Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Thyroid cancer is one of the most common endocrine neoplasms. Treatment methods include surgical resection, radioactive iodine therapy, inhibition of thyroid-stimulating hormone, and inhibition of kinase-based target therapies. These treatments induced adverse effects. possesses antioxidant, anticancer, burn-healing, and anti-inflammatory activities, and Shikonin is the main ingredient. Antithyroid cancer studies of Shikonin discovered that it inhibited thyroid cancer cell migration and invasion by suppressing the epithelial-mesenchymal transition; induced cell cycle arrest; induced DNA damage and apoptosis by producing excessive reactive oxygen species; upregulated Bax; increased the stability of p53; decreased the expression of Mdm2; downregulated Slug and MMP-2, MMP-9, and MMP-14; repressed the phosphorylation of Erk and Akt; activated the p16/retinoblastoma protein pathway, leading to apoptosis; suppressed the expression of DNMT1; reduced the PTEN gene methylation; increased the expression of PTEN, leading to the inhibition of migration; increased LC3-II to induce autophagy and apoptosis of medullary thyroid carcinoma; and upregulated βII-tubulin in the cell to produce less resistance to cisplatin and paclitaxel, without cross-resistance to other anticancer agents. studies showed that it is safe in Sprague-Dawley rats, Beagle dogs, and nude mice.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/1874467217666230904104414
2023-10-13
2025-01-23
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E040923220678.html?itemId=/content/journals/cmp/10.2174/1874467217666230904104414&mimeType=html&fmt=ahah

References

  1. WiltshireJ. J. DrakeT. M. UttleyL. BalasubramanianS. P. Systematic Review of Trends in the Incidence Rates of Thyroid Cancer.Thyroid.2016261115411552
    [Google Scholar]
  2. BonjocK.J. YoungH. WarnerS. GernonT. MaghamiE. ChaudhryA. Thyroid cancer diagnosis in the era of precision imaging.J. Thorac. Dis.20201295128513910.21037/jtd.2019.08.3733145090
    [Google Scholar]
  3. Haroon Al RasheedM.R. XuB. Molecular Alterations in Thyroid Carcinoma.Surg. Pathol. Clin.201912492193010.1016/j.path.2019.08.00231672298
    [Google Scholar]
  4. HaugenB. R. AlexanderE. K. BibleK. C. DohertyG. M. MandelS. J. NikiforovY. E. PaciniF. RandolphG. W. SawkaA. M. SchlumbergerM. SchuffK. G. ShermanS. I. SosaJ. A. StewardD. L. TuttleR. M. WartofskyL. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer.Thyroid20162611133
    [Google Scholar]
  5. KimB.H. KimI.J. Recent Updates on the Management of Medullary Thyroid Carcinoma.Endocrinol. Metab. (Seoul)201631339239910.3803/EnM.2016.31.3.39227586449
    [Google Scholar]
  6. CabanillasM.E. RyderM. JimenezC. Targeted Therapy for Advanced Thyroid Cancer: Kinase Inhibitors and Beyond.Endocr. Rev.20194061573160410.1210/er.2019‑0000731322645
    [Google Scholar]
  7. KarimiA. MajlesiM. Rafieian-KopaeiM. Herbal versus synthetic drugs; beliefs and facts.J. Nephropharmacol.201541273028197471
    [Google Scholar]
  8. CooperD.S. Antithyroid Drugs.N. Engl. J. Med.2005352990591710.1056/NEJMra04297215745981
    [Google Scholar]
  9. Fard-EsfahaniA. Emami-ArdekaniA. FallahiB. Fard-EsfahaniP. BeikiD. Hassanzadeh-RadA. EftekhariM. Adverse effects of radioactive iodine-131 treatment for differentiated thyroid carcinoma.Nucl. Med. Commun.201435880881710.1097/MNM.000000000000013224751702
