Skip to content
2000
Volume 5, Issue 3
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Due to the greater thermal stability, chemical resistance, and dimensional stability of Phenol Formaldehyde (PF) resin, it occupies a very special position in the resin field. Nowadays, natural fiber reinforced PF composite materials are widely used. The objective of this study is to discuss the property improvements of natural fiber reinforced PF biocomposites. This review paper discusses thermal, electrical, diffusion, viscoelastic, tribological, morphological, and mechanical and biodegradability properties. Biocomposites will be a substitute for plastics which provides properties of both natural and synthetic ones. The greater the pollution magnitude, the more devastating the impacts on people’s health, the environment, and economic well-being. The main sources of pollution contributing to it are vehicle exhaust, open waste burning, lighting, heating and the combustion of various fuels for cooking. When compared with plastic materials, PF biocomposites are partially biodegradable, hence limiting the amount of pollution rate. Moreover, it has a wide range of applications, such as packaging, construction, automobiles, and household purposes. In short, this review aims to provide detailed information regarding PF biocomposites.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271605666221007091510
2022-12-01
2024-12-25
Loading full text...

Full text loading...

References

  1. AthijayamaniA. SekarS. Mechanical properties of randomly oriented Calotropis Gigante fiber reinforced phenol formaldehyde biocomposites.J Adv Chem2017131160436050
    [Google Scholar]
  2. MiniK.M. In:Swater, UK Biofiber composites in building and construction.Advances in Bio Based Fiber2022335365
    [Google Scholar]
  3. KhalfallahM. AbbesB. AbbesF. Innovative flax tapes reinforced acrodur biocomposites: A new alternative for automobile applications.Mater. Design20146411612610.1016/j.matdes.2014.07.029
    [Google Scholar]
  4. SanjayM.R. MadhuP. JyotishkumarP. SuchartS. SergeyG. Advances in bio based fiber: Moving towards a green society. The textile Institute Book Series.Elsevier2021
    [Google Scholar]
  5. AhmadzadehA. ZakariaS. Effect of filler and aging on the mechanical properties of phenolated oil palm empty fruit bunch base composites.Sains Malays.2008374383387
    [Google Scholar]
  6. SathishkumarT.P. SatheeshkumarS. NaveenJ. Glass fiber-reinforced polymer composites - A review.J. Reinf. Plast. Compos.201433131258127510.1177/0731684414530790
    [Google Scholar]
  7. JohnM. ThomasS. Biofibres and biocomposites.Carbohydr. Polym.200871334336410.1016/j.carbpol.2007.05.040
    [Google Scholar]
  8. WeiL. McDonaldA. A review on grafting of fibers for biocomposites.Materials20169430310.3390/ma904030328773429
    [Google Scholar]
  9. ChangB.P. A comprehensive review of renewable and sustainable biosourced carbon through pyrolysis in biocomposites uses: Current development and future opportunity.Renewable Sustain. Energy Rev.2021152111666
    [Google Scholar]
  10. AkampumuzaO. WambuaP.M. AhmedA. LiW. QinX.H. Review of the applications of biocomposites in the automotive industry.Polym. Compos.201738112553256910.1002/pc.23847
    [Google Scholar]
  11. SuhailyS.S. Bamboo based biocomposites material, design and applications. In:Materials Science - Advanced Topics.Intech Publication2013489517
