Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Background:

Arsenic is present in above permissible safe limits in groundwater, soil, and food, in various areas of the world. This is increasing exposure to humankind and affecting health in various ways. Alternation in cognition is one among them. Epidemiological research has reflected the impact of arsenic exposure on children in the form of diminished cognition.

Aims:

Considering this fact, the present study reviewed the impact of arsenic on amyloid precursor protein, which is known to cause one of the commonest cognitive disorders such as Alzheimer’s disease.

Methods:

The present study reviews the arsenic role in the generation of amyloid-beta from its precursor that leads to Alzheimer’s disease through the published article from Pubmed and Scopus.

Description:

According to the findings, regular, long-term exposure to arsenic beginning in infancy changes numerous arsenic level-regulating regions in the rat brain, which are related to cognitive impairments. Arsenic also affects the BBB clearance route by increasing RAGE expression. Arsenic triggers the proamyloidogenic pathway by increasing APP expression and subsequently, its processing by β-secretase and presenilin. Arsenic also affects mitochondrial dynamics, DNA repair pathway and epigenetic changes. The mechanism behind all these changes is explained in the present review article.

Conclusion:

A raised level of arsenic exposure affects the amyloid precursor protein, a factor for the early precipitation of Alzheimer’s disease.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429272806231020045840
2023-10-25
2025-01-22
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/e18761429272806.html?itemId=/content/journals/cmp/10.2174/0118761429272806231020045840&mimeType=html&fmt=ahah

