Skip to content
2000
Volume 5, Issue 2
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Aerogels, in recent times, have become materials of extensive research due to their fascinating capabilities in different fields. High porosity, large surface area, low thermal conductivity and low density make them significant in fields such as medicine, environmental engineering, food packaging, and so on. Biodegradability, low toxicity and biocompatibility, in addition to the aforementioned properties, offered by bio-based aerogels, especially polysaccharide based aerogels, give them a huge advantage over conventional inorganic ones. Polysaccharide based aerogels synthesised from starch, cellulose, pectin, alginate, chitosan, carrageenan and agarose precursors enable sustainable developments in the biomedical, cosmetic, electronic, construction and food industries. This review focuses on the biomedical applications of polysaccharide based aerogels, with special emphasis on its implications in drug delivery, tissue engineering, medical implantable devices, wound dressing, biosensors and bio-imaging. The future perspectives of these smart materials have also been subjected to discussion.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271605666220929151916
2022-11-01
2024-12-25
Loading full text...

Full text loading...

References

  1. AegerterM.A. LeventisN. KoebelM.M. Aerogels handbook.Springer Science & Business Media201193210.1007/978‑1‑4419‑7589‑8
    [Google Scholar]
  2. FrickeJ. TillotsonT. Aerogels: Production, characterization, and applications.Thin Solid Films19972971-221222310.1016/S0040‑6090(96)09441‑2
    [Google Scholar]
  3. MuhammadA. LeeD. ShinY. ParkJ. Recent progress in polysaccharide aerogels: Their synthesis, application, and fu-ture Outlook.Polymers2021138134710.3390/polym13081347 33924110
    [Google Scholar]
  4. MikkonenK.S. ParikkaK. GhafarA. TenkanenM. Prospects of polysaccharide aerogels as modern advanced food materi-als.Trends Food Sci. Technol.201334212413610.1016/j.tifs.2013.10.003
    [Google Scholar]
  5. MaryS.K. KoshyR.R. ArunimaR. ThomasS. PothenL.A. A review of recent advances in starch-based materials: Bionanocomposites, pH sensitive films, aerogels and carbon dots.In: Carbohydrate Polymer Technologies and Applications2022100190
    [Google Scholar]
  6. SyedaH.I. YapP.S. A review on three-dimensional cellulose-based aerogels for the removal of heavy metals from water.Sci. Total Environ.2022807Pt 115060610.1016/j.scitotenv.2021.150606 34592292
    [Google Scholar]
  7. RuX. ZhaoK. HuZ. Preparation of Bletilla striata poly-saccharide composite aerogel and its application in adsorption of dyes and oils from water.J. Porous Mater.2022294991100010.1007/s10934‑022‑01223‑3
    [Google Scholar]
  8. Morcillo-MartínR. EspinosaE. Rabasco-VílchezL. SanchezL.M. de HaroJ. RodríguezA. Cellulose nanofiber-Based Aer-ogels From Wheat Straw: Influence Of Surface Load And Lig-nin Content On Their Properties And Dye Removal Capacity.Biomolecules202212223210.3390/biom12020232 35204733
    [Google Scholar]
  9. FuY. GuoZ. Natural polysaccharide-based aerogels and their applications in oil–water separations: A review.J. Mater. Chem. A Mater. Energy Sustain.202210158129815810.1039/D2TA00708H
    [Google Scholar]
  10. DumanO. DikerC.Ö. UğurluH. TunçS. Highly hydrophobic and superoleophilic agar/PVA aerogels for selective removal of oily substances from water.Carbohydr. Polym.202228611927510.1016/j.carbpol.2022.119275 35337501
    [Google Scholar]
  11. WangY. SuY. WangW. FangY. RiffatS.B. JiangF. The ad-vances of polysaccharide-based aerogels: Preparation and po-tential application.Carbohydr. Polym.201922611524210.1016/j.carbpol.2019.115242 31582065
