggioE. CohenJ.L. Tumor necrosis factor α and regulatory T cells in oncoimmunology.Front. Immunol.2018944410.3389/fimmu.2018.0044429593717
    [Google Scholar]
  6. AggarwalB.B. Signalling pathways of the TNF superfamily: A double-edged sword.Nat. Rev. Immunol.20033974575610.1038/nri118412949498
    [Google Scholar]
  7. TartagliaL.A. AyresT.M. WongG.H.W. GoeddelD.V. A novel domain within the 55 kd TNF receptor signals cell death.Cell199374584585310.1016/0092‑8674(93)90464‑28397073
    [Google Scholar]
  8. AshkenaziA. DixitV.M. Death receptors: Signaling and modulation.Science.199828153811305130810.1126/science.281.5381.13059721089
    [Google Scholar]
  9. KarinM. NF-kappaB as a critical link between inflammation and cancer.Cold Spring Harb. Perspect. Biol.200915a00014110.1101/cshperspect.a00014120066113
    [Google Scholar]
  10. JangD. LeeA.H. ShinH.Y. SongH.R. ParkJ.H. KangT.B. LeeS.R. YangS.H. The role of tumor necrosis factor alpha (TNF-α) in Autoimmune Disease and Current TNF-α inhibitors in therapeutics.Int. J. Mol. Sci.2021225271910.3390/ijms2205271933800290
    [Google Scholar]
  11. WajantH. PfizenmaierK. ScheurichP. Tumor necrosis factor signaling.Cell Death Differ.2003101456510.1038/sj.cdd.440118912655295
    [Google Scholar]
  12. ChanF.K.M. ChunH.J. ZhengL. SiegelR.M. BuiK.L. LenardoM.J. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling.Science.200028854752351235410.1126/science.288.5475.235110875917
    [Google Scholar]
  13. MonacoC. NanchahalJ. TaylorP. FeldmannM. Anti-TNF therapy: Past, present and future.Int. Immunol.2015271556210.1093/intimm/dxu10225411043
    [Google Scholar]
  14. WebsterJ.D. VucicD. The balance of TNF mediated pathways regulates inflammatory cell death signaling in healthy and diseased tissues.Front. Cell Dev. Biol.2020836510.3389/fcell.2020.0036532671059
    [Google Scholar]
  15. NaudéP.J.W. den BoerJ.A. LuitenP.G.M. EiselU.L.M. Tumor necrosis factor receptor cross-talk.FEBS J.2011278688889810.1111/j.1742‑4658.2011.08017.x21232019
    [Google Scholar]
  16. DempseyP.W. DoyleS.E. HeJ.Q. ChengG. The signaling adaptors and pathways activated by TNF superfamily.Cytokine Growth Factor Rev.2003143-419320910.1016/S1359‑6101(03)00021‑212787559
    [Google Scholar]
  17. TakadaH. ChenN.J. MirtsosC. SuzukiS. SuzukiN. WakehamA. MakT.W. YehW.C. Role of SODD in regulation of tumor necrosis factor responses.Mol. Cell. Biol.200323114026403310.1128/MCB.23.11.4026‑4033.200312748303
    [Google Scholar]
  18. HsuH. ShuH.B. PanM.G. GoeddelD.V. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways.Cell199684229930810.1016/S0092‑8674(00)80984‑88565075
    [Google Scholar]
  19. SchlatterR. SchmichK. LutzA. TrefzgerJ. SawodnyO. EdererM. MerfortI. Modeling the TNFα-induced apoptosis pathway in hepatocytes.PLoS One201164e1864610.1371/journal.pone.001864621533085
    [Google Scholar]
  20. BlackwellK. ZhangL. ThomasG.S. SunS. NakanoH. HabelhahH. TRAF2 phosphorylation modulates tumor necrosis factor alpha-induced gene expression and cell resistance to apoptosis.Mol. Cell. Biol.200929230331410.1128/MCB.00699‑0818981220
    [Google Scholar]
  21. LiS. WangL. DorfM.E. PKC phosphorylation of TRAF2 mediates IKKalpha/beta recruitment and K63-linked polyubiquitination.Mol. Cell2009331304210.1016/j.molcel.2008.11.02319150425
    [Google Scholar]
  22. VarfolomeevE. GoncharovT. FedorovaA.V. DynekJ.N. ZobelK. DeshayesK. FairbrotherW.J. VucicD. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation.J. Biol. Chem.200828336242952429910.1074/jbc.C80012820018621737
    [Google Scholar]
  23. EaC.K. DengL. XiaZ.P. PinedaG. ChenZ.J. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO.Mol. Cell200622224525710.1016/j.molcel.2006.03.02616603398
    [Google Scholar]
  24. LiH. KobayashiM. BlonskaM. YouY. LinX. Ubiquitination of RIP is required for tumor necrosis factor alpha-induced NF-kappaB activation.J. Biol. Chem.200628119136361364310.1074/jbc.M60062020016543241
    [Google Scholar]
  25. VanlangenakkerN. BertrandM.J.M. BogaertP. VandenabeeleP. Vanden BergheT. TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members.Cell Death Dis.2011211e23010.1038/cddis.2011.11122089168
    [Google Scholar]
  26. WertzI.E. O’RourkeK.M. ZhouH. EbyM. AravindL. SeshagiriS. WuP. WiesmannC. BakerR. BooneD.L. MaA. KooninE.V. DixitV.M. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling.Nature.2004430700069469910.1038/nature0279415258597
    [Google Scholar]
  27. LademannU. KallunkiT. JäätteläM. A20 zinc finger protein inhibits TNF-induced apoptosis and stress response early in the signaling cascades and independently of binding to TRAF2 or 14-3-3 proteins.Cell Death Differ.20018326527210.1038/sj.cdd.440080511319609
    [Google Scholar]
  28. HaoS. D. Baltimore D, RNA splicing regulates the temporal order of TNF-alpha-induced gene expression.Proc. Natl. Acad. Sci.2013110119341193910.1073/pnas.130999011023812748
    [Google Scholar]
  29. EnesaK. ZakkarM. ChaudhuryH. LuongA. RawlinsonL. MasonJ.C. HaskardD.O. DeanJ.L. EvansP.C. NF-kappaB suppression by the deubiquitinating enzyme Cezanne: A novel negative feedback loop in pro-inflammatory signaling.J. Biol. Chem.2008283117036704510.1074/jbc.M70869020018178551
    [Google Scholar]
  30. KovalenkoA. Chable-BessiaC. CantarellaG. IsraëlA. WallachD. CourtoisG. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination.Nature2003424695080180510.1038/nature0180212917691
    [Google Scholar]
  31. TrompoukiE. HatzivassiliouE. TsichritzisT. FarmerH. AshworthA. MosialosG. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members.Nature2003424695079379610.1038/nature0180312917689
    [Google Scholar]
  32. JonoH. LimJ.H. ChenL.F. XuH. TrompoukiE. PanZ.K. MosialosG. LiJ.D. NF-kappaB is essential for induction of CYLD, the negative regulator of NF-kappaB: evidence for a novel inducible autoregulatory feedback pathway.J. Biol. Chem.200427935361713617410.1074/jbc.M40663820015226292
    [Google Scholar]
