- Home
- A-Z Publications
- Current Molecular Pharmacology
- Issue Home
Current Molecular Pharmacology - Current Issue
Volume 17, Issue 1, 2024
-
-
Artemisinin Attenuates Isoproterenol-induced Cardiac Hypertrophy via the ERK1/2 and p38 MAPK Signaling Pathways
Authors: Renxing Song, Chunming Xiong, Juncai Bai, Zhenzhou Bai and Wei LiuBackground:Artemisinin (ART) is mainly derived from Artemisia annua, a traditional Chinese medicinal plant, and has been found to affect cellular biochemical processes, such as proliferation, angiogenesis, and apoptosis, in addition to its antimalarial properties. However, its effect on cardiac hypertrophy and the underlying mechanisms remain unclear.
Objectives:This study aimed to investigate the effect of ART on cardiac hypertrophy and explore its possible mechanisms.
Materials and Methods:A rat model was established by intraperitoneal injection of isoproterenol (ISO) for 3 days, and the degree of myocardial hypertrophy was compared among 5 groups: a control (CON) group, an ISO group, and groups treated with different doses of ART (7 mg/kg/d, 35 mg/kg/d, and 75 mg/kg/d). Echocardiography was used to evaluate cardiac function and structure. The cross-sectional area of cardiomyocytes was measured by hematoxylin and eosin (H&E) staining. The heart weight (HW), body weight (BW), and tail length were measured, and the HW/tail length ratio and the HW/BW ratio were calculated. H9c2 rat cardiomyocytes were cultured, and different amounts of ART were added 2 hours before ISO stimulation. Phalloidin staining was used to evaluate the degree of cell hypertrophy. The levels of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were quantified in rat plasma and cell supernatant using enzyme-linked immunosorbent assay (ELISA), while the expression levels of p-ERK1/2, p-JNK, and p-p38 MAPK were assessed in the myocardium and H9c2 cells via western blot analysis.
Results:Intragastric administration of ART at a dosage of 35 mg/kg/d or over mitigated the early-stage cardiac hypertrophy induced by ISO in rats led to a reduction in left ventricular posterior wall diastolic thickness, interventricular septal thickness at diastole, lowered ANP and BNP levels, as well as a decrease in HW/tail length and HW/BW ratio. In vitro studies demonstrated that ART at a concentration of 100 μM inhibited ISO-mediated hypertrophy of H9c2 cells. The ISO group showed a higher p-ERK/GAPDH ratio and p-p38 MAPK/GAPDH ratio than the control group both in vivo and in vitro. Although the p-JNK/GAPDH ratio was increased in the ISO group, there was no statistical difference. The p-ERK/GAPDH and p-p38/GAPDH ratios were significantly lower in the ART group than in the ISO group.
Conclusion:The mechanism of ART against cardiac hypertrophy was related to inhibition of the ERK1/2 and p38 MAPK signaling pathways.
-
- Pharmacology
-
-
-
The Mediating Role of miR-451/ETV4/MMP13 Signaling Axis on Epithelial-mesenchymal Transition in Promoting Non-small Cell Lung Cancer Progression
Authors: Xue-Jiao Qian, Jing-Wen Wang, Jiang-Bo Liu and Xi YuBackgroundLung cancer is a leading cause of cancer mortality. It is one of the most abundant cancer types clinically, with 2 million new cases diagnosed yearly.
AimsUsing clinically collected non-small cell lung cancer (NSCLC) samples, we sought to hypothesize an innovative intact signaling cascade for the disorder.
MethodsWe dissected snap-frozen NSCLC tissues along with sibling-paired nearby non-tumorous tissues from 108 NSCLC patients. We measured the expression levels of miR-451/ETV4/MMP13 using qRT-PCR and did a thorough investigation of the molecular mechanism for the signaling axis in NSCLC cell line A549. We also studied the epithelial-mesenchymal transition (EMT) process.
ResultsThe activity of miR-451 was significantly decreased in NSCLC tissues, while the expression levels of ETV4 and MMP13 were remarkably increased. At the same time, miR-451 levels maintained a declining trend across TNM stage I–III. Inversely, ETV4 and MMP13 increased as the TNM stage increased. The miR-451/ETV4/MMP13 signaling axis was closely associated with prognosis in NSCLC patients. Based on in vitro experiments, ETV4 was a direct targeting factor for miRNA-451. Meanwhile, ETV4 promoted the tumor properties of NSCLC cells by directly activating MMP13. Silencing MMP13 blocked the EMT progress of NSCLC cells.