    [Google Scholar]
  12. DengJ. ZhuE.Q. XuG.F. Overview of renewable poly-saccharide-based composites for biodegradable food packag-ing applications.Green Chem.202224248049210.1039/D1GC03898B
    [Google Scholar]
  13. DhuaS. GuptaA.K. MishraP. Aerogel: Functional emerging material for potential application in food: A review.In: Food Bioprocess Technol.Springer202212610.1007/s11947‑022‑02829‑w
    [Google Scholar]
  14. Abdullah ZouY FarooqS Bio-aerogels: Fabrication, properties and food applications.Crit. Rev. Food Sci. Nutr.20222123 35156465
    [Google Scholar]
  15. IshwaryaS.P. NishaP. Advances and prospects in the food applications of pectin hydrogels.Crit. Rev. Food Sci. Nutr.202262164393441710.1080/10408398.2021.1875394 33511846
    [Google Scholar]
  16. LiuY. LiuJ. SongP. Recent advances in polysaccharide-based carbon aerogels for environmental remediation and sustainable energy.Sustain Mater Technol202127e0024010.1016/j.susmat.2020.e00240
    [Google Scholar]
  17. ZouF. BudtovaT. Polysaccharide-based aerogels for thermal insulation and superinsulation: An overview.Carbohydr. Polym.202126611813010.1016/j.carbpol.2021.118130 34044946
    [Google Scholar]
  18. WuK. WuH. WangR. The use of cellulose fiber from office waste paper to improve the thermal insulation-related property of konjac glucomannan/starch aerogel.Ind. Crops Prod.202217711442410.1016/j.indcrop.2021.114424
    [Google Scholar]
  19. Radwan-PragłowskaJ. PiątkowskiM. JanusŁ. BogdałD. MatysekD. CablikV. Microwave-assisted synthesis and characterization of antioxidant chitosan-based aerogels for bi-omedical applications.IJPAC Int. J. Polym. Anal. Charact.201823872172910.1080/1023666X.2018.1504471
    [Google Scholar]
  20. MisraS.K. PathakK. Microscale and nanoscale chitosan-based particles for biomedical use.In: Chitosan in Biomedical Applications.Elsevier2022377310.1016/B978‑0‑12‑821058‑1.00010‑1
    [Google Scholar]
  21. GroultS. BuwaldaS. BudtovaT. Tuning bio-aerogel proper-ties for controlling drug delivery. Part 2: Cellulose-pectin composite aerogels.In: Biomaterial Advances.Springer2022212732
    [Google Scholar]
  22. ZamboulisA. MichailidouG. KoumentakouI. BikiarisD.N. Polysaccharide 3D printing for drug delivery applications.Pharmaceutics202214114510.3390/pharmaceutics14010145 35057041
    [Google Scholar]
  23. AbdelhamidH.N. MathewA.P. Cellulose–Metal Organic Frameworks (CelloMOFs) hybrid materials and their multi-faceted applications: A review.Coord. Chem. Rev.202245121426310.1016/j.ccr.2021.214263
    [Google Scholar]
  24. El-NaggarM.E. OthmanS.I. AllamA.A. MorsyO.M. Synthesis, drying process and medical application of polysaccharide-based aerogels.Int. J. Biol. Macromol.20201451115112810.1016/j.ijbiomac.2019.10.037 31678101
    [Google Scholar]
  25. BehrM. GanesanK. Improving polysaccharide-based chi-tin/chitosan-aerogel materials by learning from genetics and molecular biology.Materials2022153104110.3390/ma15031041 35160985
    [Google Scholar]
  26. AuriemmaG. RussoP. DelG.P. García-GonzálezC.A. LandínM. AquinoR.P. Technologies and formulation design of poly-saccharide-based hydrogels for drug delivery.Molecules20202514315610.3390/molecules25143156 32664256
    [Google Scholar]
  27. ValoH. ArolaS. LaaksonenP. Drug release from nano-particles embedded in four different nanofibrillar cellulose aerogels.Eur. J. Pharm. Sci.2013501697710.1016/j.ejps.2013.02.023 23500041
    [Google Scholar]
  28. TkalecG. KnezŽ. NovakZ. Fast production of high-methoxyl pectin aerogels for enhancing the bioavailability of low-soluble drugs.J. Supercrit. Fluids2015106162210.1016/j.supflu.2015.06.009