  33. SunL. DengL. EaC.K. XiaZ.P. ChenZ.J. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes.Mol. Cell200414328930110.1016/S1097‑2765(04)00236‑915125833
    [Google Scholar]
  34. ZhouH. WertzI. O’RourkeK. UltschM. SeshagiriS. EbyM. XiaoW. DixitV.M. Bcl10 activates the NF-κB pathway through ubiquitination of NEMO.Nature2004427697016717110.1038/nature0227314695475
    [Google Scholar]
  35. BlonskaM. ShambharkarP.B. KobayashiM. ZhangD. SakuraiH. SuB. LinX. TAK1 is recruited to the tumor necrosis factor-alpha (TNF-alpha) receptor 1 complex in a receptor-interacting protein (RIP)-dependent manner and cooperates with MEKK3 leading to NF-kappaB activation.J. Biol. Chem.200528052430564306310.1074/jbc.M50780720016260783
    [Google Scholar]
  36. LingL. CaoZ. GoeddelD.V. NF-κB-inducing kinase activates IKK-α by phosphorylation of Ser-176.Proc. Natl. Acad. Sci.19989573792379710.1073/pnas.95.7.37929520446
    [Google Scholar]
  37. RazaniB. ZarnegarB. YtterbergA.J. ShibaT. DempseyP.W. WareC.F. LooJ.A. ChengG. Negative feedback in noncanonical NF-kappaB signaling modulates NIK stability through IKKalpha-mediated phosphorylation.Sci. Signal.20103123ra4110.1126/scisignal.200077820501937
    [Google Scholar]
  38. NakanoH. ShindoM. SakonS. NishinakaS. MiharaM. YagitaH. OkumuraK. Differential regulation of IκB kinase α and β by two upstream kinases, NF-κB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1.Proc. Natl. Acad. Sci.19989573537354210.1073/pnas.95.7.35379520401
    [Google Scholar]
  39. MahoneyD.J. CheungH.H. MradR.L. PlenchetteS. SimardC. EnwereE. AroraV. MakT.W. LacasseE.C. WaringJ. KornelukR.G. Both cIAP1 and cIAP2 regulate TNFα-mediated NF-κB activation.Proc. Natl. Acad. Sci.200810533117781178310.1073/pnas.071112210518697935
    [Google Scholar]
  40. ChenL.F. GreeneW.C. Shaping the nuclear action of NF-κB.Nat. Rev. Mol. Cell Biol.20045539240110.1038/nrm136815122352
    [Google Scholar]
  41. ChiaoP.J. MiyamotoS. VermaI.M. Autoregulation of I kappa B alpha activity.Proc. Natl. Acad. Sci.1994911283210.1073/pnas.91.1.288278379
    [Google Scholar]
  42. SakuraiH. ChibaH. MiyoshiH. SugitaT. ToriumiW. IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain.J. Biol. Chem.199927443303533035610.1074/jbc.274.43.3035310521409
    [Google Scholar]
  43. ZhongH. SuYangH. Erdjument-BromageH. TempstP. GhoshS. The transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanism.Cell199789341342410.1016/S0092‑8674(00)80222‑69150141
    [Google Scholar]
  44. MüllerG. AyoubM. StorzP. RenneckeJ. FabbroD. PfizenmaierK. PKC zeta is a molecular switch in signal transduction of TNF-alpha, bifunctionally regulated by ceramide and arachidonic acid.EMBO J.19951491961196910.1002/j.1460‑2075.1995.tb07188.x7744003
    [Google Scholar]
  45. WangD. WesterheideS.D. HansonJ.L. BaldwinA.S.Jr Tumor necrosis factor alpha-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II.J. Biol. Chem.200027542325923259710.1074/jbc.M00135820010938077
    [Google Scholar]
  46. ZhongH. VollR.E. GhoshS. Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300.Mol. Cell19981566167110.1016/S1097‑2765(00)80066‑09660950
    [Google Scholar]
  47. DelhalleS. DeregowskiV. BenoitV. MervilleM.P. BoursV. NF-κB-dependent MnSOD expression protects adenocarcinoma cells from TNF-α-induced apoptosis.Oncogene.200221243917392410.1038/sj.onc.120548912032830
    [Google Scholar]
  48. SakonS. XueX. TakekawaM. SasazukiT. OkazakiT. KojimaY. PiaoJ.H. YagitaH. OkumuraK. DoiT. NakanoH. NF- B inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death.EMBO J.200322153898390910.1093/emboj/cdg37912881424
    [Google Scholar]
  49. PhamC.G. BubiciC. ZazzeroniF. PapaS. JonesJ. AlvarezK. JayawardenaS. De SmaeleE. CongR. BeaumontC. TortiF.M. TortiS.V. FranzosoG. Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species.Cell2004119452954210.1016/j.cell.2004.10.01715537542
    [Google Scholar]
  50. TangG. MinemotoY. DiblingB. PurcellN.H. LiZ. KarinM. LinA. Inhibition of JNK activation through NF-κB target genes.Nature.2001414686131331710.1038/3510456811713531
    [Google Scholar]
  51. MicheauO. LensS. GaideO. AlevizopoulosK. TschoppJ. NF-kappaB signals induce the expression of c-FLIP.Mol. Cell. Biol.200121165299530510.1128/MCB.21.16.5299‑5305.200111463813
    [Google Scholar]
  52. CatzS.D. JohnsonJ.L. Transcriptional regulation of bcl-2 by nuclear factor κB and its significance in prostate cancer.Oncogene200120507342735110.1038/sj.onc.120492611704864
    [Google Scholar]
  53. LeeS.Y. ReichlinA. SantanaA. SokolK.A. NussenzweigM.C. ChoiY. TRAF2 is essential for JNK but not NF-kappaB activation and regulates lymphocyte proliferation and survival.Immunity.19977570371310.1016/S1074‑7613(00)80390‑89390693
    [Google Scholar]
  54. SongH.Y. RégnierC.H. KirschningC.J. GoeddelD.V. RotheM. Tumor necrosis factor (TNF)-mediated kinase cascades: Bifurcation of nuclear factor-kappaB and c-jun N-terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2.Proc. Natl. Acad. Sci.1997941897929796
    [Google Scholar]
  55. ShiC.S. KehrlJ.H. Activation of stress-activated protein kinase/c-Jun N-terminal kinase, but not NF-kappaB, by the tumor necrosis factor (TNF) receptor 1 through a TNF receptor-associated factor 2- and germinal center kinase related-dependent pathway.J. Biol. Chem.199727251321023210710.1074/jbc.272.51.321029405407
    [Google Scholar]
  56. YuasaT. OhnoS. KehrlJ.H. KyriakisJ.M. Tumor necrosis factor signaling to stress-activated protein kinase (SAPK)/Jun NH2-terminal kinase (JNK) and p38. Germinal center kinase couples TRAF2 to mitogen-activated protein kinase/ERK kinase kinase 1 and SAPK while receptor interacting protein associates with a mitogen-activated protein kinase kinase kinase upstream of MKK6 and p38.J. Biol. Chem.199827335226812269210.1074/jbc.273.35.226819712898
    [Google Scholar]
  57. XiaY. MakrisC. SuB. LiE. YangJ. NemerowG.R. KarinM. MEK kinase 1 is critically required for c-Jun N-terminal kinase activation by proinflammatory stimuli and growth factor-induced cell migration.Proc. Natl. Acad. Sci.200097105243524810.1073/pnas.97.10.524310805784