References

  1. ChungJ.Y. YuS.D. HongY.S. Environmental source of arsenic exposure.J. Prev. Med. Public Health201447525325710.3961/jpmph.14.03625284196
    [Google Scholar]
  2. EmadiA. GoreS.D. Arsenic trioxide — An old drug rediscovered.Blood Rev.2010244-519119910.1016/j.blre.2010.04.00120471733
    [Google Scholar]
  3. ZhangH. MaQ. ZhangY. XuH. Proteolytic processing of Alzheimer’s β‐amyloid precursor protein.J. Neurochem.2012120s192110.1111/j.1471‑4159.2011.07519.x
    [Google Scholar]
  4. SinghS. K. SrivastavS. YadavA. K. SrikrishnaS. PerryG. Overview of alzheimer's disease and some therapeutic approaches targeting Aβ by using several synthetic and herbal compounds.Oxid Med Cell Longev20162016736161310.1155/2016/7361613
    [Google Scholar]
  5. MüllerU. C. DellerT. KorteM. Not just amyloid: physiological functions of the amyloid precursor protein family.Nat. Rev. Neurosci2017185528129810.1038/nrn.2017.29
    [Google Scholar]
  6. MatsuiT. IngelssonM. FukumotoH. RamasamyK. KowaH. FroschM.P. IrizarryM.C. HymanB.T. Expression of APP pathway mRNAs and proteins in Alzheimer’s disease.Brain Res.2007116111612310.1016/j.brainres.2007.05.05017586478
    [Google Scholar]
  7. HaassC. KaetherC. ThinakaranG. SisodiaS. Trafficking and proteolytic processing of APP.Cold Spring Harb. Perspect. Med.201225a00627010.1101/cshperspect.a00627022553493
    [Google Scholar]
  8. KangJ. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptorNature19873256106733610.1038/325733a0
    [Google Scholar]
  9. OhE.S. SavonenkoA.V. KingJ.F. Fangmark TuckerS.M. RudowG.L. XuG. BorcheltD.R. TroncosoJ.C. Amyloid precursor protein increases cortical neuron size in transgenic mice.Neurobiol. Aging20093081238124410.1016/j.neurobiolaging.2007.12.02418304698
    [Google Scholar]
  10. HunterS. BrayneC. Understanding the roles of mutations in the amyloid precursor protein in Alzheimer disease.Mol. Psychiatry2018231819310.1038/mp.2017.21829112196
    [Google Scholar]
  11. JaishankarM. TsetenT. AnbalaganN. MathewB.B. BeeregowdaK.N. Toxicity, mechanism and health effects of some heavy metals.Interdiscip. Toxicol.201472607210.2478/intox‑2014‑000926109881
    [Google Scholar]
  12. BjørklundG. AasethJ. ChirumboloS. UrbinaM.A. UddinR. Effects of arsenic toxicity beyond epigenetic modifications.Environ. Geochem. Health201840395596510.1007/s10653‑017‑9967‑928484874
    [Google Scholar]
  13. SharavananV. J. SivaramakrishnanM. SivarajasekarN. SenthilraniN. KothandanR. DhakalN. SivamaniS. ShowP. L. AwualM. R. NaushadM. Pollutants inducing epigenetic changes and diseasesEnviron. Chem. Lett.201918325343
    [Google Scholar]
  14. HughesM.F. BeckB.D. ChenY. LewisA.S. ThomasD.J. Arsenic exposure and toxicology: a historical perspective.Toxicol. Sci.2011123230533210.1093/toxsci/kfr18421750349
    [Google Scholar]
  15. NaujokasM.F. AndersonB. AhsanH. AposhianH.V. GrazianoJ.H. ThompsonC. SukW.A. The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem.Environ. Health Perspect.2013121329530210.1289/ehp.120587523458756
    [Google Scholar]
  16. Sánchez-PeñaL.C. PetrosyanP. MoralesM. GonzálezN.B. Gutiérrez-OspinaG. Del RazoL.M. GonsebattM.E. Arsenic species, AS3MT amount, and AS3MT gen expression in different brain regions of mouse exposed to arsenite.Environ. Res.2010110542843410.1016/j.envres.2010.01.00720138265
    [Google Scholar]
  17. ShankarP. RayappanJ.B.B. Gas sensing mechanism of metal oxides: The role of ambient atmosphere, type of semiconductor and gases - A review.Sci. Lett. J.20154126
    [Google Scholar]