ConclusionOverall, we hypothesized an impeccable signaling pathway for NSCLC from a new aspect, and this can offer alternative insights for a better understanding of the disorder.
-
-
-
A Promising Breakthrough: The Potential of VORASIDENIB in the Treatment of Low-grade Glioma
Authors: Alice Bombino, Marcello Magnani and Alfredo ContiBackground:This commentary explores the potential of Vorasidenib, also known as AG-881. This emerging small-molecule inhibitor has garnered substantial attention within the realm of oncology due to its unique mechanism of action and potential therapeutic applications.
Introduction:Gliomas are common malignant brain tumors characterized by diffuse brain infiltration. World Health Organization grade II and grade III diffuse gliomas are considered lower-grade gliomas (LGGs) and have isocitrate dehydrogenase (IDH) mutations. LGGs are challenging due to their infiltrative nature, making them capable of progressing into higher-grade malignancies. Vorasidenib is a novel therapeutic agent targeting mutant IDH1/2, sparking interest in the field.
Mechanism of Action:Vorasidenib inhibits mutant IDH1/2 through a unique mechanism, reducing the production of the oncometabolite 2-hydroxyglutarate (2-HG). This alteration affects key enzymes and DNA methylation, impacting tumor growth and invasion.
Preclinical Evidence:Preclinical studies show vorasidenib's efficacy in inhibiting mutant IDH1/2 and 2-HG production in glioma models. It suppresses tumor growth, making it a potential treatment option.
Clinical Evidence:Early clinical trials demonstrate vorasidenib's clinical activity in non-enhancing gliomas. It reduces 2-hydroxyglutarate levels and tumor cell proliferation, with an objective response rate and prolonged progression-free survival. The drug's safety profile is favorable.
Challenges and Future Directions:Challenges include identifying predictive biomarkers and optimizing sequencing or combinations with existing therapies. Further research is needed to establish long-term effectiveness, evaluate side effects, and explore combinations with immunotherapy.
Conclusion:Vorasidenib significantly advances LGG treatment, targeting a prevalent mutation and slowing tumor growth. Promising preclinical and clinical evidence and manageable side effects suggest its potential impact on LGG management. However, more research, including large trials, is needed to confirm its efficacy and role in treatment.
-
-
-
Apelin Receptor Dimerization and Oligomerization
More LessApelin and its receptor are expressed in many tissues and play an important role in maintaining the homeostasis of the cardiovascular system and body fluids. Also, the association of this system with many diseases, such as diabetes, hypertension, obesity, cancer, diabetic retinopathy, etc., has been determined. This system is considered a therapeutic goal in many mentioned diseases. G protein-coupled receptors (GPCRs) have the ability to form oligomers and dimers with themselves and other receptors. The formation of these oligomers is associated with a change in the signaling pathways of the receptors. Research on the oligo and dimers of these receptors can revolutionize the principles of pharmacology. The apelin receptor (APJ) is also a GPCR and has been shown to have the ability to form dimers and oligomers. This article discusses the dimerization and oligomerization of this receptor with its own receptor and other receptors, as well as the signaling pathways.
-
-
-
A Deeply Quiescent Subset of CML LSC depend on FAO yet Avoid Deleterious ROS by Suppressing Mitochondrial Complex I
Background and ObjectiveDisease relapse and therapy resistance remain serious impediments to treating cancer. Leukemia stem cells (LSC) are therapy resistant and the cause of relapse. A state of deep quiescence appears to enable cancer stem cells (CSC) to acquire new somatic mutations essential for disease progression and therapy resistance. Both normal hematopoietic stem cells (HSC) and LSC share many common features, thereby complicating the safe elimination of LSC. A recent study demonstrated that long lived normal oocytes exist without mitochondrial complex I (MC-1), expressing it in a developmentally regulated fashion, thereby mitigating their vulnerability to ROS. Quiescent CSC rely on mitochondrial FAO, without complex I expression, thereby avoiding the generation of damaging ROS, similar to long lived normal human stem cells. A deeper understanding of the biology of therapy resistance is important for the development of optimal strategies to attain complete leukemia cures.