    [Google Scholar]
  58. KimJ.W. JoeC.O. ChoiE.J. Role of receptor-interacting protein in tumor necrosis factor-alpha -dependent MEKK1 activation.J. Biol. Chem.200127629270642707010.1074/jbc.M00936420011369754
    [Google Scholar]
  59. SiowY.L. KalmarG.B. SangheraJ.S. TaiG. OhS.S. PelechS.L. Identification of two essential phosphorylated threonine residues in the catalytic domain of Mekk1. Indirect activation by Pak3 and protein kinase C.J. Biol. Chem.1997272127586759410.1074/jbc.272.12.75869065412
    [Google Scholar]
  60. ZhouL. TanA. IasvovskaiaS. LiJ. LinA. HershensonM.B. Ras and mitogen-activated protein kinase kinase kinase-1 coregulate activator protein-1- and nuclear factor-kappaB-mediated gene expression in airway epithelial cells.Am. J. Respir. Cell Mol. Biol.200328676276910.1165/rcmb.2002‑0261OC12600818
    [Google Scholar]
  61. IchijoH. NishidaE. IrieK. DijkeP. SaitohM. MoriguchiT. TakagiM. MatsumotoK. MiyazonoK. GotohY. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways.Science19972755296909410.1126/science.275.5296.908974401
    [Google Scholar]
  62. ParkH.S. KimM.S. HuhS.H. ParkJ. ChungJ. KangS.S. ChoiE.J. Akt (protein kinase B) negatively regulates SEK1 by means of protein phosphorylation.J. Biol. Chem.200227742573257810.1074/jbc.M11029920011707464
    [Google Scholar]
  63. De SmaeleE. ZazzeroniF. PapaS. NguyenD.U. JinR. JonesJ. CongR. FranzosoG. Induction of gadd45β by NF-κB downregulates pro-apoptotic JNK signalling.Nature2001414686130831310.1038/3510456011713530
    [Google Scholar]
  64. YangZ. SongL. HuangC. Gadd45 proteins as critical signal transducers linking NF-kappaB to MAPK cascades.Curr. Cancer Drug. Targets.20099891593010.2174/15680090979019238320025601
    [Google Scholar]
  65. LiuJ. MinemotoY. LinA. c-Jun N-terminal protein kinase 1 (JNK1), but not JNK2, is essential for tumor necrosis factor alpha-induced c-Jun kinase activation and apoptosis.Mol. Cell. Biol.20042424108441085610.1128/MCB.24.24.10844‑10856.200415572687
    [Google Scholar]
  66. DengY. RenX. YangL. LinY. WuX. A JNK-dependent pathway is required for TNFalpha-induced apoptosis.Cell.20031151617010.1016/S0092‑8674(03)00757‑814532003
    [Google Scholar]
  67. AhmedN. ZengM. SinhaI. PolinL. WeiW.Z. RathinamC. FlavellR. MassoumiR. VenuprasadK. The E3 ligase Itch and deubiquitinase Cyld act together to regulate Tak1 and inflammation.Nat. Immunol.201112121176118310.1038/ni.215722057290
    [Google Scholar]
  68. VenturaJ.J. CogswellP. FlavellR.A. BaldwinA.S.Jr DavisR.J. JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species.Genes Dev.200418232905291510.1101/gad.122300415545623
    [Google Scholar]
  69. YamamotoK. IchijoH. KorsmeyerS.J. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M.Mol. Cell. Biol.199919128469847810.1128/MCB.19.12.846910567572
    [Google Scholar]
  70. SchievellaA.R. ChenJ.H. GrahamJ.R. LinL.L. MADD, a novel death domain protein that interacts with the type 1 tumor necrosis factor receptor and activates mitogen-activated protein kinase.J. Biol. Chem.199727218120691207510.1074/jbc.272.18.120699115275
    [Google Scholar]
  71. HildtE. OessS. Identification of Grb2 as a novel binding partner of tumor necrosis factor (TNF) receptor I.J. Exp. Med.1999189111707171410.1084/jem.189.11.170710359574
    [Google Scholar]
  72. KolchW. Meaningful relationships: The regulation of the Ras/Raf/MEK/ERK pathway by protein interactions.Biochem. J.2000351228930510.1042/bj351028911023813
    [Google Scholar]
  73. RushworthL.K. HindleyA.D. O’NeillE. KolchW. Regulation and role of Raf-1/B-Raf heterodimerization.Mol. Cell. Biol.20062662262227210.1128/MCB.26.6.2262‑2272.200616508002
    [Google Scholar]
  74. ÜnalE.B. UhlitzF. BlüthgenN. A compendium of ERK targets.FEBS Lett.2017591172607261510.1002/1873‑3468.1274028675784
    [Google Scholar]
  75. PitsonS.M. XiaP. LeclercqT.M. MorettiP.A.B. ZebolJ.R. LynnH.E. WattenbergB.W. VadasM.A. Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signalling.J. Exp. Med.20052011495410.1084/jem.2004055915623571
    [Google Scholar]
  76. AlvarezS.E. HarikumarK.B. HaitN.C. AllegoodJ. StrubG.M. KimE.Y. MaceykaM. JiangH. LuoC. KordulaT. MilstienS. SpiegelS. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2.Nature201046573011084108810.1038/nature0912820577214
    [Google Scholar]
  77. PucciB. IndelicatoM. ParadisiV. RealiV. PellegriniL. AventaggiatoM. KarpinichN.O. FiniM. RussoM.A. FarberJ.L. TafaniM. ERK-1 MAP kinase prevents TNF-induced apoptosis through bad phosphorylation and inhibition of Bax translocation in HeLa Cells.J. Cell. Biochem.200910851166117410.1002/jcb.2234519777442
    [Google Scholar]
  78. RaingeaudJ. WhitmarshA.J. BarrettT. DérijardB. DavisR.J. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway.Mol. Cell. Biol.19961631247125510.1128/MCB.16.3.12478622669
    [Google Scholar]
  79. LeeT.H. HuangQ. OikemusS. ShankJ. VenturaJ.J. CussonN. VaillancourtR.R. SuB. DavisR.J. KelliherM.A. The death domain kinase RIP1 is essential for tumor necrosis factor alpha signaling to p38 mitogen-activated protein kinase.Mol. Cell. Biol.200323228377838510.1128/MCB.23.22.8377‑8385.200314585994
    [Google Scholar]
  80. LiuH. NishitohH. IchijoH. KyriakisJ.M. Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin.Mol. Cell. Biol.20002062198220810.1128/MCB.20.6.2198‑2208.200010688666
    [Google Scholar]
  81. SakuraiH. MiyoshiH. MizukamiJ. SugitaT. Phosphorylation-dependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1.FEBS Lett.20004742-314114510.1016/S0014‑5793(00)01588‑X10838074
    [Google Scholar]
  82. Gómez-MuñozA. KongJ.Y. ParharK. WangS.W. GangoitiP. GonzálezM. EivemarkS. SalhB. DuronioV. SteinbrecherU.P. Ceramide-1-phosphate promotes cell survival through activation of the phosphatidylinositol 3-kinase/protein kinase B pathway.FEBS Lett.2005579173744375010.1016/j.febslet.2005.05.06715978590
    [Google Scholar]
