Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Background:

Activation of microglia and astrocytes has been observed in Alzheimer’s disease (AD). Transglutaminase 2 (TG2) is reported to be activated in AD and involved in cell proliferation, differentiation, and inflammation. Moreover, amyloid β (Aβ) aggregation is detected as a characteristic pathology in the AD brain, and is known to be a substrate of TG2. All-trans retinoic acid (ATRA) can modify cell proliferation and differentiation, and is reported to have therapeutic effects on AD pathology.

Objective:

We aimed to assess the effects of ATRA in microglia and astrocytes on TG2 expression and glial functions.

Methods:

After treatment with ATRA, TG2 expression and TG activity were assayed in both murine microglia BV-2 cells and cultured rat brain astrocytes. Endocytosis activity in BV-2 cells and Aβ aggregation by astrocytes conditioned medium were also assessed.

Results:

In both BV-2 cells and cultured astrocytes, ATRA increased TG2 expression and TG activity. The increase was blocked by AGN194310, an RA receptor antagonist. ATRA enhanced the endocytosis activity in BV-2 cells, and the addition of AGN194310 reversed it. The addition of cystamine, a competitive TG inhibitor, also reduced ATRA-enhanced endocytosis activity. On the other hand, Aβ aggregation was potentiated by ATRA-treated astrocytes conditioned medium compared to control astrocytes conditioned medium.

Conclusion:

These results suggest that ATRA increased TG2 expression and TG activity RA receptor in microglia and astrocytes. ATRA-enhanced TGs might be involved in phagocytosis and Aβ aggregation. Adequate control of TGs expression and function in microglia and astrocytes can be an important factor in AD pathology.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429254388230922112915
2023-10-24
2025-01-22
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/BMS-CMP-2023-64.html?itemId=/content/journals/cmp/10.2174/0118761429254388230922112915&mimeType=html&fmt=ahah