MethodsHere, using scRNA-sequencing and ATAC-seq on primary chronic myelogenous leukemia (CML) patient samples, combined with bioinformatics analyses, we further examine the heterogeneity of a previously characterized in vitro imatinib-selected CD34-CD38- CML LSC population. We utilized a series of functional analyses, including single-cell metabolomic and Seahorse analyses, to validate the existence of the deepest quiescent leukemia initiators (LI) subset.
ResultsCurrent study revealed heterogeneity of therapy resistant LSC in CML patients and their existence of two functionally distinct states. The most deeply quiescent LI suppress the expression of MC-1, yet are highly dependent on fatty acid oxidation (FAO) for their metabolic requirements and ATAC-seq demonstrated increased chromatin accessibility in this population, all consistent with an extremely primitive, quiescent stemness transcriptional signature. Importantly, the specific CREB binding protein (CBP)/β-catenin antagonist ICG-001 initiates the differentiation of LSC, including LI, decreases chromatin accessibility with differentiation and increasing expression of MC-1, CD34, CD38 and BCR-ABL1, thereby re-sensitizing them to imatinib.
ConclusionWe investigated the biological aspects related to LSC heterogeneity in CML patients and demonstrated the ability of specific small molecule CBP/β-catenin antagonists to safely eliminate deeply quiescent therapy resistant CSC. These observations may represent an attractive generalizable therapeutic strategy that could help develop better protocols to eradicate the quiescent LSC population.
-
-
-
Current Strategies for the Management of Psoriasis with Potential Pharmacological Pathways using Herbals and Immuno-biologicals
Authors: Kiran Sharma and Sumit KumarBackgroundPsoriasis is an acute to chronic multifunctional inflammatory skin disorder mediated through T-cell activation, dendritic cell intervention, local vascular variations, atypical keratinocyte proliferation, and neutrophil activation, leading to a skin disorder with no permanent cure.
ObjectiveThis review aims to find a potent, secure, and dependable medication, with a more scientific examination of herbal resources and recent targeted immunobiological therapies.
MethodsReports evaluating the effectiveness of biologics & herbal remedies for the topical therapy of psoriasis against control therapies were taken into consideration (placebo or active therapy). The work examined cellular circuits involved in inflammation with its immunogenetic mechanism behind various options available for treating psoriasis in addition to the role of agents inducing psoriasis.
ResultsThe extent of psoriasis can range from small, localized spots to total body coverage, and it can happen at any stage of life. Several theories exist for clarification however, the exact cause of psoriasis is not entirely understood. Researchers have discovered genetic loci linkages, environmental changes, drug induction, lifestyle conditions, some infections, etc. resulting in this disorder. There are numerous known conventional medical treatments for psoriasis, ranging from topical and systemic medicines to phototherapy or combinations of both with recent immunobiological treatment. However, the majority of these treatments are ineffective and have a variety of side effects that limit their long-term usage, such as cutaneous atrophy, tissue toxicity, mutagenicity, and immunosuppression.
ConclusionHerbal extracts or isolated compounds can be considered as a substitute for conventional psoriasis treatment. Unfortunately, many investigations often provide a small amount of facts about the safety and effectiveness of topically applied herbal remedies for the treatment of psoriasis. Thus, further factual evidences and validations are needed to promote herbal options, which must be supported by rigorous animal studies or clinical trials using standardised materials and compositions.
-
-
-
Mitochondria-targeted Uncouplers Decrease Inflammatory Reactions in Endothelial Cells by Enhancing Methylation of the ICAM1 Gene Promoter
Authors: Liudmila A. Zinovkina, Ciara I. Makievskaya, Ivan I. Galkin and Roman A. ZinovkinIntroductionThe study aimed to investigate the effects of low concentrations of mitochondrial uncouplers in endothelial cells on the CpG dinucleotide methylation of the ICAM1 gene promoter. The excessive inflammatory response in the endothelium is responsible for the development of many cardiovascular diseases. Mitochondria are important regulators of endothelial cell functions. Mild uncoupling of oxidative phosphorylation and respiration in endothelial mitochondria exerts a long lasting anti-inflammatory effect. However, the detailed mechanism of the anti-inflammatory activity of mitochondrial uncouplers remains unclear.We hypothesized that mild mitochondrial uncoupling leads to epigenetic changes in genomic DNA contributing to the anti-inflammatory response.