    [Google Scholar]
  10. WirthL.J. ShermanE. RobinsonB. SolomonB. KangH. LorchJ. WordenF. BroseM. PatelJ. LeboulleuxS. GodbertY. BarlesiF. MorrisJ.C. OwonikokoT.K. TanD.S.W. GautschiO. WeissJ. de la FouchardièreC. BurkardM.E. LaskinJ. TaylorM.H. KroissM. MedioniJ. GoldmanJ.W. BauerT.M. LevyB. ZhuV.W. LakhaniN. MorenoV. EbataK. NguyenM. HeirichD. ZhuE.Y. HuangX. YangL. KheraniJ. RothenbergS.M. DrilonA. SubbiahV. ShahM.H. CabanillasM.E. Efficacy of selpercatinib in RET -altered thyroid cancers.N. Engl. J. Med.2020383982583510.1056/NEJMoa200565132846061
    [Google Scholar]
  11. SchlumbergerM. TaharaM. WirthL.J. RobinsonB. BroseM.S. EliseiR. HabraM.A. NewboldK. ShahM.H. HoffA.O. GianoukakisA.G. KiyotaN. TaylorM.H. KimS.B. KrzyzanowskaM.K. DutcusC.E. de las HerasB. ZhuJ. ShermanS.I. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer.N. Engl. J. Med.2015372762163010.1056/NEJMoa140647025671254
    [Google Scholar]
  12. EliseiR. SchlumbergerM.J. MüllerS.P. SchöffskiP. BroseM.S. ShahM.H. LicitraL. JarzabB. MedvedevV. KreisslM.C. NiederleB. CohenE.E.W. WirthL.J. AliH. HesselC. YaronY. BallD. NelkinB. ShermanS.I. Cabozantinib in progressive medullary thyroid cancer.J. Clin. Oncol.201331293639364610.1200/JCO.2012.48.465924002501
    [Google Scholar]
  13. ResteghiniC. CavalieriS. GalbiatiD. GranataR. AlfieriS. BergaminiC. BossiP. LicitraL. LocatiL.D. Management of tyrosine kinase inhibitors (TKI) side effects in differentiated and medullary thyroid cancer patients.Best Pract. Res. Clin. Endocrinol. Metab.201731334936110.1016/j.beem.2017.04.01228911730
    [Google Scholar]
  14. LeboulleuxS. BastholtL. KrauseT. de la FouchardiereC. TennvallJ. AwadaA. GómezJ.M. BonichonF. LeenhardtL. SouffletC. LicourM. SchlumbergerM.J. Vandetanib in locally advanced or metastatic differentiated thyroid cancer: A randomised, double-blind, phase 2 trial.Lancet Oncol.201213989790510.1016/S1470‑2045(12)70335‑222898678
    [Google Scholar]
  15. JinY. XuZ. YanH. HeQ. YangX. LuoP. A Comprehensive Review of Clinical Cardiotoxicity Incidence of FDA-Approved Small-Molecule Kinase Inhibitors.Front. Pharmacol.20201189110.3389/fphar.2020.0089132595510
    [Google Scholar]
  16. DyG.K. AdjeiA.A. Understanding, recognizing, and managing toxicities of targeted anticancer therapies.CA Cancer J. Clin.201363424927910.3322/caac.2118423716430
    [Google Scholar]
  17. CellaD. LaiJ. ChangC.H. PetermanA. SlavinM. Fatigue in cancer patients compared with fatigue in the general United States population.Cancer200294252853810.1002/cncr.1024511900238
    [Google Scholar]
  18. FarhoodB. MortezaeeK. GoradelN.H. KhanlarkhaniN. SalehiE. NashtaeiM.S. NajafiM. SahebkarA. Curcumin as an anti-inflammatory agent: Implications to radiotherapy and chemotherapy.J. Cell. Physiol.201923455728574010.1002/jcp.2744230317564
    [Google Scholar]
  19. MitchellS.A. Cancer-related fatigue: State of the science.PM R20102536438310.1016/j.pmrj.2010.03.02420656618
    [Google Scholar]
  20. BowerJ.E. The role of neuro-immune interactions in cancer-related fatigue: Biobehavioral risk factors and mechanisms.Cancer2019125335336410.1002/cncr.3179030602059
    [Google Scholar]
  21. EsmailA. Chemical Constituents and Pharmacological Effects of Lithospermum.J Pharm2019981221
    [Google Scholar]
  22. ChoiS.B. BaeG.S. JoI.J. ParkK-C. SeoS-H. KimD-G. ShinJ-Y. GwakT-S. LeeJ-H. LeeG-S. ParkS-J. SongH-J. The anti-inflammatory effect of Lithospermum Erythrorhizon on lipopolysaccharide - induced inflammatory response in RAW 264.7 cells.Korea J Herbol2013282677310.6116/kjh.2013.28.2.67