    [Google Scholar]
  29. HorvatG. PantićM. KnezŽ. NovakZ. Encapsulation and drug release of poorly water soluble nifedipine from bio-carriers.J. Non-Cryst. Solids201848148649310.1016/j.jnoncrysol.2017.11.037
    [Google Scholar]
  30. BugnoneC.A. RonchettiS. MannaL. BancheroM. An emulsi-fication/internal setting technique for the preparation of coated and uncoated hybrid silica/alginate aerogel beads for con-trolled drug delivery.J. Supercrit. Fluids20181421910.1016/j.supflu.2018.07.007
    [Google Scholar]
  31. ChenY. QiY. YanX. Green fabrication of porous chi-tosan/graphene oxide composite xerogels for drug delivery.J. Appl. Polym. Sci.201413164000610.1002/app.40006
    [Google Scholar]
  32. SampathUGTM ChingYC ChuahCH Influence of a nonionic surfactant on curcumin delivery of nanocellulose re-inforced chitosan hydrogel.Int J Biol Macromol2018118Pt A10556410.1016/j.ijbiomac.2018.06.14730001596
    [Google Scholar]
  33. ChingY.C. GunathilakeT.M.S.U. ChuahC.H. ChingK.Y. SinghR. LiouN.S. Curcumin/Tween 20-incorporated cellulose na-noparticles with enhanced curcumin solubility for nano-drug delivery: Characterization and in vitro evaluation.Cellulose20192695467548110.1007/s10570‑019‑02445‑6
    [Google Scholar]
  34. WangR. ShouD. LvO. KongY. DengL. ShenJ. pH-controlled drug delivery with hybrid aerogel of chitosan, car-boxymethyl cellulose and graphene oxide as the carrier.Int. J. Biol. Macromol.201710324825310.1016/j.ijbiomac.2017.05.064 28526342
    [Google Scholar]
  35. Radwan-PragłowskaJ. PiątkowskiM. JanusŁ. BogdałD. MatysekD. Biodegradable, pH-responsive chitosan aerogels for biomedical applications.RSC Advances2017752329603296510.1039/C6RA27474A
    [Google Scholar]
  36. LiuZ. ZhangS. HeB. WangS. KongF. Synthesis of cellulose aerogels as promising carriers for drug delivery: A review.Cellulose20212852697271410.1007/s10570‑021‑03734‑9
    [Google Scholar]
  37. ValenteS.A. SilvaL.M. LopesG.R. SarmentoB. CoimbraM.A. PassosC.P. Polysaccharide-based formulations as potential carriers for pulmonary delivery – A review of their properties and fates.Carbohydr. Polym.202227711878410.1016/j.carbpol.2021.118784 34893219
    [Google Scholar]
  38. LiuZ. ZhangS. GaoC. MengX. WangS. KongF. Tempera-ture/pH-responsive carboxymethyl cellulose/poly (N-isopropyl acrylamide) interpenetrating polymer network aero-gels for drug delivery systems.Polymers2022148157810.3390/polym14081578 35458328
    [Google Scholar]
  39. IkadaY. Challenges in tissue engineering.J. R. Soc. Interface200631058960110.1098/rsif.2006.0124 16971328
    [Google Scholar]
  40. García-GonzálezC.A. BudtovaT. DurãesL. An opinion paper on aerogels for biomedical and environmental applica-tions.Molecules2019249181510.3390/molecules24091815 31083427
    [Google Scholar]
  41. OriveG. CarcabosoA.M. HernándezR.M. GascónA.R. PedrazJ.L. Biocompatibility evaluation of different alginates and algi-nate-based microcapsules.Biomacromolecules20056292793110.1021/bm049380x 15762661
    [Google Scholar]
  42. CaiH. SharmaS. LiuW. Aerogel microspheres from natural cellulose nanofibrils and their application as cell cul-ture scaffold.Biomacromolecules20141572540254710.1021/bm5003976 24894125
    [Google Scholar]
  43. FrancoP. PessolanoE. BelvedereR. PetrellaA. De MarcoI. Supercritical impregnation of mesoglycan into calcium algi-nate aerogel for wound healing.J. Supercrit. Fluids202015710471110.1016/j.supflu.2019.104711
    [Google Scholar]
  44. ValchukN.A. BrovkoO.S. PalamarchukI.A. Preparation of aerogel materials based on alginate–chitosan interpolymer complex using supercritical fluids.Russ. J. Phys. Chem. B. Focus Phys.20191371121112410.1134/S1990793119070224