    [Google Scholar]
  12. SjostromE. Wood Chemistry, fundamentals and applications.Bark1993109113
    [Google Scholar]
  13. PriyadarshiniM. BiswalT. DashS. Sustainable biocomposites it’s manufacturing process and application.Egypt. J. Chem.201962411511166
    [Google Scholar]
  14. PuddisterD. DomingS.W. BakerJ.A. Opportunities and challenges for Ontario’s forest bio economy.For. Chron.201187446847710.5558/tfc2011‑045
    [Google Scholar]
  15. GurunathanT. MohantyS. SanjayK. NayakA. A review of the recent developments in biocomposites based on natural fibers and their application perspective.Compos., Part A Appl. Sci. Manuf.20157712510.1016/j.compositesa.2015.06.007
    [Google Scholar]
  16. PoljansekI. KrajncM. Characterization of phenol formaldehyde prepolymer resins by in line FT-IR Spectroscopy.Acta Chim. Slov.2005523238244
    [Google Scholar]
  17. YanZ. YujianL. QiH. ZhewenH. Effect of solvent on the chain conformation and cure behavior of phenolic resin.J. Appl. Polym. Sci.200810853009301510.1002/app.27776
    [Google Scholar]
  18. ParkB.D. RiedlB. Yoon SooKim, So WT. Effect of synthesis parameters on thermal behavior of phenol-formaldehyde resol resin.J. Appl. Polym. Sci.20028371415142410.1002/app.2302
    [Google Scholar]
  19. YadavR. DeviA. TripathiG. SrivastavaD. Optimization of the process variables for the synthesis of cardanol-based novolac-type phenolic resin using response surface methodology.Eur. Polym. J.20074383531353710.1016/j.eurpolymj.2007.05.033
    [Google Scholar]
  20. ChappleS. AnandjiwalaR. Flammability of natural fiber reinforced composites and strategies for fire retardancy: A Review.J Therm Composite Mater201023687189310.1177/0892705709356338
    [Google Scholar]
  21. JawaidM. KhalilH.P.S. Abu BakarA. KhanamN. Chemical resistance, void content and tensile properties of oil palm/jute fiber reinforced polymer hybrid composites.Mater. Des.20113221014101910.1016/j.matdes.2010.07.033
    [Google Scholar]
  22. WangD.C. ChangG.W. ChenY. Preparation and thermal stability of boron-containing phenolic resin/clay nanocomposites.Polym. Degrad. Stabil.200893112513310.1016/j.polymdegradstab.2007.10.021
    [Google Scholar]
  23. ÖzturkS. Effect of fiber loading on the mechanical properties of kenaf and flax fiber reinforced phenol formaldehyde composites.J. Compos. Mater.201044192265228810.1177/0021998310364265
    [Google Scholar]
  24. KuH. WangH. PattarachaiyakoopN. TradaM. A review on the tensile properties of natural fiber reinforced polymer composites.Compos., Part B Eng.201142485687310.1016/j.compositesb.2011.01.010
    [Google Scholar]
  25. MohantyA.K. MisraM. HinrichsenG. Biofibres, biodegradable polymers and biocomposites: An overview.Macromol. Mater. Eng.2000276-277112410.1002/(SICI)1439‑2054(20000301)276:1<1::AID‑MAME1>3.0.CO;2‑W
    [Google Scholar]
  26. MalequeM.A. AtiqahA. TalibR.J. ZahurinH. New natural fiber reinforced aluminium composites for automotive brake pad.Int J Mech Mater Eng20127166170
    [Google Scholar]
  27. de MedeirosE.S. AgnelliJ.A.M. JosephK. de CarvalhoL.H. MattosoL.H.C. Mechanical properties of phenolic composites reinforced with jute/cotton hybrid fabrics.Polym. Compos.200526111110.1002/pc.20063
    [Google Scholar]
  28. JosephS. SreekalaM.S. KoshyP. ThomasS. Mechanical properties and water sorption behavior of phenol–formaldehyde hybrid composites reinforced with banana fiber and glass fiber.J. Appl. Polym. Sci.200810931439144610.1002/app.27425