    [Google Scholar]
  23. AndújarI. RíosJ. GinerR. RecioM. Pharmacological properties of shikonin - a review of literature since 2002.Planta Med.201379181685169710.1055/s‑0033‑135093424155261
    [Google Scholar]
  24. ChenL. KeC. JingY. Anti-inflammatory mechanism research of Radix Arnebiae and its preparations.World Chinese Medicine.201813613631367
    [Google Scholar]
  25. WagnerH. WittmannD. SchäferW. Zur chemischen struktur der lithospermsäure aus lithospermum officinale L.Tetrahedron Lett.197516854755010.1016/S0040‑4039(00)71917‑4
    [Google Scholar]
  26. HaghbeenK. MozaffarianV. GhaffariF. PourazeeziE. SarajiM. JoupariM.D. Lithospermum officinale callus produces shikalkin.Biologia (Bratisl.)200661446346710.2478/s11756‑006‑0077‑x
    [Google Scholar]
  27. WagnerH. KoenigH. Isolation of a 6,9,12,15n-octadecatetraenoic acid from the fruits of Lithospermum officinale L.Biochem. Z.1963339321221814206230
    [Google Scholar]
  28. ZhaoX. WangG. FeiH. Study on the extraction and anti-inflammatory effect of the active components of Lithospermum officinale.Pharmacol. Clin. Chinese Trad. Herb.20082443638
    [Google Scholar]
  29. FengGe WangXiao-dong WangYu-chun Advances in studies on medicinal Radix Arnebiae Seu Lithospermi.Chinese Trad Herb Drugs200334969
    [Google Scholar]
  30. MinC. JunT. LiS. Recent advances in the research on pharmacological actions and quantitative analyses of naphthoquinones in Chinese medicinal herb “Zicao”.Yao Xue Xue Bao2018531220262039
    [Google Scholar]
  31. ZhangY. SunB. HuangZ. ZhaoD.W. ZengQ. Shikonin inhibites migration and invasion of thyroid cancer cells by downregulating DNMT1.Med. Sci. Monit.20182466167010.12659/MSM.90838129389913
    [Google Scholar]
  32. YangQ. JiM. GuanH. ShiB. HouP. Shikonin inhibits thyroid cancer cell growth and invasiveness through targeting major signaling pathways.J. Clin. Endocrinol. Metab.20139812E1909E191710.1210/jc.2013‑258324106286
    [Google Scholar]
  33. GuM. LiX. TangX. Effect of autophagy on the shikonin induced apoptosis of human medullary thyroid carcinoma TT cells.Int. J. Clin. Exp. Med.2016991742817434
    [Google Scholar]
  34. TangX. ZhangC. WeiJ. FangY. ZhaoR. YuJ. Apoptosis is induced by shikonin through the mitochondrial signaling pathway.Mol. Med. Rep.20161343668367410.3892/mmr.2016.496726935754
    [Google Scholar]
  35. WuH. XieJ. PanQ. WangB. HuD. HuX. Anticancer agent shikonin is an incompetent inducer of cancer drug resistance.PLoS One201381e5270610.1371/journal.pone.005270623300986
    [Google Scholar]
  36. HanC.T. KimM.J. MoonS.H. JeonY.R. HwangJ.S. NamC. ParkC.W. LeeS.H. NaJ.B. ParkC.S. ParkH.W. LeeJ.M. JangH.S. ParkS.H. HanK.G. ChoiY.W. LeeH.Y. KangJ.K. Acute and 28-day subacute toxicity studies of hexane extracts of the roots of lithospermum erythrorhizon in sprague-dawley rats.Toxicol. Res.201531440341410.5487/TR.2015.31.4.40326877842
    [Google Scholar]
  37. NamC. HwangJ.S. KimM.J. ChoiY.W. HanK.G. KangJ.K. Single- and repeat-dose oral toxicity studies of lithospermum erythrorhizon extract in dogs.Toxicol. Res.2015311778810.5487/TR.2015.31.1.07725874036
    [Google Scholar]
/content/journals/cmp/10.2174/1874467217666230904104414
Loading
/content/journals/cmp/10.2174/1874467217666230904104414
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test