    [Google Scholar]
  45. MartinsM. BarrosA.A. QuraishiS. Preparation of macroporous alginate-based aerogels for biomedical applica-tions.J. Supercrit. Fluids201510615215910.1016/j.supflu.2015.05.010
    [Google Scholar]
  46. YılmazP. öztürk Er E, Bakırdere S, ülgen K, özbek B. Appli-cation of supercritical gel drying method on fabrication of mechanically improved and biologically safe three-component scaffold composed of graphene ox-ide/chitosan/hydroxyapatite and characterization studies.J. Mater. Res. Technol.2019865201521610.1016/j.jmrt.2019.08.043
    [Google Scholar]
  47. BaldinoL. CardeaS. De MarcoI. ReverchonE. Chitosan scaffolds formation by a supercritical freeze extraction pro-cess.J. Supercrit. Fluids201490273410.1016/j.supflu.2014.03.002
    [Google Scholar]
  48. LiuJ. ChengF. GrénmanH. Development of nanocellu-lose scaffolds with tunable structures to support 3D cell cul-ture.Carbohydr. Polym.201614825927110.1016/j.carbpol.2016.04.064 27185139
    [Google Scholar]
  49. PircherN. FischhuberD. CarbajalL. Preparation and reinforcement of dual‐porous biocompatible cellulose scaf-folds for tissue engineering.Macromol. Mater. Eng.2015300991192410.1002/mame.201500048 26941565
    [Google Scholar]
  50. KarimzadehZ. NamaziH. Nontoxic double-network polymer-ic hybrid aerogel functionalized with reduced graphene oxide: Preparation, characterization, and evaluation as drug delivery agent.J. Polym. Res.20222923710.1007/s10965‑022‑02902‑0
    [Google Scholar]
  51. ToméL.I.N. ReisM.S. de SousaH.C. BragaM.E.M. Chitosan-xanthan gum PEC-based aerogels: A chemically stable PEC in scCO2.Mater. Chem. Phys.202228712629410.1016/j.matchemphys.2022.126294
    [Google Scholar]
  52. López-IglesiasC. BarrosJ. ArdaoI. Vancomycin-loaded chitosan aerogel particles for chronic wound applications.Carbohydr. Polym.201920422323110.1016/j.carbpol.2018.10.012 30366534
    [Google Scholar]
  53. LodhiG. Chitooligosaccharide and its derivatives: Preparation and biological applications.BioMed Res. Int.20142014114
    [Google Scholar]
  54. DuongH.M. LimZ.K. NguyenT.X. GuB. PenefatherM.P. Phan-ThienN. Compressed hybrid cotton aerogels for stop-ping liquid leakage.Colloids Surf. A Physicochem. Eng. Asp.201853750250710.1016/j.colsurfa.2017.10.067
    [Google Scholar]
  55. WanC. LiJ. Cellulose aerogels functionalized with polypyr-role and silver nanoparticles: In-situ synthesis, characteriza-tion and antibacterial activity.Carbohydr. Polym.201614636236710.1016/j.carbpol.2016.03.081 27112885
    [Google Scholar]
  56. SunF. NordliH.R. PukstadB. KristoferG.E. Chinga-CarrascoG. Mechanical characteristics of nanocellulose-PEG bionano-composite wound dressings in wet conditions.J. Mech. Behav. Biomed. Mater.20176937738410.1016/j.jmbbm.2017.01.049 28171794
    [Google Scholar]
  57. LiuJ. Chinga-CarrascoG. ChengF. Hemicellulose-reinforced nanocellulose hydrogels for wound healing appli-cation.Cellulose20162353129314310.1007/s10570‑016‑1038‑3
    [Google Scholar]
  58. LuT. LiQ. ChenW. YuH. Composite aerogels based on dialdehyde nanocellulose and collagen for potential applica-tions as wound dressing and tissue engineering scaffold.Compos. Sci. Technol.20149413213810.1016/j.compscitech.2014.01.020
    [Google Scholar]
  59. JijiS. UdhayakumarS. RoseC. MuralidharanC. KadirveluK. Thymol enriched bacterial cellulose hydrogel as effective ma-terial for third degree burn wound repair.Int. J. Biol. Macromol.201912245246010.1016/j.ijbiomac.2018.10.192 30385344
    [Google Scholar]