    [Google Scholar]
  29. JosephS. OommenZ. ThomasS. Environmental durability of banana-fiber-reinforced phenol formaldehyde composites.J. Appl. Polym. Sci.200610032521253110.1002/app.23680
    [Google Scholar]
  30. KumarN.M. ReddyG.V. NaiduS.V. RaniT.S. SubhaM.C.S. Mechanical properties of coir/glass fiber phenolic resin based composites.J. Reinf. Plast. Compos.200928212605261310.1177/0731684408093092
    [Google Scholar]
  31. Varada RajuluA. DeviR.R. Flexural properties of ridgegourd/phenolic composites and glass/ridge gourd/phenolic hybrid composites.J. Compos. Mater.200842659360110.1177/0021998307086197
    [Google Scholar]
  32. Varada RajuluA. Rama DeviR. Tensile properties of ridge gourd/phenolic composites and Ridge gourd/phenolic/Glass Hybrid Composites.J. Reinf. Plast. Compos.200726662963810.1177/0731684407075567
    [Google Scholar]
  33. MuQ. WeiC. FengS. Studies on mechanical properties of sisal fiber/phenol formaldehyde resin in-situ composites.Polym. Compos.200930213113710.1002/pc.20529
    [Google Scholar]
  34. JawaidM. Abdul KhalilH.P.S. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review.Carbohydr. Polym.201186111810.1016/j.carbpol.2011.04.043
    [Google Scholar]
  35. CicalaG. CristaldiG. ReccaG. ZiegmannG. El-SabbaghA. DickertM. Properties and performances of various hybrid glass/natural fibre composites for curved pipes.Mater. Des.20093072538254210.1016/j.matdes.2008.09.044
    [Google Scholar]
  36. OchiS. Mechanical properties of kenaf fibers and kenaf/PLA composites.Mech. Mater.2008404-544645210.1016/j.mechmat.2007.10.006
    [Google Scholar]
  37. HarisM.Y. LailaD. ZainudinE.S. MustaphaF. ZahariR. HalimZ. Preliminary review of biocomposites materials for aircraft radome application.Key Eng. Mater.2011471-47256356710.4028/www.scientific.net/KEM.471‑472.563
    [Google Scholar]
  38. WangM. WeiL. ZhaoT. Cure study of addition-cure-type and condensation–addition-type phenolic resins.Eur. Polym. J.200541590391210.1016/j.eurpolymj.2004.11.036
    [Google Scholar]
  39. PilatoL. Phenolic resins: 100 Years and still going strong.React. Funct. Polym.2013732270277
    [Google Scholar]
  40. TrindadeW.G. HoareauW. MegiattoJ.D. RazeraI A T. CatellanA. FrolliniE. Thermoset phenolic matrices reinforced with unmodified and surface-grafted furfuryl alcohol Sugar cane bagasse and curaua fibers: Properties of fibers and composites.Biomacromolecules2005652485249610.1021/bm058006+
    [Google Scholar]
  41. SreekalaM.S. GeorgeJ. KumaranM.G. ThomasS. The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibres.Compos. Sci. Technol.200262333935310.1016/S0266‑3538(01)00219‑6
    [Google Scholar]
  42. JosephH. Polymer nano composites: Processing, characterization and application.New YorkMegraw Hill2006
    [Google Scholar]
  43. PilatoL. Phenolic resins: A Century of progress.1st edSpringer, USA2010155
    [Google Scholar]
  44. VázquezG. AntorrenaG. GonzálezJ. MayorJ. Lignin-phenol-formaldehyde adhesives for exterior grade plywoods.Bioresour. Technol.1995512-318719210.1016/0960‑8524(94)00120‑P
    [Google Scholar]
  45. BinduR.L. NairC.P.R. NinanK.N. Phenolic resins bearing maleimide groups: Synthesis and characterization.J. Polym. Sci. A Polym. Chem.200038364165210.1002/(SICI)1099‑0518(20000201)38:3<641:AID‑POLA28>3.0.CO;2‑Z
    [Google Scholar]
  46. BongardeU.S. ShindeV.D. Review on natural fiber reinforcement polymer composites.Int J Innov Sci Eng Technol201432431436