References

  1. GlassC.K. SaijoK. WinnerB. MarchettoM.C. GageF.H. Mechanisms underlying inflammation in neurodegeneration.Cell2010140691893410.1016/j.cell.2010.02.01620303880
    [Google Scholar]
  2. KreutzbergG.W. Microglia: A sensor for pathological events in the CNS.Trends Neurosci.199619831231810.1016/0166‑2236(96)10049‑78843599
    [Google Scholar]
  3. NeniskyteU. NeherJ.J. BrownG.C. Neuronal death induced by nanomolar amyloid β is mediated by primary phagocytosis of neurons by microglia.J. Biol. Chem.201128646399043991310.1074/jbc.M111.26758321903584
    [Google Scholar]
  4. AndersonC.M. SwansonR.A. Astrocyte glutamate transport: Review of properties, regulation, and physiological functions.Glia200032111410.1002/1098‑1136(200010)32:1<1::AID‑GLIA10>3.0.CO;2‑W10975906
    [Google Scholar]
  5. AbbottN.J. Astrocyte-endothelial interactions and blood-brain barrier permeability.J. Anat.2002200662963810.1046/j.1469‑7580.2002.00064.x12162730
    [Google Scholar]
  6. CorrealeJ. VillaA. Cellular elements of the blood-brain barrier.Neurochem. Res.200934122067207710.1007/s11064‑009‑0081‑y19856206
    [Google Scholar]
  7. LeeS.Y. SonD.J. LeeY.K. LeeJ.W. LeeH.J. YunY.W. HaT.Y. HongJ.T. Inhibitory effect of sesaminol glucosides on lipopolysaccharide-induced NF-κB activation and target gene expression in cultured rat astrocytes.Neurosci. Res.200656220421210.1016/j.neures.2006.06.00516842873
    [Google Scholar]
  8. McGeerP. McGeerE. The inflammatory response system of brain: Implications for therapy of Alzheimer and other neurodegenerative diseases.Brain Res. Brain Res. Rev.199521219521810.1016/0165‑0173(95)00011‑98866675
    [Google Scholar]
  9. LiuR.X. HuangC. BennettD.A. LiH. WangR. The characteristics of astrocyte on Aβ clearance altered in Alzheimer’s disease were reversed by anti-inflammatory agent (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate.Am. J. Transl. Res.20168104082409427829994
    [Google Scholar]
  10. GeertsH. NC-531 (Neurochem).Curr. Opin. Investig. Drugs2004519510014983981
    [Google Scholar]
  11. BaumL. LamC.W.K. CheungS.K.K. KwokT. LuiV. TsohJ. LamL. LeungV. HuiE. NgC. WooJ. ChiuH.F.K. GogginsW.B. ZeeB.C.Y. ChengK.F. FongC.Y.S. WongA. MokH. ChowM.S.S. HoP.C. IpS.P. HoC.S. YuX.W. LaiC.Y.L. ChanM.H. SzetoS. ChanI.H.S. MokV. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease.J. Clin. Psychopharmacol.200828111011310.1097/jcp.0b013e318160862c18204357
    [Google Scholar]
  12. LannfeltL. BlennowK. ZetterbergH. BatsmanS. AmesD. HarrisonJ. MastersC.L. TargumS. BushA.I. MurdochR. WilsonJ. RitchieC.W. Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer’s disease: A phase IIa, double-blind, randomised, placebo-controlled trial.Lancet Neurol.20087977978610.1016/S1474‑4422(08)70167‑418672400
    [Google Scholar]
  13. HartleyD.M. ZhaoC. SpeierA.C. WoodardG.A. LiS. LiZ. WalzT. Transglutaminase induces protofibril-like amyloid beta-protein assemblies that are protease-resistant and inhibit long-term potentiation.J. Biol. Chem.200828324167901680010.1074/jbc.M80221520018397883
    [Google Scholar]
  14. de JagerM. van der WildtB. SchulE. BolJ.G.J.M. van DuinenS.G. DrukarchB. WilhelmusM.M.M. Tissue transglutaminase colocalizes with extracellular matrix proteins in cerebral amyloid angiopathy.Neurobiol. Aging20133441159116910.1016/j.neurobiolaging.2012.10.00523122413
    [Google Scholar]
  15. QuinnB.R. Yunes-MedinaL. JohnsonG.V.W. Transglutaminase 2: Friend or foe? The discordant role in neurons and astrocytes.J. Neurosci. Res.20189671150115810.1002/jnr.2423929570839
    [Google Scholar]
  16. FolkJ.E. Transglutaminases.Annu. Rev. Biochem.198049151753110.1146/annurev.bi.49.070180.0025056105840
    [Google Scholar]
  17. FolkJ.E. Il ChungS. Transglutaminases.Methods Enzymol.198511335837510.1016/S0076‑6879(85)13049‑12868387
    [Google Scholar]
  18. ZhangJ. LesortM. GuttmannR.P. JohnsonG.V.W. Modulation of the in situ activity of tissue transglutaminase by calcium and GTP.J. Biol. Chem.199827342288229510.1074/jbc.273.4.22889442073
    [Google Scholar]