  83. Nidai OzesO. MayoL.D. GustinJ.A. PfefferS.R. PfefferL.M. DonnerD.B. NF-κB activation by tumour necrosis factor requires the Akt serine–threonine kinase.Nature19994016748828510.1038/4346610485710
    [Google Scholar]
  84. BurowM.E. WeldonC.B. MelnikL.I. DuongB.N. Collins-BurowB.M. BeckmanB.S. McLachlanJ.A. PI3-K/AKT regulation of NF-kappaB signaling events in suppression of TNF-induced apoptosis.Biochem. Biophys. Res. Commun.2000271234234510.1006/bbrc.2000.262610799299
    [Google Scholar]
  85. DattaS.R. DudekH. TaoX. MastersS. FuH. GotohY. GreenbergM.E. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery.Cell199791223124110.1016/S0092‑8674(00)80405‑59346240
    [Google Scholar]
  86. ZhengL. BidereN. StaudtD. CubreA. OrensteinJ. ChanF.K. LenardoM. Competitive control of independent programs of tumor necrosis factor receptor-induced cell death by TRADD and RIP1.Mol. Cell. Biol.20062693505351310.1128/MCB.26.9.3505‑3513.200616611992
    [Google Scholar]
  87. WajantH. ScheurichP. TNFR1-induced activation of the classical NF-κB pathway.FEBS J.2011278686287610.1111/j.1742‑4658.2011.08015.x21232017
    [Google Scholar]
  88. Van HerrewegheF. FestjensN. DeclercqW. VandenabeeleP. Tumor necrosis factor-mediated cell death: To break or to burst, that’s the question.Cell. Mol. Life Sci.201067101567157910.1007/s00018‑010‑0283‑020198502
    [Google Scholar]
  89. JeongE.J. BangS. LeeT.H. ParkY.I. SimW.S. KimK.S. The solution structure of FADD death domain. Structural basis of death domain interactions of Fas and FADD.J. Biol. Chem.199927423163371634210.1074/jbc.274.23.1633710347191
    [Google Scholar]
  90. HarperN. HughesM. MacFarlaneM. CohenG.M. Fas-associated death domain protein and caspase-8 are not recruited to the tumor necrosis factor receptor 1 signaling complex during tumor necrosis factor-induced apoptosis.J. Biol. Chem.200327828255342554110.1074/jbc.M30339920012721308
    [Google Scholar]
  91. LinY. DevinA. RodriguezY. LiuZ. Cleavage of the death domain kinase RIP by Caspase-8 prompts TNF-induced apoptosis.Genes Dev.199913192514252610.1101/gad.13.19.251410521396
    [Google Scholar]
  92. LawrenceC.P. ChowS.C. FADD deficiency sensitises Jurkat T cells to TNF-α-dependent necrosis during activation-induced cell death.FEBS Lett.2005579286465647210.1016/j.febslet.2005.10.04116289096
    [Google Scholar]
  93. GaoM. LabudaT. XiaY. GallagherE. FangD. LiuY.C. KarinM. Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch.Science2004306569427127510.1126/science.109941415358865
    [Google Scholar]
  94. Shearwin-WhyattL.M. HarveyN.L. KumarS. Subcellular localization and CARD-dependent oligomerization of the death adaptor RAIDD.Cell Death Differ.20007215516510.1038/sj.cdd.440063210713730
    [Google Scholar]
  95. SunX. LeeJ. NavasT. BaldwinD.T. StewartT.A. DixitV.M. RIP3, a novel apoptosis-inducing kinase.J. Biol. Chem.199927424168711687510.1074/jbc.274.24.1687110358032
    [Google Scholar]
  96. PasparakisM. VandenabeeleP. Necroptosis and its role in inflammation.Nature2015517753431132010.1038/nature1419125592536
    [Google Scholar]
  97. HeS. WangL. MiaoL. WangT. DuF. ZhaoL. WangX. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α.Cell.200913761100111110.1016/j.cell.2009.05.02119524512
    [Google Scholar]
  98. LinY. ChoksiS. ShenH.M. YangQ.F. HurG.M. KimY.S. TranJ.H. NedospasovS.A. LiuZ. Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation.J. Biol. Chem.200427911108221082810.1074/jbc.M31314120014701813
    [Google Scholar]
  99. SilkeJ. RickardJ.A. GerlicM. The diverse role of RIP kinases in necroptosis and inflammation.Nat. Immunol.201516768969710.1038/ni.320626086143
    [Google Scholar]
  100. DeclercqW. Vanden BergheT. VandenabeeleP. RIP kinases at the crossroads of cell death and survival.Cell2009138222923210.1016/j.cell.2009.07.00619632174
    [Google Scholar]
  101. MoquinD.M. McQuadeT. ChanF.K.M. CYLD deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate kinase activation and programmed necrosis.PLoS One2013810e7684110.1371/journal.pone.007684124098568
    [Google Scholar]
  102. LorkM. VerhelstK. BeyaertR. CYLD, A20 and OTULIN deubiquitinases in NF-κB signaling and cell death: So similar, yet so different.Cell Death Differ.20172471172118310.1038/cdd.2017.4628362430
    [Google Scholar]
  103. TanzerM.C. TripaydonisA. WebbA.I. YoungS.N. VargheseL.N. HallC. AlexanderW.S. HildebrandJ.M. SilkeJ. MurphyJ.M. Necroptosis signalling is tuned by phosphorylation of MLKL residues outside the pseudokinase domain activation loop.Biochem. J.2015471225526510.1042/BJ2015067826283547
    [Google Scholar]
  104. PreyatN. RossiM. KersJ. ChenL. BertinJ. GoughP.J. Le MoineA. RongvauxA. Van GoolF. LeoO. Intracellular nicotinamide adenine dinucleotide promotes TNF-induced necroptosis in a sirtuin-dependent manner.Cell Death Differ.2016231294010.1038/cdd.2015.6026001219
    [Google Scholar]
  105. ChenW. WuJ. LiL. ZhangZ. RenJ. LiangY. ChenF. YangC. ZhouZ. Sean SuS. ZhengX. ZhangZ. ZhongC.Q. WanH. XiaoM. LinX. FengX.H. HanJ. Ppm1b negatively regulates necroptosis through dephosphorylating Rip3.Nat. Cell Biol.201517443444410.1038/ncb312025751141
    [Google Scholar]
  106. LeeE.W. KimJ.H. AhnY.H. SeoJ. KoA. JeongM. KimS.J. RoJ.Y. ParkK.M. LeeH.W. ParkE.J. ChunK.H. SongJ. Ubiquitination and degradation of the FADD adaptor protein regulate death receptor-mediated apoptosis and necroptosis.Nat. Commun.20123197810.1038/ncomms198122864571
    [Google Scholar]
  107. DondelingerY. Jouan-LanhouetS. DivertT. TheatreE. BertinJ. GoughP.J. GiansantiP. HeckA.J.R. DejardinE. VandenabeeleP. BertrandM.J.M. NF-κB-independent role of IKKα/IKKβ in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling.Mol. Cell2015601637610.1016/j.molcel.2015.07.03226344099
    [Google Scholar]
  108. TayS. HugheyJ.J. LeeT.K. LipniackiT. QuakeS.R. CovertM.W. Single-cell NF-κB dynamics reveal digital activation and analogue information processing.Nature2010466730326727110.1038/nature0914520581820
    [Google Scholar]