    [Google Scholar]
  47. PandeyJ.K. NagarjunaV. MohantyA.K. MisraM. Commercial potential and competitiveness of natural fiber composites. In:Biocomposites.Woodhead publishing2015115
    [Google Scholar]
  48. AdhityaP.H. KishoreK.S. PrasadD.V. Characterization of natural fiber reinforced composites.Int J Eng Appl Sci201746257446
    [Google Scholar]
  49. BegumK. IslamM. Natural fibers as a substitute to synthetic fiber in polymer composites: A review.Res J Eng Sci201322789472
    [Google Scholar]
  50. RohitK. DixitS. A review - future aspect of natural fiber reinforced composite.Polymers from Renewable Resources201672436010.1177/204124791600700202
    [Google Scholar]
  51. BaiardoM. FrisoniG. ScandolaM. LicciardelloA. Surface chemical modification of natural cellulose fibers.J. Appl. Polym. Sci.2002831384510.1002/app.2229
    [Google Scholar]
  52. RialsT. WolcottM.P. Physical and mechanical properties of agro-based fibers. RowellR.M. YoungR.A. RowellJ.K. Paper and Composites from Agro-Based Resources.Boca Raton, FLCRC Lewis Publishers19966382
    [Google Scholar]
  53. PandeyS.N. Fifty years of research in jute 1939-1989, Jute technology research laboratories.Calcutta, IndiaHooghly Printing Co. Ltd.1990
    [Google Scholar]
  54. RowellR.M. StoutH.P. Jute and kenaf. LewinM. Handbook of fiber chemistry.3rd EdBocaraton, FLTaylor and Francis2007Vol. 7405452
    [Google Scholar]
  55. FiberAtlas Identification of papermaking fibers.Berlin, GermanySpringer1993
    [Google Scholar]
  56. KirbyR.H. Vegetable fbers.In: LondonLeonard Hill Books Ltd.1963
    [Google Scholar]
  57. BatraS.K. Other long vegetable fibers: Abaca, banana, sisal, henequen, flax, ramie, hemp, sunn, and coir. LewinM Handbook of Fiber Chemistry.3rd ed.Bocaraton, FLTaylor and Francis20078453520
    [Google Scholar]
  58. ChandN. HashmiS.A.R. Effect of plant age on structure and strength of sisal fiber.Metals Mater Processes19935151
    [Google Scholar]
  59. EsauK. Anatomy of Seed Plants, Soil Science.2nd ed.196090149
    [Google Scholar]
  60. SabaN. TahirP. JawaidM. AbdanK. IbrahimN. Potential Utilization of Kenaf Biomass in Different Applications. Khalid jawaid Othman Agricultural biomass based potential materials. Springer-Verlag, Switzerland.
    [Google Scholar]
  61. BiagiottiJ. PugilaD. KennyJ.M. A review on natural fiber based composites.part 1: Structure, processing and properties of vegetable fibers.J Nat2004123768
    [Google Scholar]
  62. RowellR.M. HanJ.S. Changes in kenaf properties and chemistry as a function of growing time. Kenaf properties, processing and products Mississippi State.MSMississippi State University, Ag & Bio Engineering19993341
    [Google Scholar]
  63. MukherjeeP.S. SatyanarayanaK.G. Structure and properties of some vegetable fibers. part 2: Pineapple fiber.J. Mater. Sci.19861515610.1007/BF01144698
    [Google Scholar]
  64. MukherjeeP.S. SatyanarayanaK.G. Structure and properties of sme vegetable fibers. Part 1: Pineapple fiber.J. Mater. Sci.1984193925393410.1007/BF00980755
    [Google Scholar]
  65. SaxenaM. PappuA. HagueR. SharmaA. Sisal fiber based polymer composites and their applications. In:Cellulose Fibers: Bio and Nano-Polymer Composites.Berlin, HeidelbergSpringer2011589659
    [Google Scholar]
  66. Sustainable Cotton ProductionThe Textile Institute Book Series.Elsevier20172167
    [Google Scholar]