MethodsWe studied the long-term effects of mitochondria-targeted compounds with the uncoupler’s activities: the antioxidant plastoquinonyl-decyl-triphenylphosphonium (SkQ1), dodecyl-triphenylphosphonium (C12TPP), and 2,4-dinitrophenol (DNP). The mRNA expression of the intercellular adhesion molecule 1 (ICAM1), a marker of inflammatory activation of endothelial cells, was measured by RT-qPCR. Cytosine methylation in the CpG sites of the ICAM1 gene promoter was estimated by bisulfite sequencing of individual clones.
ResultsIt was found that downregulation of ICAM1 expression caused by DNP and C12TPP was accompanied by an increase in the methylation of CpG sites in the ICAM1 gene promoter. None of the compounds affected intracellular or intramitochondrial ATP levels.
ConclusionLow concentrations of mitochondrial oxidative phosphorylation uncouplers are able to increase methylation of ICAM1 gene promoter, which corresponds to the observed decrease in the levels of mRNA of this gene. Thus, the change in methylation of the ICAM1 gene promoter may underlie the mechanism of decreased ICAM1 expression caused by mild mitochondrial depolarization. Mitochondrial uncouplers may be exploited as possible therapeutic candidates to treat excessive inflammation in endothelium, by changing the methylation status of genomic DNA.
-
-
-
Grp94 Inhibitor HCP1 Suppressed the Replication of SVA in BHK-21 Cells and PK-15 Cells
Authors: Shuo Wang, XiaoLing Cui, Ren Hui, Wen Yao, BaoXiang Zhao, Jun Li and JunYing MiaoBackgroundGlucoregulatory protein 94 (Grp94) is necessary for the post-viral life cycle and plays a quality control role in viral proteins, but the role of Grp94 in regulating viral replication in host cells is not well known. Therefore, finding a compound that can regulate Grp94 will help us to study the mechanism of viral replication. Previously, we synthesized a coumarin pyrazoline derivative HCP1 that is an effective inhibitor of Grp94. We suppose that HCP1 may inhibit viral replication.
ObjectiveThis study aimed to investigate the effect of HCP1 on the replication ability of Senecavirus A (SVA), so as to provide a target and a leading compound for revealing the pathogenic mechanism of the virus and developing antiviral drugs.
MethodsRat cell lines BHK-21 and porcine cell lines PK-15 were infected with SVA, and the infected cells were treated with different concentrations of HCP1. The cell viability (CCK-8), virus titer (TCID50), autophagy level, and Grp94 expression were measured.
ResultsThe results showed that a low concentration of HCP1 decreased viral titer and viral load in BHK-21 and PK-15 cells, and 5μM HCP1 significantly decreased the expression of SVA VP2 protein. In addition, SVA infection can lead to an increased level of autophagy, and HCP1 can inhibit host cell autophagy caused by SVA infection, thereby inhibiting viral replication and infection.
ConclusionThese findings reveal that Grp94 is a key factor in controlling SVA replication, and its inhibitor HCP1 suppresses SVA replication by inhibiting the increase of Grp94 protein level and autophagy induced by SVA. This study will contribute to the development of a new class of small-molecule antiviral drugs.
-
-
-
Differential Kat3 Coactivator Usage Regulates Brain Metabolism and Neuronal Differentiation
IntroductionOur previous work has demonstrated significant effects on the oxidative stress response, mitochondrial function, and oxidative phosphorylation in the livers and intestines of p300 S89A knockin (S89AKI) mice. We now show that this mutation is also associated with brain metabolic defects and neuronal differentiation.
Methodsp300 S89A edited P19 cells, and S89AKI mice demonstrated metabolic and neuronal differentiation defects based on proteomic, cell biological and PET imaging studies.
ResultsThe metabolic and differentiation defects associated with the p300 S89A knockin mutation could be corrected both in vitro and in vivo utilizing the small molecule CBP/beta-catenin antagonist ICG-001.
ConclusionRebalancing the equilibrium between CBP/β-catenin versus p300/β-catenin associated transcription, utilizing the small molecule CBP/beta-catenin antagonist ICG-001, enhances mitochondrial oxidative phosphorylation, metabolic function, and neuronal differentiation and may be able to ameliorate the cognitive decline seen in neurodegenerative disorders, including Alzheimer’s Disease.