  109. ChenY.M. ChiangW.C. LinS.L. WuK.D. TsaiT.J. HsiehB.S. Dual regulation of tumor necrosis factor-α-induced CCL2/monocyte chemoattractant protein-1 expression in vascular smooth muscle cells by nuclear factor-kappaB and activator protein-1: modulation by type III phosphodiesterase inhibition.J. Pharmacol. Exp. Ther.2004309397898610.1124/jpet.103.06262014978197
    [Google Scholar]
  110. ShaulianE. KarinM. AP-1 in cell proliferation and survival.Oncogene200120192390240010.1038/sj.onc.120438311402335
    [Google Scholar]
  111. van DamH. WilhelmD. HerrI. SteffenA. HerrlichP. AngelP. ATF-2 is preferentially activated by stress-activated protein kinases to mediate c-jun induction in response to genotoxic agents.EMBO J.19951481798181110.1002/j.1460‑2075.1995.tb07168.x7737130
    [Google Scholar]
  112. De PlaenI.G. HanX.B. LiuX. HsuehW. GhoshS. MayM.J. Lipopolysaccharide induces CXCL2/macrophage inflammatory protein-2 gene expression in enterocytes via NF-kappaB activation: Independence from endogenous TNF-α and platelet-activating factor.Immunology2006118215316310.1111/j.1365‑2567.2006.02344.x16771850
    [Google Scholar]
  113. BzowskaM. JuraN. LassakA. BlackR.A. BeretaJ. Tumour necrosis factor-α stimulates expression of TNF-α converting enzyme in endothelial cells.Eur. J. Biochem.2004271132808282010.1111/j.1432‑1033.2004.04215.x15206946
    [Google Scholar]
  114. JanbandhuV.C. SinghA.K. MukherjiA. KumarV. p65 Negatively regulates transcription of the cyclin E gene.J. Biol. Chem.201028523174531746410.1074/jbc.M109.05897420385564
    [Google Scholar]
  115. McCrackenS.A. HadfieldK. RahimiZ. GalleryE.D. MorrisJ.M. NF-κB-regulated suppression of T-bet in T cells represses Th1 immune responses in pregnancy.Eur. J. Immunol.20073751386139610.1002/eji.20063632217407192
    [Google Scholar]
  116. ChenG.Y. SakumaK. KannagiR. Significance of NF-kappaB/GATA axis in tumor necrosis factor-α-induced expression of 6-sulfated cell recognition glycans in human T-lymphocytes.J. Biol. Chem.200828350345633457010.1074/jbc.M80427120018849568
    [Google Scholar]
  117. TanabeK. Matsushima-NishiwakiR. YamaguchiS. IidaH. DohiS. KozawaO. Mechanisms of tumor necrosis factor-α-induced interleukin-6 synthesis in glioma cells.J. Neuroinflammation.2010711610.1186/1742‑2094‑7‑1620205746
    [Google Scholar]
  118. CaoX.M. GuyG.R. SukhatmeV.P. TanY.H. Regulation of the Egr-1 gene by tumor necrosis factor and interferons in primary human fibroblasts.J. Biol. Chem.199226721345134910.1016/S0021‑9258(18)48437‑21730654
    [Google Scholar]
  119. ShinS.Y. KimJ.H. BakerA. LimY. LeeY.H. Transcription factor Egr-1 is essential for maximal matrix metalloproteinase-9 transcription by tumor necrosis factor alpha.Mol. Cancer Res.20108450751910.1158/1541‑7786.MCR‑09‑045420332214
    [Google Scholar]
  120. Burke-GaffneyA. HellewellP.G. Tumour necrosis factor-α-induced ICAM-1 expression in human vascular endothelial and lung epithelial cells: Modulation by tyrosine kinase inhibitors.Br. J. Pharmacol.199611961149115810.1111/j.1476‑5381.1996.tb16017.x8937718
    [Google Scholar]
  121. Radeff-HuangJ. SeasholtzT.M. ChangJ.W. SmithJ.M. WalshC.T. BrownJ.H. Tumor necrosis factor-α-stimulated cell proliferation is mediated through sphingosine kinase-dependent Akt activation and cyclin D expression.J. Biol. Chem.2007282286387010.1074/jbc.M60169820017114809
    [Google Scholar]
  122. DonatoN.J. PerezM. Tumor necrosis factor-induced apoptosis stimulates p53 accumulation and p21WAF1 proteolysis in ME-180 cells.J. Biol. Chem.199827395067507210.1074/jbc.273.9.50679478957
    [Google Scholar]
  123. ChenC.C. SunY.T. ChenJ.J. ChiuK.T. TNF-α-induced cyclooxygenase-2 expression in human lung epithelial cells: involvement of the phospholipase C-γ 2, protein kinase C-α, tyrosine kinase, NF-κ B-inducing kinase, and I-κ B kinase 1/2 pathway.J. Immunol.200016552719272810.4049/jimmunol.165.5.271910946303
    [Google Scholar]
  124. OsawaY. NagakiM. BannoY. BrennerD.A. AsanoT. NozawaY. MoriwakiH. NakashimaS. Tumor necrosis factor alpha-induced interleukin-8 production via NF-kappaB and phosphatidylinositol 3-kinase/Akt pathways inhibits cell apoptosis in human hepatocytes.Infect. Immun.200270116294630110.1128/IAI.70.11.6294‑6301.200212379708
    [Google Scholar]
  125. KorthagenN.M. van BilsenK. SwagemakersS.M.A. van de PeppelJ. BastiaansJ. van der SpekP.J. van HagenP.M. DikW.A. Retinal pigment epithelial cells display specific transcriptional responses upon TNF-α stimulation.Br. J. Ophthalmol.201599570070410.1136/bjophthalmol‑2014‑30630925680620
    [Google Scholar]
  126. CruceriuD. BaldasiciO. BalacescuO. Berindan-NeagoeI. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches.Cell Oncol.202043111810.1007/s13402‑019‑00489‑131900901
    [Google Scholar]
  127. Mahdavi SharifP. JabbariP. RaziS. Keshavarz-FathiM. RezaeiN. Importance of TNF-alpha and its alterations in the development of cancers.Cytokine202013015506610.1016/j.cyto.2020.15506632208336
    [Google Scholar]
  128. ZhouX.L. FanW. YangG. YuM.X. The clinical significance of PR, ER, NF- κ B, and TNF- α in breast cancer.Dis. Markers201420141710.1155/2014/49458124864130
    [Google Scholar]
  129. DuL.C. GaoR. Role of TNF-α -308G/A gene polymorphism in gastric cancer risk: A case control study and meta-analysis.Turk. J. Gastroenterol.201728427228210.5152/tjg.2017.1674128699601
    [Google Scholar]
  130. GuptaM. BabicA. BeckA.H. TerryK. TNF-α expression, risk factors, and inflammatory exposures in ovarian cancer: evidence for an inflammatory pathway of ovarian carcinogenesis?Hum. Pathol.201654829110.1016/j.humpath.2016.03.00627068525
    [Google Scholar]
  131. KemperO. DerréJ. CherifD. EngelmannH. WallachD. BergerR. The gene for the type II (p75) tumor necrosis factor receptor (TNF-RII) is localized on band 1p36.2-p36.3.Hum. Genet.199187562362410.1007/BF002090261655619
    [Google Scholar]
  132. Al-LamkiR.S. MayadasT.N. TNF receptors: Signaling pathways and contribution to renal dysfunction.Kidney Int.201587228129610.1038/ki.2014.28525140911