  67. SatyanarayanaK.G. PillaiC.K.S. SukumaranK. PillaiS.G.K. RohatgiP.K. VijayanK. Structure property studies of fibres from various parts of the coconut tree.J. Mater. Sci.19821782453246210.1007/BF00543759
    [Google Scholar]
  68. RajulaS.T. RamB. VenkatasubramanianV. KarpagamC. PuthiraP.D. Cane agronomy-tillage,crop geometry,plant systems,weed management,irrigation and intercroping.Scientific Sugarcane Cultivation20142244
    [Google Scholar]
  69. MigitaN. Chemical properties of bamboo. BULL. Tokyo univ.Forests194735139
    [Google Scholar]
  70. HiguchiT. KimuraN. Differences of chemical properties of lignins of vascular bundles and of parenchyma cells of bamboo.Mokuzai Gakkaishi196612173
    [Google Scholar]
  71. LiXiaobo Physical,chemical and mechanical properties of bamboo and it’s utilization potential for fiberboard manufacturing.Masters thesis, LSU Louisiana State University2004pp. 866
    [Google Scholar]
  72. PanshinA.J. de ZeeuwC. Structure, identification, uses and properties of the commercial woods of the United States and Canada. In:Textbook of wood technology.1970Vol. 1705
    [Google Scholar]
  73. SinghS. SinghV. DhawanS. TiwariK. A brief review of jute fiber and its composites.Mater. Today Proc.20185284272843710.1016/j.matpr.2018.10.129
    [Google Scholar]
  74. YanL. ChouwN. JayaramanK. Flax fibre and its composites – A review.Compos., Part B Eng.20145629631710.1016/j.compositesb.2013.08.014
    [Google Scholar]
  75. SiakengR. JawaidM. AriffinH. SapuanS.M. AsimM. SabaN. Natural fiber reinforced polylactic acid composites: A review.Polym. Compos.201940244646310.1002/pc.24747
    [Google Scholar]
  76. HulleA. KadoleP. KatkarP. Agave Americana Leaf Fibers.Fibers201534647510.3390/fib3010064
    [Google Scholar]
  77. Alonso PippoW. LuengoC.A. Alonsoamador Morales AlberterisL. GarzoneP. CornacchiaG. Energy recovery from sugarcane-trash in the light of 2nd generation biofuel. part 2: socio-economic aspects and techno-economic analysis.Waste Biomass Valoriz.20112325726610.1007/s12649‑011‑9069‑3
    [Google Scholar]
  78. KumarS. Fabrication and analysis of thermocol sandwiched between bamboo fiber-reinforced phenol formaldehyde composite laminates.Int J Res Adv Dev201801130134
    [Google Scholar]
  79. JahirulM. RasulM. ChowdhuryA. AshwathN. biofuels production through biomass pyrolysis-a technological review.Energies20125124952500110.3390/en5124952
    [Google Scholar]
  80. HasanK.M.F. HorváthP.G. BakM. LeD.H.A. MucsiZ.M. AlpárT. Rice straw and energy reed fibers reinforced phenol formaldehyde resin polymeric biocomposites.Cellulose202128127859787510.1007/s10570‑021‑04029‑9
    [Google Scholar]
  81. ChrispinD.M. AthijayamaniA. ArunV.G.K. SanthoshD. PrathapS.S. Effects of length and content of natural cellulose fiber on the mechanical behaviors of phenol formaldehyde composites.Mater. Today Proc.20214551652110.1016/j.matpr.2020.02.111
    [Google Scholar]
  82. MayaM.G. GeorgeS.C. SreekalaM.S. JoseT. Mechanical properties of sisal fiber reinforced phenol formaldehyde eco friendly composites.Renew Resour2017812842
    [Google Scholar]
  83. AsimM. JawaidM. AbdanK. IshakM.R. HammamiH. Effect of pineapple leaf fibre and kenaf fibre treatment on mechanical performance of phenolic hybrid composites.Fibers Polym.201718594094710.1007/s12221‑017‑1236‑0
    [Google Scholar]