-
-
-
Antiarrhythmic Potential of Epicardial Botulinum Toxin Injection for Suppression of Postoperative Atrial Fibrillation
More LessFollowing heart surgery, postoperative atrial fibrillation (AF) is the most prevalent kind of secondary AF and the most frequent adverse event. Postoperative AF is related to a number of unfavorable cardiac outcomes, such as heart failure, stroke, and death. However, the pharmacological treatment for postoperative AF is only relatively efficient and is frequently linked to detrimental complications, including symptomatic bradycardia with atrioventricular block due to rate control drugs and elevated hemorrhage hazard attributable to the administration of anticoagulants. Ablation procedures also result in the irreversible damage of cardiac anatomic structures, which may have long-term negative implications on heart performance. As a result, there is an unmet demand for treatments that can minimize the incidence of postoperative AF in an effective and safe manner. Botulinum toxin is an established neurotoxin that has progressively gained use in every medical science domain. It hinders the propagation of impulses across nerve fibers without causing immediate damage to the cardiac tissue. The transient feature of botulinum toxin action and the eventual restoration of the autonomic nervous system transmission are undeniably advantageous and may render botulinum toxin a potential and feasible treatment approach for postoperative AF.
-
-
-
Physalin B Reduces Tau Phosphorylation and Cell Apoptosis in HEK293 Cells by Activating FoxO1
Authors: Wei Zhang, Yating Shi, Mingti Lv, Yimin Zhang, Wei Ren, Ruling Shi, Hecheng Wang and Linlin ShanBackgroundPhysalin B (PB) is one of the main active compounds of Solanaceae plants, with a wide range of biological activities. PB reportedly has the potential to treat Alzheimer’s disease (AD).
ObjectiveIn this study, we investigated the effect of PB on Tau phosphorylation and cell apoptosis using Tau-expressing HEK293 cells (HEK293/Tau) as a cellular model.
MethodsThe optimum concentration of PB to treat HEK293/Tau cells was determined using the CCK-8 assay. Additionally, the expression of FoxO1, Tau-5, p-Tau (T231, S262, and S404), ERK, p-ERK, GSK-3β, and p-GSK-3β was detected using western blotting to determine the effect of PB on Tau phosphorylation. The apoptosis rate was detected using flow cytometry, and the expression of Bax and Bcl-2 was detected using western blotting and verified using real-time quantitative polymerase chain reaction (RT-qPCR). Moreover, cells were transfected with FoxO1 siRNA to downregulate FoxO1 expression, and the expression of the above-mentioned proteins was detected to verify the effect of PB on Tau phosphorylation and cell apoptosis.
ResultsAfter 24 h of PB treatment, the phosphorylation levels of Tau at S404, S262, and T231 sites decreased significantly, and the activities of GSK-3β and ERK were inhibited. PB also reduced cell apoptosis by reducing the expression of Bax and increasing the expression of Bcl-2. In addition, PB decreased Tau phosphorylation and cell apoptosis by upregulating FoxO1.
ConclusionThe natural compound PB exhibited a protective effect in the AD cell model by increasing FoxO1 expression and reducing Tau phosphorylation and cell apoptosis.
-
-
-
Hepatic Ischemia-reperfusion Injury: Protective Approaches and Treatment
Authors: Kuldeep Singh, Jeetendra Kumar Gupta, Shivendra Kuma, Anurag, Soumyadip Mukherjee and Aman PatelIschemia and reperfusion damage to the liver is one of the major causes of hepatic dysfunction and liver failure after a liver transplant. The start of hepatic ischemia-reperfusion damage is linked to metabolic acidosis, Kupffer cells, neutrophils, excessive calcium, and changes in the permeability of the mitochondrial membrane. Hypoxia activates Kupffer cells, resulting in the production of reactive oxygen species (ROS). These ROS when accumulated, causes apoptosis and necrosis, as well as activate immune and inflammatory responses that involve many cells and signalling molecules. Numerous antioxidant compounds have been researched to lessen oxidative stress and thus serve as potential compounds to deal the ischemia-reperfusion damage. This article confers a deep understanding of the protective effects of some effective therapies, including hepatoprotective agents, attenuation of an increase in xanthine oxidase activity, and administration of antioxidants like N-acetylcysteine, superoxide dismutase (SOD), and ornithine.