    [Google Scholar]
  133. GubernatorovaE.O. PolinovaA.I. PetropavlovskiyM.M. NamakanovaO.A. MedvedovskayaA.D. ZvartsevR.V. TeleginG.B. DrutskayaM.S. NedospasovS.A. Dual role of TNF-alpha and LTα in carcinogenesis as implicated by studies in mice.Cancers.2021138177510.3390/cancers1308177533917839
    [Google Scholar]
  134. TianT. WangM. MaD. TNF-α, a good or bad factor in hematological diseases?Stem Cell Investig.201411227358858
    [Google Scholar]
  135. CaiX. CaoC. LiJ. ChenF. ZhangS. LiuB. ZhangW. ZhangX. YeL. Inflammatory factor TNF-α promotes the growth of breast cancer via the positive feedback loop of TNFR1/NF-κB (and/or p38)/p-STAT3/HBXIP/TNFR1.Oncotarget.2017835583385835210.18632/oncotarget.1687328938560
    [Google Scholar]
  136. Martínez-RezaI. DíazL. García-BecerraR. Preclinical and clinical aspects of TNF-α and its receptors TNFR1 and TNFR2 in breast cancer.J. Biomed. Sci.20172419010.1186/s12929‑017‑0398‑929202842
    [Google Scholar]
  137. AnL. DouX. WangM. LuoW. MaQ. LiuX. Involvement of TNF-alpha and IL-10 in breast cancer and patient survival.Trop. J. Pharm. Res.202019102033203910.4314/tjpr.v19i10.2
    [Google Scholar]
  138. LiuW. LuX. ShiP. YangG. ZhouZ. LiW. MaoX. JiangD. ChenC. TNF-α increases breast cancer stem-like cells through up-regulating TAZ expression via the non-canonical NF-κB pathway.Sci. Rep.2020101180410.1038/s41598‑020‑58642‑y32019974
    [Google Scholar]
  139. MercoglianoM.F. BruniS. ElizaldeP.V. SchillaciR. Tumor necrosis factor α blockade: An opportunity to tackle breast cancer.Front. Oncol.20201058410.3389/fonc.2020.0058432391269
    [Google Scholar]
  140. ZhaoP. ZhangZ. TNF-α promotes colon cancer cell migration and invasion by upregulating TROP-2.Oncol. Lett.20181533820382710.3892/ol.2018.773529467899
    [Google Scholar]
  141. PakdemirliA. KocalG.C. TNF-alpha induces pro-inflammatory factors in colorectal cancer microenvironment.Medical Science and Discovery20207446646910.36472/msd.v7i4.368
    [Google Scholar]
  142. MansoB.A. KrullJ.E. GwinK.A. LothertP.K. WelchB.M. NovakA.J. ParikhS.A. KayN.E. MedinaK.L. Chronic lymphocytic leukemia B-cell-derived TNFα impairs bone marrow myelopoiesis.iScience202124110199410.1016/j.isci.2020.10199433458625
    [Google Scholar]
  143. ShenN. LiuS. CuiJ. LiQ. YouY. ZhongZ. ChengF. GuoA.Y. ZouP. YuanG. ZhuX. Tumor necrosis factor α knockout impaired tumorigenesis in chronic myeloid leukemia cells partly by metabolism modification and miRNA regulation.OncoTargets Ther.2019122355236410.2147/OTT.S19753531015764
    [Google Scholar]
  144. GuoG. GongK. AliS. AliN. ShallwaniS. HatanpaaK.J. PanE. MickeyB. BurmaS. WangD.H. KesariS. SarkariaJ.N. ZhaoD. HabibA.A. A TNF–JNK–Axl–ERK signaling axis mediates primary resistance to EGFR inhibition in glioblastoma.Nat. Neurosci.20172081074108410.1038/nn.458428604685
    [Google Scholar]
  145. WeiQ. SinghO. EkinciC. GillJ. LiM. MamatjanY. KarimiS. BundaS. MansouriS. AldapeK. ZadehG. TNFα secreted by glioma associated macrophages promotes endothelial activation and resistance against anti-angiogenic therapy.Acta Neuropathol. Commun.2021916710.1186/s40478‑021‑01163‑033853689
    [Google Scholar]
  146. ZhangC. ZhuM. WangW. ChenD. ChenS. ZhengH. TNF-α promotes tumor lymph angiogenesis in head and neck squamous cell carcinoma through regulation of ERK3.Transl. Cancer Res.2019862439244810.21037/tcr.2019.09.6035116996
    [Google Scholar]
  147. SelimovicD. WahlR. RuizE. AslamR. FlanaganT. HassanS.Y. SantourlidisS. HaikelY. FriedlanderP. MegahedM. KandilE. HassanM. Tumor necrosis factor-α triggers opposing signals in head and neck squamous cell carcinoma and induces apoptosis via mitochondrial- and non-mitochondrial-dependent pathways.Int. J. Oncol.20195561324133810.3892/ijo.2019.490031638203
    [Google Scholar]
  148. MontfortA. ColaciosC. LevadeT. Andrieu-AbadieN. MeyerN. SéguiB. The TNF-alpha paradox in cancer progression and immunotherapy.Front. Immunol.201910181810.3389/fimmu.2019.0181831417576
    [Google Scholar]
  149. CalipG.S. PatelP.R. AdimadhyamS. XingS. WuZ. SweissK. SchumockG.T. LeeT.A. ChiuB.C.H. Tumor necrosis factor-alpha inhibitors and risk of non-Hodgkin lymphoma in a cohort of adults with rheumatologic conditions.Int. J. Cancer201814351062107110.1002/ijc.3140729603214
    [Google Scholar]
  150. MoriT. SatoY. MiyamotoK. KobayashiT. ShimizuT. KanagawaH. KatsuyamaE. FujieA. HaoW. TandoT. IwasakiR. KawanaH. MoriokaH. MatsumotoM. SayaH. ToyamaY. MiyamotoT. TNFα promotes osteosarcoma progression by maintaining tumor cells in an undifferentiated state.Oncogene201433334236424110.1038/onc.2013.54524336323
    [Google Scholar]
  151. MaolakeA. IzumiK. NatsagdorjA. IwamotoH. KadomotoS. MakinoT. NaitoR. ShigeharaK. KadonoY. HiratsukaK. WufuerG. NastiukK.L. MizokamiA. Tumor necrosis factor‐α induces prostate cancer cell migration in lymphatic metastasis through CCR 7 upregulation.Cancer Sci.201810951524153110.1111/cas.1358629575464
    [Google Scholar]
  152. DalaverisE. KerenidiT. Katsabeki-KatsafliA. KiropoulosT. TanouK. GourgoulianisK.I. KostikasK. VEGF, TNF-α and 8-isoprostane levels in exhaled breath condensate and serum of patients with lung cancer.Lung Cancer200964221922510.1016/j.lungcan.2008.08.01518845357
    [Google Scholar]
  153. Coşkun í-ztopuz í-zkanF. Determination of IL-6, TNF-α and VEGF levels in the serums of patients with colorectal cancer.Cell. Mol. Biol.20176359710110.14715/cmb/2017.63.5.1828719352
    [Google Scholar]
  154. SunM.D. ZhengY.Q. WangL.P. ZhaoH.T. YangS. Long noncoding RNA UCA1 promotes cell proliferation, migration and invasion of human leukemia cells via sponging miR-126.Eur. Rev. Med. Pharmacol. Sci.20182282233224529762824
    [Google Scholar]
  155. AguayoA. KantarjianH. ManshouriT. GidelC. EsteyE. ThomasD. KollerC. EstrovZ. O’BrienS. KeatingM. FreireichE. AlbitarM. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes.Blood20009662240224510.1182/blood.V96.6.224010979972
    [Google Scholar]