  19. GriffinM. CasadioR. BergaminiC.M. Transglutaminases: Nature’s biological glues.Biochem. J.2002368237739610.1042/bj2002123412366374
    [Google Scholar]
  20. JeitnerT.M. MumaN.A. BattaileK.P. CooperA.J.L. Transglutaminase activation in neurodegenerative diseases.Future Neurol.20094444946710.2217/fnl.09.1720161049
    [Google Scholar]
  21. AeschlimannD. ThomazyV. Protein crosslinking in assembly and remodelling of extracellular matrices: The role of transglutaminases.Connect. Tissue Res.200041112710.3109/0300820000900563810826705
    [Google Scholar]
  22. FesusL. PiacentiniM. Transglutaminase 2: An enigmatic enzyme with diverse functions.Trends Biochem. Sci.2002271053453910.1016/S0968‑0004(02)02182‑512368090
    [Google Scholar]
  23. WilhelmusM.M.M. van DamA.M. DrukarchB. Tissue transglutaminase: A novel pharmacological target in preventing toxic protein aggregation in neurodegenerative diseases.Eur. J. Pharmacol.20085852-346447210.1016/j.ejphar.2008.01.05918417122
    [Google Scholar]
  24. YamadaT. YoshiyamaY. KawaguchiN. IchinoseA. IwakiT. HiroseS. JefferiesW.A. Possible roles of transglutaminases in Alzheimer’s disease.Dement. Geriatr. Cogn. Disord.19989210311010.1159/0000170319524802
    [Google Scholar]
  25. KimS.Y. GrantP. LeeJ.H. PantH.C. SteinertP.M. Differential expression of multiple transglutaminases in human brain. Increased expression and cross-linking by transglutaminases 1 and 2 in Alzheimer’s disease.J. Biol. Chem.199927443307153072110.1074/jbc.274.43.3071510521460
    [Google Scholar]
  26. CitronB.A. SantaCruzK.S. DaviesP.J.A. FestoffB.W. Intron-exon swapping of transglutaminase mRNA and neuronal Tau aggregation in Alzheimer’s disease.J. Biol. Chem.200127653295330110.1074/jbc.M00477620011013236
    [Google Scholar]
  27. LoH.M. WangS.W. ChenC.L. WuP.H. WuW.B. Effects of all-trans retinoic acid, retinol, and β-carotene on murine macrophage activity.Food Funct.20145114014810.1039/C3FO60309A24310731
    [Google Scholar]
  28. DaviesP.J. MurtaughM.P. MooreW.T.Jr JohnsonG.S. LucasD. Retinoic acid-induced expression of tissue transglutaminase in human promyelocytic leukemia (HL-60) cells.J. Biol. Chem.198526085166517410.1016/S0021‑9258(18)89194‑32859286
    [Google Scholar]
  29. KaurC. SivakumarV. DheenS.T. LingE.A. Insulin-like growth factor I and II expression and modulation in amoeboid microglial cells by lipopolysaccharide and retinoic acid.Neuroscience200613841233124410.1016/j.neuroscience.2005.12.02516448778
    [Google Scholar]
  30. MooreW.T.Jr MurtaughM.P. DaviesP.J. Retinoic acid-induced expression of tissue transglutaminase in mouse peritoneal macrophages.J. Biol. Chem.198425920127941280210.1016/S0021‑9258(18)90816‑16149218
    [Google Scholar]
  31. IshiiI. UiM. Retinoic acid-induced gene expression of tissue transglutaminase via protein kinase C-dependent pathway in mouse peritoneal macrophages.J. Biochem.199411561197120210.1093/oxfordjournals.jbchem.a1244797982904
    [Google Scholar]
  32. NaraK. NakanishiK. HagiwaraH. WakitaK. KojimaS. HiroseS. Retinol-induced morphological changes of cultured bovine endothelial cells are accompanied by a marked increase in transglutaminase.J. Biol. Chem.198926432193081931210.1016/S0021‑9258(19)47302‑X2572599
    [Google Scholar]
  33. UniyalS. DhasmanaA. TyagiA. MuyalJ.P. ATRA reduces inflammation and improves alveolar epithelium regeneration in emphysematous rat lung.Biomed. Pharmacother.20181081435145010.1016/j.biopha.2018.09.16630372846
    [Google Scholar]
  34. PriyankaS.H. Syam DasS. ThusharaA.J. RaufA.A. IndiraM. All trans retinoic acid attenuates markers of neuroinflammation in rat brain by modulation of SIRT1 and NFκB.Neurochem. Res.20184391791180110.1007/s11064‑018‑2595‑730022380
    [Google Scholar]
  35. WitzG. GoldsteinB.D. AmorusoM. StoneD.S. TrollW. Retinoid inhibition of superoxide anion radical production by human polymorphonuclear leukocytes stimulated with tumor promoters.Biochem. Biophys. Res. Commun.198097388388810.1016/0006‑291X(80)91459‑X6258603
    [Google Scholar]