-
-
-
Pathophysiology, Current Therapeutic Options, Vaccine Candidates, and Drug Targets for Human Brucellosis
Authors: Manisha Pritam and Rajnish KumarBrucellosis is an infectious disease caused by different species of Brucella bacteria. It is also known as Malta fever, one of the neglected diseases that can cause infection in both animals and humans. Although human-to-human infection is rare, it can spread through the inhalation of airborne agents, and if left untreated, it can lead to serious health complications. In this review, we aim to highlight the pathophysiology, prevention, epidemiology, mitigation, cure, targets for drug development, and vaccine development against human brucellosis. Human brucellosis is mainly caused by consuming unpasteurized milk or dairy products, uncooked meat, and contact with infected animals. Human brucellosis outbreaks are mainly associated with developing and low- to middle-income countries. Brucella is present all over the world, and only some of the regions are at high risk, including Asia, Africa, Eastern Europe, Mexico, South and Central America, the Caribbean, the Mediterranean Basin, and the Middle East. Because of intracellular survival, inhibition of apoptosis, and immune evasion, Brucella can survive and multiply inside the host cell, which can cause chronic disease. By using proteomics approaches, several new drug targets were reported for human brucellosis that can be used for the development of novel drugs. We can also develop an efficient vaccine against human brucellosis by exploring previously reported vaccine candidates against animal brucellosis. The information provided through this review will facilitate research to control and cure human brucellosis and its complicated symptoms.
-
-
-
CD73 Blockade Alleviated Hepatic Fibrosis via Inhibiting Hepatic Stellate Cells Proliferation and Activation
Authors: Lan Yang, Zhao-Wei Gao, Xia-nan Wu, Chong Liu, Juan Zhang, Hui-Zhong Zhang and Ke DongBackgroundLiver fibrosis is associated with the activation of hepatic stellate cells (HSCs). Inhibition of HSCs activation is a strategy for alleviating hepatic fibrogenesis. CD73 is involved in liver disease development, while the mechanism remains unclear.
ObjectiveThis study aimed to investigate the effect of CD73 targeting inhibition on liver fibrosis.
MethodsIntraperitoneal injection of CCl4 was used to induce liver fibrosis in mice models. Adenosine 5′-(α, β-methylene) diphosphate sodium salt (APCP) was used for CD73 blockade. The siRNA was used to induce CD73 knockdown in HSCs. LX2 and HSC-T6 were used to investigate the role of CD73 in HSCs activation in vitro.
ResultsThe results showed that APCP treatment could alleviate hepatic fibrosis. In fibrotic liver tissues, CD73 exhibited a positive correlation with markers of HSCs activation. Furthermore, APCP treatment and CD73 knockdown could inhibit HSCs (LX2 and HSC-T6) activation and proliferation. By using RNA sequencing of liver tissues from control, CCl4-mice, and APCP-treated mice, 851 genes that were significantly changed in CCl4 mice (vs. control) were reversed by APCP treatment. These genes were mainly enriched in cell division-associated biological processes. Moreover, we found that CD73 might be associated with autophagy in HSCs. In fibrotic liver tissues and HSCs, ATG5 and Beclin1 expression could be downregulated by CD73 knockdown and APCP treatment.
ConclusionThis study demonstrated the effects and mechanism of CD73 in HSCs activation and proliferation, which presents the therapeutical potential of CD73 blockage for liver fibrosis.
-
-
-
The Targeted Therapies for Osteosarcoma via Six Major Pathways
Authors: Shuxing Wang, Quanlei Ren, Guoqing Li, Xiaoxuan Zhao, Xing Zhao and Zhen ZhangOsteosarcoma is the most common primary bone malignancy and has a high tendency of local invasion. Although a lot of studies have focused on chemotherapy and combination chemotherapy regimens in recent years, still, there is no particularly perfect regimen for the treatment of relapsed or metastatic OS, and the prognosis is still relatively poor. As a new therapeutic method, targeted therapy provides a new scheme for patients with osteosarcoma and has a wide application prospect. This article reviews the latest progress of targeted therapy for osteosarcoma, and summarizes the research on the corresponding targets of osteosarcoma through six major pathways. These studies can pave the way for new treatments for osteosarcoma patients who need them.