  18. FloraS.J.S. Arsenic-induced oxidative stress and its reversibility.Free Radic. Biol. Med.201151225728110.1016/j.freeradbiomed.2011.04.00821554949
    [Google Scholar]
  19. GongG. O’BryantS.E. The arsenic exposure hypothesis for Alzheimer disease.Alzheimer Dis. Assoc. Disord.201024431131610.1097/WAD.0b013e3181d71bc720473132
    [Google Scholar]
  20. BommaritoP.A. FryR.C. Developmental windows of susceptibility to inorganic arsenic: a survey of current toxicologic and epidemiologic data.Toxicol. Res. (Camb.)2016561503151110.1039/C6TX00234J29354260
    [Google Scholar]
  21. VaskenaposhianH. ZakharyanR.A. AvramM.D. Sampayo-ReyesA. WollenbergM.L. A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species.Toxicol. Appl. Pharmacol.2004198332733510.1016/j.taap.2003.10.02715276412
    [Google Scholar]
  22. Maciaszczyk-DziubinskaE. WawrzyckaD. WysockiR. Arsenic and antimony transporters in eukaryotes.Int. J. Mol. Sci.20121333527354810.3390/ijms1303352722489166
    [Google Scholar]
  23. PrzewłockiR. PrzewłockaB. Opioids in chronic pain.Eur. J. Pharmacol.20014291-3799110.1016/S0014‑2999(01)01308‑511698029
    [Google Scholar]
  24. YangH-C. FuH-L. LinY-F. RosenB.P. Metal Transporters ArgüelloJ.M. LutsenkoS.B.T.-C.T. Academic Press201269325358
    [Google Scholar]
  25. LiuZ. SanchezM.A. JiangX. BolesE. LandfearS.M. RosenB.P. Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid.Biochem. Biophys. Res. Commun.2006351242443010.1016/j.bbrc.2006.10.05417064664
    [Google Scholar]
  26. JiangX. McDermottJ.R. AjeesA.A. RosenB.P. LiuZ. Trivalent arsenicals and glucose use different translocation pathways in mammalian GLUT1.Metallomics20102321121910.1039/B920471G21069159
    [Google Scholar]
  27. HoláskováI. ElliottM. HansonM.L. SchaferR. BarnettJ.B. Prenatal cadmium exposure produces persistent changes to thymus and spleen cell phenotypic repertoire as well as the acquired immune response.Toxicol. Appl. Pharmacol.2012265218118910.1016/j.taap.2012.10.00923088857
    [Google Scholar]
  28. CsanakyI. GregusZ. Effect of phosphate transporter and methylation inhibitor drugs on the disposition of arsenate and arsenite in rats.Toxicol. Sci.2001631293610.1093/toxsci/63.1.2911509741
    [Google Scholar]
  29. Maciaszczyk-DziubinskaE. MigdalI. MigockaM. BocerT. WysockiR. The yeast aquaglyceroporin Fps1p is a bidirectional arsenite channel.FEBS Lett.2010584472673210.1016/j.febslet.2009.12.02720026328
    [Google Scholar]
  30. Pia̧tekK. SchwerdtleT. HartwigA. BalW. Monomethylarsonous acid destroys a tetrathiolate zinc finger much more efficiently than inorganic arsenite: mechanistic considerations and consequences for DNA repair inhibition.Chem. Res. Toxicol.200821360060610.1021/tx700313518220366
    [Google Scholar]
  31. RahmanM. HannanM. UddinM. RahmanM. RashidM. KimB. Exposure to environmental arsenic and emerging risk of Alzheimer’s Disease: Perspective mechanisms, management strategy, and future directions.Toxics20219818810.3390/toxics908018834437506
    [Google Scholar]
  32. AlboghobeishS. PashmforoshM. ZeidooniL. SamimiA. RezaeiM. High fat diet deteriorates the memory impairment induced by arsenic in mice: a sub chronic in vivo study.Metab. Brain Dis.20193461595160610.1007/s11011‑019‑00467‑431422513
    [Google Scholar]
  33. RahmanM.A. RahmanM.D.H. BiswasP. HossainM.S. IslamR. HannanM.A. UddinM.J. RhimH. Potential therapeutic role of phytochemicals to mitigate mitochondrial dysfunctions in Alzheimer’s Disease.Antioxidants202133379372
    [Google Scholar]
  34. PrakashC. SoniM. KumarV. Mitochondrial oxidative stress and dysfunction in arsenic neurotoxicity: A review.J. Appl. Toxicol.201636217918810.1002/jat.325626510484