  84. AsimM. JawaidM. AbdanK. NasirM. Effects of alkali treatments on physical and mechanical strength of pineapple leaf fibers.IOP Mater Sci Engin2018290112030
    [Google Scholar]
  85. SinhaA.K. BhattacharyaS. NarangH.K. Abaca fibre reinforced polymer composites: A review.J. Mater. Sci.20215674569458710.1007/s10853‑020‑05572‑9
    [Google Scholar]
  86. FengN.L. MalingamS.D. JenalR. MustafaZ. SubramonianS. A review of the tensile and fatigue responses of cellulosic fibre-reinforced polymer composites.Mech. Adv. Mater. Structures202027864566010.1080/15376494.2018.1489086
    [Google Scholar]
  87. AshvinderK. ThakurV.K. PotluriP. Cellulosic grewia optiva fibers:towards Chemistry,surface engineering and sustainable materials.J. Environ. Chem. Eng.20219510605910.1016/j.jece.2021.106059
    [Google Scholar]
  88. JosephS. ThomasS. SreekalaM.S. Effect of chemical modification of banana fiber reinforced phenol formaldehyde composites.J. Appl. Polym. Sci.200811042305231410.1002/app.27648
    [Google Scholar]
  89. LoganathanT.M. BurhanI. AbdullahS.K. Physical, Mechanical, thermal, properties of bio-phenolic based composites.Phenolic Polymer Based Composite Mater2021169190
    [Google Scholar]
  90. BarathK.N. SanjayM.R. JawaidM. Effect of stacking sequence on properties of coconut leaf sheath/jute/E-glass reinforced Phenol formaldehyde hybrid composites.J. Ind. Text.2018491152808371876992
    [Google Scholar]
  91. Naresh KumarJ.S. KumarG.S. KumarN. KaseyaK. Mechanical and thermal properties of sodium hydroxide treated sisal natural fiber reinforced polymer composites: Barium sulphate used as filler.Mat Today: Proc.202145655755578
    [Google Scholar]
  92. AsimM. JawaidM. KhanA. AsiriA.M. MalikM.A. Effects of date palm fibers loading on mechanical and thermal properties of date palm reinforced phenolic composites.J. Mater. Res. Technol.20209333610.1016/j.jmrt.2020.01.099
    [Google Scholar]
  93. AzimM ParidahMT SabaN Thermal, physical properties and flammability of silane treated Kenaf/Pineapple leaf fibers phenolic hybrid composites.201820213301338
    [Google Scholar]
  94. PugazhenthiN. AnandP. Mechanical and thermal behavior of hybrid composite medium density fiberboard reinforced with phenol formaldehyde.Heliyon2021712e0859710.1016/j.heliyon.2021.e0859734977413
    [Google Scholar]
  95. JosephS. ThomasS. Electrical properties of banana fiber-reinforced phenol formaldehyde composites.J. Appl. Polym. Sci.2008109125626310.1002/app.27452
    [Google Scholar]
  96. GuptaRK Dielectric properties of bio-fiber polymer composites in advances in bio-based fiber.2022159191
    [Google Scholar]
  97. ShanbhagP. NarayananB.N. Coir composites based electronics for microwave charging of electric vehicles.Mater. Today Proc.20202421
    [Google Scholar]
  98. AsimM. ParidahM.T. SabaN. Thermal, physical properties and flammability of silane treated kenaf/pineapple leaf fibres phenolic hybrid composites.Compos. Struct.20182021330133810.1016/j.compstruct.2018.06.068
    [Google Scholar]
  99. IndiraK.N. Viscoelastic behavior of untreated and chemically treated banana fiber reinforced phenol formaldehyde composites.Fibers Polym.20141519110010.1007/s12221‑014‑0091‑5
    [Google Scholar]
  100. SreekalaM.S. Dynamic mechanical properties of oil palm fiber/PF and Oil palm fiber/glass hybrid phenol formaldehyde composites.Polym. Compos.200526338840010.1002/pc.20095
    [Google Scholar]
  101. SinghTej PruncuC.I. GangilB. SinghG.V. Comparative performance assessment of pineapple fibers based friction composites.J. Mater. Res. Techol.20209214911499