-
-
-
SGLT2 Inhibitors and Diabetic Kidney Disease: Targeting Multiple and Interrelated Signaling Pathways for Renal Protection
More LessAlmost 20-40% of all patients suffering from diabetes mellitus experience chronic kidney disease, which is related to higher mortality (cardiovascular and all-cause). The implication of several pathophysiological mechanisms (hemodynamic, tubular, metabolic and inflammatory) in the pathogenesis of diabetic kidney disease generates an urgent need to develop multitarget therapeutic strategies to face its development and progression. SGLT2 inhibitors are undoubtedly a practice-changing drug class for individuals who experience type 2 diabetes and diabetic kidney disease. In vitro studies, exploratory research, sub-analyses of large randomized controlled trials, and investigation of several biomarkers have demonstrated that SGLT2 inhibitors achieved multiple beneficial activities, targeting several renal cellular and molecular pathways independent of their antihyperglycemic activity. These mainly include the reduction in intraglomerular pressure through the restoration of TGF, impacts on the renin-angiotensin-aldosterone system, improvement of renal hypoxia, adaptive metabolic alterations in substrate use/energy expenditure, improvement of mitochondrial dysfunction, and reduction of inflammation, oxidative stress and fibrosis. This manuscript thoroughly investigates the possible mechanisms that underlie their salutary renal effects in patients with diabetes, focusing on several pathways involved and the interplay between them. It also explores their upcoming role in ameliorating the evolution of chronic kidney disease in patients with diabetes.
-
-
-
Regulating miRNAs Expression by Resveratrol: Novel Insights based on Molecular Mechanism and Strategies for Cancer Therapy
Resveratrol, a polyphenolic phytoalexin found in a wide range of plants, including grapes, berries, and peanuts, is an extensively researched phytochemical with unique pharmacological capabilities and amazing potential to affect many targets in various cancers. Resveratrol's anti-cancer activities are due to its targeting of a variety of cellular and molecular mechanisms and crucial processes involved in cancer pathogenesis, such as the promotion of growth arrest, stimulation of apoptosis, suppression of cell proliferation, induction of autophagy, regulating oxidative stress and inflammation, and improving the influence of some of the other chemotherapeutic agents. MicroRNAs (miRNAs) are non-coding RNAs that modulate gene expression by degrading mRNA or inhibiting translation. MiRNAs serve critical roles in a wide range of biological activities, and disruption of miRNA expression is strongly linked to cancer progression. Recent research has shown that resveratrol has anti-proliferative and/or pro-apoptotic properties via modulating the miRNA network, which leads to the inhibition of tumor cell proliferation, the activation of apoptosis, or the increase of traditional cancer therapy effectiveness. As a result, employing resveratrol to target miRNAs will be a unique and potential anticancer approach. Here, we discuss the main advances in the modulation of miRNA expression by resveratrol, as well as the several miRNAs that may be influenced by resveratrol in different types of cancer and the significance of this natural drug as a promising strategy in cancer treatment.
-
-
-
Peptides for Dual Targeting of ErbB1 and ErbB2: Blocking EGFR Cell Signaling Transduction Pathways for Cancer Chemotherapy
Cancer is one of the most deadly diseases involving dysregulated cell proliferation. Chemotherapeutic drugs have serious drawbacks of nonspecific toxicity and drug resistance. Tyrosine kinases are a significant class of enzymes of protein kinases. The four members of the trans-membrane family of tyrosine kinase receptors known as the human epidermal growth factor receptors (EGFR), ErbB1/HER1, ErbB2/HER2/neu, ErbB3/HER3, and ErbB4/HER4, are overexpressed in many forms of cancer. These receptors are crucial for cell division, invasion, metastasis, angiogenesis, and uncontrolled activation of cancer cells. In this context, an attractive combination of anticancer drug targets is ErbB1 and ErbB2. Numerous cancer types exhibit overexpression of ErbB1 and ErbB2, which is linked to poor prognosis and causes resistance to ErbB1-targeted therapy. Further, it has been reported in recent years that the use of peptides as anticancer agents have the potential to circumvent the drawbacks of the currently used chemotherapeutic drugs. Among them, short peptides have several advantages when compared to small molecules. The present report reviews the importance of tyrosine kinases as targets for cancer, the role of peptides as therapeutic agents, and the investigations that have been carried out by earlier workers for targeting both ErbB1 and ErbB2 using therapeutic peptides.
-
Volumes & issues
Most Read This Month Most Read RSS feed