  36. MehtaK. McQueenT. TuckerS. PanditaR. AggarwalB.B. Inhibition by all- trans -retinoic acid of tumor necrosis factor and nitric oxide production by peritoneal macrophages.J. Leukoc. Biol.199455333634210.1002/jlb.55.3.3368120450
    [Google Scholar]
  37. DattaP.K. LianosE.A. Retinoic acids inhibit inducible nitric oxide synthase expression in mesangial cells.Kidney Int.199956248649310.1046/j.1523‑1755.1999.00576.x10432387
    [Google Scholar]
  38. LiY. GaoX. WangQ. YangY. LiuH. ZhangB. LiL. Retinoic acid protects from experimental cerebral infarction by upregulating GAP-43 expression.Braz. J. Med. Biol. Res.2017504e556110.1590/1414‑431x2017556128380213
    [Google Scholar]
  39. SabbaghziaraniF. MortezaeeK. AkbariM. kashaniI.R. SoleimaniM. MoiniA. AtaeinejadN. ZendedelA. HassanzadehG. Retinoic acid-pretreated Wharton’s jelly mesenchymal stem cells in combination with triiodothyronine improve expression of neurotrophic factors in the subventricular zone of the rat ischemic brain injury.Metab. Brain Dis.201732118519310.1007/s11011‑016‑9897‑827549229
    [Google Scholar]
  40. CaiW. WangJ. HuM. ChenX. LuZ. BellantiJ.A. ZhengS.G. All trans-retinoic acid protects against acute ischemic stroke by modulating neutrophil functions through STAT1 signaling.J. Neuroinflammation201916117510.1186/s12974‑019‑1557‑631472680
    [Google Scholar]
  41. DheenS.T. JunY. YanZ. TayS.S.W. Ang LingE. Retinoic acid inhibits expression of TNF-? and iNOS in activated rat microglia.Glia2005501213110.1002/glia.2015315602748
    [Google Scholar]
  42. DingY. QiaoA. WangZ. GoodwinJ.S. LeeE.S. BlockM.L. AllsbrookM. McDonaldM.P. FanG.H. Retinoic acid attenuates beta-amyloid deposition and rescues memory deficits in an Alzheimer’s disease transgenic mouse model.J. Neurosci.20082845116221163410.1523/JNEUROSCI.3153‑08.200818987198
    [Google Scholar]
  43. van NeervenS. NemesA. ImholzP. RegenT. DeneckeB. JohannS. BeyerC. HanischU.K. MeyJ. Inflammatory cytokine release of astrocytes in vitro is reduced by all-trans retinoic acid.J. Neuroimmunol.20102291-216917910.1016/j.jneuroim.2010.08.00520826012
    [Google Scholar]
  44. WangR. ChenS. LiuY. DiaoS. XueY. YouX. ParkE.A. LiaoF.F. All-trans-retinoic acid reduces BACE1 expression under inflammatory conditions via modulation of nuclear factor κB (NFκB) signaling.J. Biol. Chem.201529037225322254210.1074/jbc.M115.66290826240147
    [Google Scholar]
  45. WatamuraN. TobaJ. YoshiiA. NikkuniM. OhshimaT. Colocalization of phosphorylated forms of WAVE1, CRMP2, and tau in Alzheimer’s disease model mice: Involvement of Cdk5 phosphorylation and the effect of ATRA treatment.J. Neurosci. Res.2016941152610.1002/jnr.2367426400044
    [Google Scholar]
  46. ChoiW.H. JiK.A. JeonS.B. YangM.S. KimH. MinK. ShongM. JouI. JoeE.H. Anti-inflammatory roles of retinoic acid in rat brain astrocytes: Suppression of interferon-γ-induced JAK/STAT phosphorylation.Biochem. Biophys. Res. Commun.2005329112513110.1016/j.bbrc.2005.01.11015721283
    [Google Scholar]
  47. TakamuraR. WatamuraN. NikkuniM. OhshimaT. All-trans retinoic acid improved impaired proliferation of neural stem cells and suppressed microglial activation in the hippocampus in an Alzheimer’s mouse model.J. Neurosci. Res.201795389790610.1002/jnr.2384327448243
    [Google Scholar]
  48. LuoT. SakaiY. WagnerE. DrägerU.C. Retinoids, eye development, and maturation of visual function.J. Neurobiol.200666767768610.1002/neu.2023916688765
    [Google Scholar]
  49. PlaneJ.M. WhitneyJ.T. SchallertT. ParentJ.M. Retinoic acid and environmental enrichment alter subventricular zone and striatal neurogenesis after stroke.Exp. Neurol.2008214112513410.1016/j.expneurol.2008.08.00618778705
    [Google Scholar]
  50. TakahashiJ. PalmerT.D. GageF.H. Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures.J. Neurobiol.1999381658110.1002/(SICI)1097‑4695(199901)38:1<65::AID‑NEU5>3.0.CO;2‑Q10027563
    [Google Scholar]
  51. JacobsS. LieD.C. DeCiccoK.L. ShiY. DeLucaL.M. GageF.H. EvansR.M. Retinoic acid is required early during adult neurogenesis in the dentate gyrus.Proc. Natl. Acad. Sci.2006103103902390710.1073/pnas.051129410316505366
    [Google Scholar]