  60. LohE.Y.X. FauziM.B. NgM.H. NgP.Y. NgS.F. Mohd AminM.C.I. Insight into delivery of dermal fibroblast by non-biodegradable bacterial nanocellulose composite hydrogel on wound healing.Int. J. Biol. Macromol.202015949750910.1016/j.ijbiomac.2020.05.011 32387606
    [Google Scholar]
  61. GuoN. XiaY. ZengW. Alginate-based aerogels as wound dressings for efficient bacterial capture and enhanced antibacterial photodynamic therapy.Drug Deliv.20222911086109910.1080/10717544.2022.2058650 35373683
    [Google Scholar]
  62. RostamitabarM. GhahramaniA. SeideG. JockenhoevelS. GhazanfariS. Drug loaded cellulose–chitosan aerogel micro-fibers for wound dressing applications.Cellulose202229116261628110.1007/s10570‑022‑04630‑6
    [Google Scholar]
  63. FontenotK.R. EdwardsJ.V. HaldaneD. Struc-ture/function relations of chronic wound dressings and emerging concepts on the interface of nanocellulosic sensors.In: Lignocellulosics.Elsevier202024927810.1016/B978‑0‑12‑804077‑5.00014‑2
    [Google Scholar]
  64. TummalapalliM. SinghS. SanwariaS. GuraveP.M. Design and development of advanced glucose biosensors via tuned interactions between marine polysaccharides and diagnostic elements–A survey. In: Sensors International2022100170
    [Google Scholar]
  65. ThangarajR. NellaiappanS. SudhakaranR. KumarA.S. A flow injection analysis coupled dual electrochemical detector for selective and simultaneous detection of guanine and adenine.Electrochim. Acta201412348549310.1016/j.electacta.2014.01.066
    [Google Scholar]
  66. ZhangL. ZhangJ. Multiporous molybdenum carbide nano-sphere as a new charming electrode material for highly sensi-tive simultaneous detection of guanine and adenine.Biosens. Bioelectron.201811021822410.1016/j.bios.2018.03.064 29625329
    [Google Scholar]
  67. SonnerZ. WilderE. HeikenfeldJ. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications.Biomicrofluidics20159303130110.1063/1.4921039 26045728
    [Google Scholar]
  68. GomesN.O. CarrilhoE. MachadoS.A.S. SgobbiL.F. Bacterial cellulose-based electrochemical sensing platform: A smart material for miniaturized biosensors.Electrochim. Acta202034913634110.1016/j.electacta.2020.136341
    [Google Scholar]
  69. AbdiM.M. RazalliR.L. TahirP.M. ChaibakhshN. HassaniM. MirM. Optimized fabrication of newly cholesterol biosensor based on nanocellulose.Int. J. Biol. Macromol.20191261213122210.1016/j.ijbiomac.2019.01.001 30611809
    [Google Scholar]
  70. SilvaR.R. Raymundo-PereiraP.A. CamposA.M. Microbi-al nanocellulose adherent to human skin used in electrochem-ical sensors to detect metal ions and biomarkers in sweat.Talanta202021812115310.1016/j.talanta.2020.121153 32797908
    [Google Scholar]
  71. ZhaoV.X.T. WongT.I. ZhengX.T. TanY.N. ZhouX. Colori-metric biosensors for point-of-care virus detections.Mater. Sci. Energy Technol.2020323724910.1016/j.mset.2019.10.002 33604529
    [Google Scholar]
  72. MilindanuthP. PisitsakP. A novel colorimetric sensor based on rhodamine-B derivative and bacterial cellulose for the de-tection of Cu(II) ions in water.Mater. Chem. Phys.201821632533110.1016/j.matchemphys.2018.06.003
    [Google Scholar]
  73. GuoW. HeH. ZhuH. Preparation and properties of a biomass cellulose-based colorimetric sensor for Ag+ and Cu2+.Ind. Crops Prod.201913741041810.1016/j.indcrop.2019.05.044
    [Google Scholar]
  74. FontenotK.R. EdwardsJ.V. HaldaneD. Human neutro-phil elastase detection with fluorescent peptide sensors conju-gated to cellulosic and nanocellulosic materials: Part II, struc-ture/function analysis.Cellulose20162321297130910.1007/s10570‑016‑0873‑6
    [Google Scholar]
  75. Ruiz-PalomeroC. Benítez-MartínezS. SorianoM.L. ValcárcelM. Fluorescent nanocellulosic hydrogels based on graphene quantum dots for sensing laccase.Anal. Chim. Acta2017974939910.1016/j.aca.2017.04.018 28535886