  156. SahibzadaH.A. KhurshidZ. KhanR.S. NaseemM. SiddiqueK.M. MaliM. ZafarM.S. Salivary IL-8, IL-6 and TNF-α as potential diagnostic biomarkers for oral Cancer.Diagnostics.2017722110.3390/diagnostics702002128397778
    [Google Scholar]
  157. MøllerT. JamesJ.P. HolmstrømK. SørensenF.B. LindebjergJ. NielsenB.S. Co-detection of miR-21 and TNF-α mRNA in budding cancer cells in colorectal cancer.Int. J. Mol. Sci.2019208190710.3390/ijms2008190730999696
    [Google Scholar]
  158. WarzochaK. BienvenuJ. RibeiroP. MoulletI. DumontetC. Neidhardt-BerardE.M. CoiffierB. SallesG. Plasma levels of tumour necrosis factor and its soluble receptors correlate with clinical features and outcome of Hodgkin’s disease patients.Br. J. Cancer199877122357236210.1038/bjc.1998.3919649158
    [Google Scholar]
  159. VillaniF. BusiaA. VillaniM. VismaraC. VivianiS. BonfanteV. Serum cytokine in response to chemo-radiotherapy for Hodgkin’s disease.Tumori200894680380810.1177/03008916080940060519267096
    [Google Scholar]
  160. PurdueM.P. LanQ. KrickerA. GrulichA.E. VajdicC.M. TurnerJ. WhitbyD. ChanockS. RothmanN. ArmstrongB.K. Polymorphisms in immune function genes and risk of non-Hodgkin lymphoma: Findings from the New South Wales non-Hodgkin Lymphoma Study.Carcinogenesis.200728370471210.1093/carcin/bgl20017056605
    [Google Scholar]
  161. SallesG. BienvenuJ. BastionY. BarbierY. DocheC. WarzochaK. GutowskiM.C. RieuxC. CoiffierB. Elevated circulating levels of tnfα and its p55 soluble receptor are associated with an adverse prognosis in lymphoma patients.Br. J. Haematol.199693235235910.1046/j.1365‑2141.1996.5181059.x8639428
    [Google Scholar]
  162. WarzochaK. SallesG. BienvenuJ. BastionY. DumontetC. RenardN. Neidhardt-BerardE.M. CoiffierB. Tumor necrosis factor ligand-receptor system can predict treatment outcome in lymphoma patients.J. Clin. Oncol.199715249950810.1200/JCO.1997.15.2.4999053471
    [Google Scholar]
  163. FerrajoliA. KeatingM.J. ManshouriT. GilesF.J. DeyA. EstrovZ. KollerC.A. KurzrockR. ThomasD.A. FaderlS. LernerS. O’BrienS. AlbitarM. The clinical significance of tumor necrosis factor-α plasma level in patients having chronic lymphocytic leukemia.Blood200210041215121910.1182/blood.V100.4.1215.h81602001215_1215_121912149200
    [Google Scholar]
  164. TorreyH. ButterworthJ. MeraT. OkuboY. WangL. BaumD. DefuscoA. PlagerS. WardenS. HuangD. VanameeE. FosterR. FaustmanD.L. Targeting TNFR2 with antagonistic antibodies inhibits proliferation of ovarian cancer cells and tumor-associated T regs.Sci. Signal.201710462eaaf860810.1126/scisignal.aaf860828096513
    [Google Scholar]
  165. ChakrabortyC. SharmaA.R. SharmaG. LeeS.S. The interplay among miRNAs, major cytokines, and cancer-related inflammation.Mol. Ther. Nucleic Acids20202060662010.1016/j.omtn.2020.04.00232348938
    [Google Scholar]
  166. YusofK.M. GroenK. RosliR. Avery-KiejdaK.A. Crosstalk between microRNAs and the pathological features of secondary lymphedema.Front. Cell Dev. Biol.2021973241510.3389/fcell.2021.73241534733847
    [Google Scholar]
  167. WangY. ZhouS. FanK. JiangC. MicroRNA‑21 and its impact on signaling pathways in cervical cancer (Review).Oncol. Lett.20191733066307010.3892/ol.2019.1000230867735
    [Google Scholar]
  168. AlotaibiA.G. LiJ.V. GooderhamN.J. Tumour necrosis factor-alpha (TNF-α)-induced metastatic phenotype in colorectal cancer epithelial cells: Mechanistic support for the role of MicroRNA-21.Cancers.202315362710.3390/cancers1503062736765584
    [Google Scholar]
  169. QiuY.F. WangM.X. MengL.N. ZhangR. WangW. MiR-21 regulates proliferation and apoptosis of oral cancer cells through TNF-α.Eur. Rev. Med. Pharmacol. Sci.201822227735774130536317
    [Google Scholar]
  170. LaiC.Y. YehK.Y. LiuB.F. ChangT.M. ChangC.H. LiaoY.F. LiuY.W. HerG.M. Microrna-21 plays multiple oncometabolic roles in colitisassociated carcinoma and colorectal cancer via the PI3K/Akt, STAT3, and PDSD4/TNF-α signaling pathways in zebrafish.Cancers.20211321556510.3390/cancers1321556534771727
    [Google Scholar]
  171. ShenZ. ZhouR. LiuC. WangY. ZhanW. ShaoZ. LiuJ. ZhangF. XuL. ZhouX. QiL. BoF. DingY. ZhaoL. MicroRNA-105 is involved in TNF-α-related tumor microenvironment enhanced colorectal cancer progression.Cell Death Dis.2017812321310.1038/s41419‑017‑0048‑x29238068
    [Google Scholar]
  172. ZhangJ. WuH. LiP. ZhaoY. LiuM. TangH. NF-κB-modulated miR-130a targets TNF-α in cervical cancer cells.J Transl Med201412155
    [Google Scholar]
  173. SánchezN.C. Medrano-JiménezE. Aguilar-LeónD. Pérez-MartínezL. Pedraza-AlvaG. Tumor necrosis factor-induced miR-146a upregulation promotes human lung adenocarcinoma metastasis by targeting merlin.DNA Cell Biol.202039348449710.1089/dna.2019.462031999471
    [Google Scholar]
  174. YeeD. ShahK.M. ColesM.C. SharpT.V. LagosD. MicroRNA-155 induction via TNF-α and IFN-γ suppresses expression of programmed death ligand-1 (PD-L1) in human primary cells.J. Biol. Chem.201729250206832069310.1074/jbc.M117.80905329066622
    [Google Scholar]
  175. O’connellR.M. TaganovK.D. BoldinM.P. ChengG. BaltimoreD. MicroRNA-155 is induced during the macrophage inflammatory response.Proc Natl Acad Sci2007104516041609
    [Google Scholar]
  176. DingJ. HuangS. WangY. TianQ. ZhaR. ShiH. WangQ. GeC. ChenT. ZhaoY. LiangL. LiJ. HeX. Genome-wide screening reveals that miR-195 targets the TNF-α/NF-κB pathway by down-regulating IκB kinase alpha and TAB3 in hepatocellular carcinoma.Hepatology201358265466610.1002/hep.2637823487264
    [Google Scholar]
  177. LiM. RenC.X. ZhangJ.M. XinX.Y. HuaT. WangH.B. WangH.B. The effects of miR-195-5p/MMP14 on proliferation and invasion of cervical carcinoma cells through TNF signaling pathway based on bioinformatics analysis of microarray profiling.Cell. Physiol. Biochem.20185041398141310.1159/00049460230355924
    [Google Scholar]
  178. Kempinska-PodhorodeckaA. BlatkiewiczM. WunschE. KrupaL. GutkowskiK. MilkiewiczP. MilkiewiczM. Oncomir MicroRNA-346 is upregulated in colons of patients with primary sclerosing cholangitis.Clin. Transl. Gastroenterol.2020111e0011210.14309/ctg.000000000000011231972611