    [Google Scholar]
  102. VrålstadT. SaasenA. FjærE. ØiaT. YtrehusJ.D. KhalifehM. Plug & abandonment of offshore wells: Ensuring long-term well integrity and cost-efficiency.J. Petrol. Sci. Eng.201917347849110.1016/j.petrol.2018.10.049
    [Google Scholar]
  103. RaffaP. BroekhuisA.A. PicchioniF. Polymeric surfactants for enhanced oil recovery: A review.J. Petrol. Sci. Eng.201614572373310.1016/j.petrol.2016.07.007
    [Google Scholar]
  104. BarryG. Rabe Greenhouse Governance: Addressing Climate Change in America.Brookings Institution Press, Washington, DC20101383
    [Google Scholar]
  105. SreekalaM.S. KumaranM.G. ThomasS. Water sorption in oil palm fiber reinforced phenol formaldehyde composites.Compos., Part A Appl. Sci. Manuf.200233676377710.1016/S1359‑835X(02)00032‑5
    [Google Scholar]
  106. RamleeN.A. JawaidM. ZainudinE.S. YamaniS.A.K. Tensile, physical and morphological properties of oil palm empty fruit bunch/sugarcane bagasse fibre reinforced phenolic hybrid composites.J. Mater. Res. Technol.2019843466347410.1016/j.jmrt.2019.06.016
    [Google Scholar]
  107. SanjeeviS. ShanmugamV. KumarS. Effects of water absorption on the mechanical properties of hybrid natural fibre/phenol formaldehyde composites.Sci. Rep.20211111338510.1038/s41598‑021‑92457‑934183690
    [Google Scholar]
  108. SreekalaM.S. KumaranM.G. Seena Joseph and Maya Jacob. Oil Palm Fiber Reinforced Phenol Formaldehyde Composites: Influence of Fiber Surface Modifications on the Mechanical Performance.Appl. Compos. Mater.200075/629532910.1023/A:1026534006291
    [Google Scholar]
  109. OzturkB. Hybrid effect in the mechanical properties of jute/Rockwood hybrid fibers reinforced PF composites.Fibers Polym.201011346447310.1007/s12221‑010‑0464‑3
    [Google Scholar]
  110. PrashanthM. GoudaP.S.S. ManjunathaT.S. BanapurmathN.R. EdacherianeA. Understanding the impact of fiber orientation on mechanical, interlaminar shear strength, and fracture properties of jute–banana hybrid composite laminates.Polym. Compos.202142105475548910.1002/pc.26239
    [Google Scholar]
  111. AyadiR. HananaM. MzidR. HamrouniL. KhoujaM.L. Salhi Hanachi. Hibiscus Cannabis’s L.-kenaf: a review paper.J. Nat. Fibers2017144466484
    [Google Scholar]
  112. ChandramohanD. MarimuthuK. A review on natural fiber.Int. J. Appl. Sci- Res. Rev.201182194206
    [Google Scholar]
  113. AshikK P A review on mechanical properties of natural fiber reinforced hybrid polymer composites.J Mineral Mater character Eng2015305420
    [Google Scholar]
  114. ElanchezhianC. RamnathB.V. RamakrishnanG. RajendrakumarM. NaveenkumarV. SaravanakumarM.K. Review on mechanical properties of natural fiber composites.Mater. Today Proc.2018511785179010.1016/j.matpr.2017.11.276
    [Google Scholar]
  115. SilvaG KimS AguilarR NakamatsuJ Natural fibers as reinforcement additives for geopolymer -A review of potential ecofriendly applications to the construction industry.Sustainable M echnol.202023e00132
    [Google Scholar]
  116. KongIng Properties of bio based fibers. Advances in bio based fiber moving towards a green society. The Textile Institute Book Series.Woodhead Publishing20223364
    [Google Scholar]
/content/journals/caps/10.2174/2452271605666221007091510
Loading
/content/journals/caps/10.2174/2452271605666221007091510
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test