    [Google Scholar]
  76. Ruiz-PalomeroC. SorianoM.L. Benítez-MartínezS. ValcárcelM. Photoluminescent sensing hydrogel platform based on the combination of nanocellulose and S,N-codoped graphene quantum dots.Sens. Actuators B Chem.201724594695310.1016/j.snb.2017.02.006
    [Google Scholar]
  77. BasarirF. KaschukJ.J. VapaavuoriJ. Perspective about cellu-lose-based pressure and strain sensors for human motion de-tection.Biosensors202212418710.3390/bios12040187 35448247
    [Google Scholar]
  78. SabriF. SebelikM.E. MeachamR. BoughterJ.D.Jr ChallisM.J. LeventisN. In vivo ultrasonic detection of polyurea cross-linked silica aerogel implants.PLoS One201386e6634810.1371/journal.pone.0066348 23799093
    [Google Scholar]
  79. ChauhanP. HadadC. LópezA.H. A nanocellulose–dye conjugate for multi-format optical pH-sensing.Chem. Commun.201450679493949610.1039/C4CC02983F 25009835
    [Google Scholar]
  80. GrateJ.W. MoK.F. ShinY. Alexa fluor-labeled fluores-cent cellulose nanocrystals for bioimaging solid cellulose in spatially structured microenvironments.Bioconjug. Chem.201526359360110.1021/acs.bioconjchem.5b00048 25730280
    [Google Scholar]
  81. DongS. RomanM. Fluorescently labeled cellulose nanocrys-tals for bioimaging applications.J. Am. Chem. Soc.200712945138101381110.1021/ja076196l 17949004
    [Google Scholar]
  82. GuoJ. LiuD. FilpponenI. Photoluminescent hybrids of cellulose nanocrystals and carbon quantum dots as cytocom-patible probes for in vitro bioimaging.Biomacromolecules20171872045205510.1021/acs.biomac.7b00306 28530806
    [Google Scholar]
  83. O’DonnellN. OkkelmanI.A. TimashevP. GromovykhT.I. PapkovskyD.B. DmitrievR.I. Cellulose-based scaffolds for fluorescence lifetime imaging-assisted tissue engineering.Acta Biomater.201880859610.1016/j.actbio.2018.09.034 30261339
    [Google Scholar]
  84. ZhangZ. LiuG. LiX. ZhangS. LüX. WangY. Design and synthesis of fluorescent nanocelluloses for sensing and bi-oimaging applications.ChemPlusChem202085348750210.1002/cplu.201900746 32187845
    [Google Scholar]
  85. ColomboL. ZoiaL. ViolattoM.B. Organ distribution and bone tropism of cellulose nanocrystals in living mice.Biomacromolecules20151692862287110.1021/acs.biomac.5b00805 26226200
    [Google Scholar]
  86. KarageorgiouV. KaplanD. Porosity of 3D biomaterial scaf-folds and osteogenesis.Biomaterials200526275474549110.1016/j.biomaterials.2005.02.002 15860204
    [Google Scholar]
  87. ThomasS. PothanL.A. Mavelil-SamR. Biobased aerogels: Polysaccharide and protein-based materials.In: Green Chemistry Series.20181810.1039/9781782629979
    [Google Scholar]
  88. MalekiH. DurãesL. García-GonzálezC.A. DelG.P. PortugalA. MahmoudiM. Synthesis and biomedical applications of aero-gels: Possibilities and challenges.Adv. Colloid Interface Sci.201623612710.1016/j.cis.2016.05.011 27321857
    [Google Scholar]
  89. ZhengL. ZhangS. YingZ. LiuJ. ZhouY. ChenF. Engineer-ing of aerogel-based biomaterials for biomedical applications.Int. J. Nanomedicine2020152363237810.2147/IJN.S238005 32308388
    [Google Scholar]
  90. Alvarado-HidalgoF. Ramírez-SánchezK. Starbird-PerezR. Smart porous multi-stimulus polysaccharide-based biomateri-als for tissue engineering.Molecules20202522528610.3390/molecules25225286 33202707
    [Google Scholar]
/content/journals/caps/10.2174/2452271605666220929151916
Loading
/content/journals/caps/10.2174/2452271605666220929151916
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Aerogels; biomedical applications; cellulose; chitosan; drug delivery; polysaccharides; starch
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test