    [Google Scholar]
  179. HsingE.W. ShiahS.G. PengH.Y. ChenY.W. ChuuC.P. HsiaoJ.R. LyuP.C. ChangJ.Y. TNF-α-induced miR-450a mediates TMEM182 expression to promote oral squamous cell carcinoma motility.PLoS One2019143e021346310.1371/journal.pone.021346330893332
    [Google Scholar]
  180. OzkurtM. Hellwig-BürgelT. DeppingR. KadabereS. OzyurtR. KaradagA. ErkasapN. miR663 prevents Epo inhibition caused by TNF-alpha in normoxia and hypoxia.Int. J. Endocrinol.2021202111010.1155/2021/367049934367277
    [Google Scholar]
  181. YangX. LiuR. Long non-coding RNA HCG18 promotes gastric cancer progression by regulating miRNA-146a-5p/tumor necrosis factor receptor-associated factor 6 axis.Bioengineered20221336781679310.1080/21655979.2022.203456535240920
    [Google Scholar]
  182. FengY. MaJ. FanH. LiuM. ZhuY. LiY. TangH. TNF-α-induced lncRNA LOC105374902 promotes the malignant behavior of cervical cancer cells by acting as a sponge of miR-1285-3p.Biochem. Biophys. Res. Commun.20195131566310.1016/j.bbrc.2019.03.07930935691
    [Google Scholar]
  183. XuB. JinX. YangT. ZhangY. LiuS. WuL. YingH. WangZ. Upregulated lncRNA THRIL/TNF-α signals promote cell growth and predict poor clinical outcomes of osteosarcoma.OncoTargets Ther.20201311912910.2147/OTT.S23579832021260
    [Google Scholar]
  184. SunQ.M. HuB. FuP.Y. TangW.G. ZhangX. ZhanH. SunC. HeY.F. SongK. XiaoY.S. SunJ. XuY. ZhouJ. FanJ. Long non-coding RNA 00607 as a tumor suppressor by modulating NF-κB p65/p53 signaling axis in hepatocellular carcinoma.Carcinogenesis201839121438144610.1093/carcin/bgy11330169594
    [Google Scholar]
  185. ShenJ. XiaoZ. ZhaoQ. LiM. WuX. ZhangL. HuW. ChoC.H. Anti-cancer therapy with TNFα and IFNγ: A comprehensive review.Cell Prolif.2018514e1244110.1111/cpr.1244129484738
    [Google Scholar]
  186. CaiW. KernerZ.J. HongH. SunJ. Targeted cancer therapy with tumor necrosis factor-alpha.Biochem. Insights20081BCI.S90110.4137/BCI.S90124115841
    [Google Scholar]
  187. GaoJ.Q. EtoY. YoshiokaY. SekiguchiF. KurachiS. MorishigeT. YaoX. WatanabeH. AsavatanabodeeR. SakuraiF. MizuguchiH. OkadaY. MukaiY. TsutsumiY. MayumiT. OkadaN. NakagawaS. Effective tumor targeted gene transfer using PEGylated adenovirus vector via systemic administration.J. Control. Release2007122110211010.1016/j.jconrel.2007.06.01017628160
    [Google Scholar]
  188. HwuP. YannelliJ. KrieglerM. AndersonW.F. PerezC. ChiangY. SchwarzS. CowherdR. DelgadoC. MuléJ. Functional and molecular characterization of tumor-infiltrating lymphocytes transduced with tumor necrosis factor-alpha cDNA for the gene therapy of cancer in humans.J. Immunol.199315094104411510.4049/jimmunol.150.9.41048473752
    [Google Scholar]
  189. VilaboaN. VoellmyR. Regulatable gene expression systems for gene therapy.Curr. Gene Ther.20066442143810.2174/15665230677793482916918333
    [Google Scholar]
  190. KaliA. TNFerade, an innovative cancer immunotherapeutic.Indian J. Pharmacol.201547547948310.4103/0253‑7613.16519026600634
    [Google Scholar]
  191. LabialleS. GayetL. MarthinetE. RigalD. BaggettoL.G. Transcriptional regulators of the human multidrug resistance 1 gene: recent views.Biochem. Pharmacol.2002645-694394810.1016/S0006‑2952(02)01156‑512213590
    [Google Scholar]
  192. WaltherW. WendtJ. SteinU. Employment of the mdr1 promoter for the chemotherapy-inducible expression of therapeutic genes in cancer gene therapy.Gene Ther.19974654455210.1038/sj.gt.33004519231070
    [Google Scholar]
  193. CaiW. NiuG. ChenX. Imaging of integrins as biomarkers for tumor angiogenesis.Curr. Pharm. Des.200814282943297310.2174/13816120878640430818991712
    [Google Scholar]
  194. JiangY.Y. LiuC. HongM.H. ZhuS.J. PeiY.Y. Tumor cell targeting of transferrin-PEG-TNF-alpha conjugate via a receptor-mediated delivery system: Design, synthesis, and biological evaluation.Bioconjug. Chem.2007181414910.1021/bc060135f17226956
    [Google Scholar]
  195. RobertB. MachJ.P. ManiJ.C. YchouM. FolliS. ArtusJ.C. PèlegrinA. Cytokine targeting in tumors using a bispecific antibody directed against carcinoembryonic antigen and tumor necrosis factor alpha.Cancer Res.19965620475847658840995
    [Google Scholar]
  196. RosenblumM.G. HornS.A. CheungL.H. A novel recombinant fusion toxin targeting HER-2/NEU-over-expressing cells and containing human tumor necrosis factor.Int. J. Cancer200088226727310.1002/1097‑0215(20001015)88:2<267::AID‑IJC19>3.0.CO;2‑G11004679
    [Google Scholar]
  197. BorsiL. BalzaE. CarnemollaB. SassiF. CastellaniP. BerndtA. KosmehlH. BiròA. SiriA. OrecchiaP. GrassiJ. NeriD. ZardiL. Selective targeted delivery of TNFα to tumor blood vessels.Blood2003102134384439210.1182/blood‑2003‑04‑103912933583
    [Google Scholar]
  198. CortiA. GasparriA.M. SacchiA. ColomboB. MonieriM. RrapajE. FerreriA.J.M. CurnisF. NGR-TNF engineering with an n-terminal serine reduces degradation and post-translational modifications and improves its tumor-targeting activity.Mol. Pharm.202017103813382410.1021/acs.molpharmaceut.0c0057932805112
    [Google Scholar]
  199. Di MatteoP. HacklC. JedeszkoC. ValentinisB. BordignonC. TraversariC. KerbelR.S. RizzardiG-P. NGR-TNF, a novel vascular-targeting agent, does not induce cytokine recruitment of proangiogenic bone marrow-derived cells.Br. J. Cancer2013109236036910.1038/bjc.2013.34723828516
    [Google Scholar]
  200. PorcelliniS. AspertiC. ValentinisB. TizianoE. MangiaP. BordignonC. RizzardiG.P. TraversariC. The tumor vessel targeting agent NGR-TNF controls the different stages of the tumorigenic process in transgenic mice by distinct mechanisms.OncoImmunology.2015410e104170010.1080/2162402X.2015.104170026451306
    [Google Scholar]
/content/journals/cmp/10.2174/1874467217666230908111754
Loading
/content/journals/cmp/10.2174/1874467217666230908111754
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Apoptosis; Cancer; Necroptosis; NF-kappa B; Proliferation; TNFalpha
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test