    [Google Scholar]
  35. MeddaN. PatraR. GhoshT.K. MaitiS. Neurotoxic mechanism of arsenic: Synergistic effect of mitochondrial instability, oxidative stress, and hormonal-neurotransmitter impairment.Biol. Trace Elem. Res.2020198181510.1007/s12011‑020‑02044‑831939057
    [Google Scholar]
  36. LiuX. GaoY. LiuY. ZhangW. YangY. FuX. SunD. WangJ. Neuroglobin alleviates arsenic-induced neuronal damage.Environ. Toxicol. Pharmacol.20218410360410.1016/j.etap.2021.10360433545379
    [Google Scholar]
  37. ZhangW. CuiX. GaoY. SunL. WangJ. YangY. LiuX. LiY. GuoX. SunD. Role of pigment epithelium-derived factor (PEDF) on arsenic-induced neuronal apoptosis.Chemosphere201921592593110.1016/j.chemosphere.2018.10.10030408888
    [Google Scholar]
  38. NamgungU. XiaZ. Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3 and p38 MAP kinases.Toxicol. Appl. Pharmacol.2001174213013810.1006/taap.2001.920011446828
    [Google Scholar]
  39. FuS.C. LinJ.W. LiuJ.M. LiuS.H. FangK.M. SuC.C. HsuR.J. WuC.C. HuangC.F. LeeK.I. ChenY.W. Arsenic induces autophagy-dependent apoptosis via Akt inactivation and AMPK activation signaling pathways leading to neuronal cell death.Neurotoxicology20218513314410.1016/j.neuro.2021.05.00834038756
    [Google Scholar]
  40. KingA.P. WilsonJ.J. Endoplasmic reticulum stress: an arising target for metal-based anticancer agents.Chem. Soc. Rev.202049228113813610.1039/D0CS00259C32597908
    [Google Scholar]
  41. EschF. S. KeimP. S. BeattieE. C. BlacherR. W. CulwellA. R. OltersdorfT. McClureD. WardP. J. Cleavage of amyloid beta peptide during constitutive processing of its precursor.Science (80-. )199024811221124
    [Google Scholar]
  42. ZarazúaS. BürgerS. DelgadoJ.M. Jiménez-CapdevilleM.E. SchliebsR. Arsenic affects expression and processing of amyloid precursor protein (APP) in primary neuronal cells overexpressing the Swedish mutation of human APP.Int. J. Dev. Neurosci.201129438939610.1016/j.ijdevneu.2011.03.00421440049
    [Google Scholar]
  43. WatanabeT. HiranoS. Metabolism of arsenic and its toxicological relevance.Arch. Toxicol.201387696997910.1007/s00204‑012‑0904‑522811022
    [Google Scholar]
  44. LeslieE.M. HaimeurA. WaalkesM.P. Arsenic transport by the human multidrug resistance protein 1 (MRP1/ABCC1). Evidence that a tri-glutathione conjugate is required.J. Biol. Chem.200427931327003270810.1074/jbc.M40491220015161912
    [Google Scholar]
  45. Escudero-LourdesC. Uresti-RiveraE.E. Oliva-GonzálezC. Torres-RamosM.A. Aguirre-BañuelosP. GandolfiA.J. Cortical astrocytes acutely exposed to the monomethylarsonous acid (MMAIII) show increased pro-inflammatory cytokines gene expression that is consistent with APP and BACE-1: Over-expression.Neurochem. Res.201641102559257210.1007/s11064‑016‑1968‑z27321306
    [Google Scholar]
  46. NiñoS.A. Morales-MartínezA. Chi-AhumadaE. CarrizalesL. Salgado-DelgadoR. Pérez-SeverianoF. Díaz-CintraS. Jiménez-CapdevilleM.E. ZarazúaS. Arsenic exposure contributes to the bioenergetic damage in an Alzheimer’s Disease Model.ACS Chem. Neurosci.201910132333610.1021/acschemneuro.8b0027830141907
    [Google Scholar]
  47. GonzalezH.O. HuJ. GaworeckiK.M. RolingJ.A. BaldwinW.S. Gardea-TorresdeyJ.L. BainL.J. Dose-responsive gene expression changes in juvenile and adult mummichogs (Fundulus heteroclitus) after arsenic exposure.Mar. Environ. Res.201070213314110.1016/j.marenvres.2010.04.00320451245
    [Google Scholar]
  48. AshokA. RaiN.K. TripathiS. BandyopadhyayS. Exposure to As-, Cd-, and Pb-mixture induces Aβ, amyloidogenic APP processing and cognitive impairments via oxidative stress-dependent neuroinflammation in young rats.Toxicol. Sci.20151431648010.1093/toxsci/kfu20825288670