  52. KwokS.K. ParkM.K. ChoM.L. OhH.J. ParkE.M. LeeD.G. LeeJ. KimH.Y. ParkS.H. Retinoic acid attenuates rheumatoid inflammation in mice.J. Immunol.201218921062107110.4049/jimmunol.110270622696440
    [Google Scholar]
  53. KoryakinaA. AeberhardJ. KieferS. HamburgerM. KüenziP. Regulation of secretases by all- trans -retinoic acid.FEBS J.200927692645265510.1111/j.1742‑4658.2009.06992.x19476501
    [Google Scholar]
  54. SodhiR.K. SinghN. Retinoids as potential targets for Alzheimer’s disease.Pharmacol. Biochem. Behav.201412011712310.1016/j.pbb.2014.02.01624582848
    [Google Scholar]
  55. BeheshtiS. All-trans retinoic acid in Alzheimer’s disease.Diagn. Manag. Dement.2020155957210.1016/B978‑0‑12‑815854‑8.00035‑5
    [Google Scholar]
  56. KawabeK. TakanoK. MoriyamaM. NakamuraY. Lipopolysaccharide-stimulated transglutaminase 2 expression enhances endocytosis activity in the mouse microglial cell line BV-2.Neuroimmunomodulation201522424324910.1159/00036548425301694
    [Google Scholar]
  57. TakanoK. KoarashiK. KawabeK. ItakuraM. NakajimaH. MoriyamaM. NakamuraY. Insulin expression in cultured astrocytes and the decrease by amyloid β.Neurochem. Int.201811917117710.1016/j.neuint.2017.10.01729108865
    [Google Scholar]
  58. KT. y K MM. yN. Exendin-4 increases extracellular superoxide dismutase expression in cultured astrocytes.Glob. Drugs Ther.2017251610.15761/GDT.1000S1001
    [Google Scholar]
  59. BeckK.E. De GirolamoL.A. GriffinM. BillettE.E. The role of tissue transglutaminase in 1-methyl-4-phenylpyridinium (MPP+)-induced toxicity in differentiated human SH-SY5Y neuroblastoma cells.Neurosci. Lett.20064051-2465110.1016/j.neulet.2006.06.06116876317
    [Google Scholar]
  60. KawabeK. TakanoK. MoriyamaM. NakamuraY. Amphotericin B increases transglutaminase 2 expression associated with upregulation of endocytotic activity in mouse microglial cell line BV-2.Neurochem. Res.20174251488149510.1007/s11064‑017‑2205‑028224343
    [Google Scholar]
  61. KawabeK. TakanoK. MoriyamaM. NakamuraY. Transglutaminases derived from astrocytes accelerate amyloid β aggregation.Neurochem. Res.20174282384239110.1007/s11064‑017‑2258‑028391388
    [Google Scholar]
  62. MuindiJ.R. FrankelS.R. HuseltonC. DeGraziaF. GarlandW.A. YoungC.W. WarrellR.P.Jr Clinical pharmacology of oral all-trans retinoic acid in patients with acute promyelocytic leukemia.Cancer Res.1992528213821421559217
    [Google Scholar]
  63. FraijB.M. Induction and translocation of tissue transglutaminase isoforms increased phosphorylation in retinoic acid treated erythroleukemia cells.Protein J.201332642643410.1007/s10930‑013‑9499‑923817628
    [Google Scholar]
  64. ShimadaJ. SuzukiY. KimS.J. WangP.C. MatsumuraM. KojimaS. Transactivation via RAR/RXR-Sp1 interaction: Characterization of binding between Sp1 and GC box motif.Mol. Endocrinol.200115101677169210.1210/mend.15.10.070711579201
    [Google Scholar]
  65. KawabeK. TakanoK. MoriyamaM. NakamuraY. Microglia endocytose amyloid β through the binding of transglutaminase 2 and milk fat globule EGF factor 8 protein.Neurochem. Res.2018431414910.1007/s11064‑017‑2284‑y28466190
    [Google Scholar]
  66. SenguptaU. NilsonA.N. KayedR. The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy.EBioMedicine20166424910.1016/j.ebiom.2016.03.03527211547
    [Google Scholar]
  67. BehlC. DavisJ.B. LesleyR. SchubertD. Hydrogen peroxide mediates amyloid β protein toxicity.Cell199477681782710.1016/0092‑8674(94)90131‑78004671
    [Google Scholar]
  68. SodhiR.K. SinghN. All-trans retinoic acid rescues memory deficits and neuropathological changes in mouse model of streptozotocin-induced dementia of Alzheimer’s type.Prog. Neuropsychopharmacol. Biol. Psychiatry201340384610.1016/j.pnpbp.2012.09.01223044340
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429254388230922112915
Loading
/content/journals/cmp/10.2174/0118761429254388230922112915
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): All-trans retinoic acid; Amyloid β; Astrocyte; Cystamine; Microglia; Transglutaminase
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test