    [Google Scholar]
  49. NiñoS.A. Martel-GallegosG. Castro-ZavalaA. Ortega-BerlangaB. DelgadoJ.M. Hernández-MendozaH. Romero-GuzmánE. Ríos-LugoJ. Rosales-MendozaS. Jiménez-CapdevilleM.E. ZarazúaS. Chronic arsenic exposure increases Aβ (1–42) production and receptor for advanced glycation end products expression in rat brain.Chem. Res. Toxicol.2018311132110.1021/acs.chemrestox.7b0021529155576
    [Google Scholar]
  50. NiñoS.A. Chi-AhumadaE. OrtízJ. ZarazuaS. ConchaL. Jiménez-CapdevilleM.E. Toxicol. Appl. Pharmacol.2020393
    [Google Scholar]
  51. ChenQ.Y. ShenS. SunH. WuF. KluzT. KibriyaM.G. ChenY. AhsanH. CostaM. Environ. Pollut.2020259
    [Google Scholar]
  52. AthanasopoulosD. KaragiannisG. TsolakiM. Recent findings in Alzheimer disease and nutrition focusing on epigenetics.Adv. Nutr.20167591792710.3945/an.116.01222927633107
    [Google Scholar]
  53. BaileyK.A. FryR.C. Arsenic-associated changes to the epigenome: What are the functional consequences?Curr. Environ. Health Rep.201411223410.1007/s40572‑013‑0002‑824860721
    [Google Scholar]
  54. AravinA.A. SachidanandamR. Bourc’hisD. SchaeferC. PezicD. TothK.F. BestorT. HannonG.J. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice.Mol. Cell200831678579910.1016/j.molcel.2008.09.00318922463
    [Google Scholar]
  55. RoyR.V. SonY.O. PratheeshkumarP. WangL. HitronJ.A. DivyaS.P. DR. KimD. YinY. ZhangZ. ShiX. Epigenetic targets of arsenic: emphasis on epigenetic modifications during carcinogenesis.J. Environ. Pathol. Toxicol. Oncol.2015341638410.1615/JEnvironPatholToxicolOncol.201401206625746832
    [Google Scholar]
  56. ReichardJ.F. PugaA. Effects of arsenic exposure on DNA methylation and epigenetic gene regulation.Epigenomics2010218710410.2217/epi.09.4520514360
    [Google Scholar]
  57. ReichardJ.F. SchnekenburgerM. PugaA. Long term low-dose arsenic exposure induces loss of DNA methylation.Biochem. Biophys. Res. Commun.2007352118819210.1016/j.bbrc.2006.11.00117107663
    [Google Scholar]
  58. CsanakyI. NémetiB. GregusZ. Dose-dependent biotransformation of arsenite in rats—not S-adenosylmethionine depletion impairs arsenic methylation at high dose.Toxicology20031831-3779110.1016/S0300‑483X(02)00444‑412504344
    [Google Scholar]
  59. YangY.W. LiouS.H. HsuehY.M. LyuW.S. LiuC.S. LiuH.J. ChungM.C. HungP.H. ChungC.J. Risk of Alzheimer’s disease with metal concentrations in whole blood and urine: A case–control study using propensity score matching.Toxicol. Appl. Pharmacol.201835681410.1016/j.taap.2018.07.01530025849
    [Google Scholar]
  60. ChenB.R. KozbergM.G. BouchardM.B. ShaikM.A. HillmanE.M.C. A critical role for the vascular endothelium in functional neurovascular coupling in the brain.J. Am. Heart Assoc.2014331e00078710.1161/JAHA.114.000787
    [Google Scholar]
  61. FusoA. SeminaraL. CavallaroR.A. D’AnselmiF. ScarpaS. S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production.Mol. Cell. Neurosci.200528119520410.1016/j.mcn.2004.09.00715607954
    [Google Scholar]
  62. ZhuY. LiY. LouD. GaoY. YuJ. KongD. ZhangQ. JiaY. ZhangH. WangZ. Sodium arsenite exposure inhibits histone acetyltransferase p300 for attenuating H3K27ac at enhancers in mouse embryonic fibroblast cells.Toxicol. Appl. Pharmacol.2018357707910.1016/j.taap.2018.08.01130130555
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429272806231020045840
Loading
/content/journals/cmp/10.2174/0118761429272806231020045840
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test