Skip to content
2000
Volume 5, Issue 2
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Background

This paper signifies using coir pith lignin as a cheap and reliable carbon source for preparing bio-based carbonaceous material.

Objective

The coir pith is selected as it is abundantly available and has a very high lignin content of 38-59.5%. The soda extraction process does the extraction of lignin from coir pith with a yield of 45%.

Methods

This extracted lignin is then subjected to a different procedure to transform it into carbon nanofibers with an I/I ratio of 0.35 and carbon fillers with a high surface area of 1089.1 m2/g without the presence of an activating agent.

Results

Thus prepared carbonaceous fillers are potential reinforcements for polymer matrices as these fillers may provide sufficient mechanical and thermal stability to the composites.

Conclusion

Furthermore, due to their excellent electrical conductivity, 0.221 S/cm, the carbonaceous nanomaterials are suitable for multifunctional composite applications. This is the first work based on coir pith lignin as a carbon precursor to the best of our knowledge.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271605666220523161615
2022-08-25
2024-12-26
Loading full text...

Full text loading...

References

  1. FrankE. SteudleL.M. IngildeevD. SpörlJ.M. BuchmeiserM.R. Carbon fibers: Precursor systems, processing, structure, and properties.Angew. Chem. Int. Ed. Engl.201453215262529810.1002/anie.201306129 24668878
    [Google Scholar]
  2. KalyaniP. AnithaA. Biomass carbon & its prospects in electrochemical energy systems.Int. J. Hydrogen Energy201338104034404510.1016/j.ijhydene.2013.01.048
    [Google Scholar]
  3. CurtinJ. McInerneyC. GallachóirB.Ó. HickeyC. DeaneP. DeeneyP. Quantifying stranding risk for fossil fuel assets and implications for renewable energy investment: A review of the literature.Renew. Sustain. Energy Rev.201911610940210.1016/j.rser.2019.109402
    [Google Scholar]
  4. ChatterjeeS. JonesE.B. ClingenpeelA.C. Conversion of lignin precursors to carbon fibers with nanoscale graphitic domains.ACS Sustain. Chem.& Eng.2014282002201010.1021/sc500189p
    [Google Scholar]
  5. DallmeyerI. LinL.T. LiY. KoF. KadlaJ.F. Preparation and characterization of interconnected, kraft lignin based carbon fibrous materials by electrospinning.Macromol. Mater. Eng.2014299554055110.1002/mame.201300148
    [Google Scholar]
  6. MaX. KollaP. ZhaoY. SmirnovaA.L. FongH. Electrospun lignin-derived carbon nanofiber mats surface-decorated with MnO2 nanowhiskers as binder-free supercapacitor electrodes with high performance.J. Power Sources201632554154810.1016/j.jpowsour.2016.06.073
    [Google Scholar]
  7. LaiC. ZhouZ. ZhangL. Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors.J. Power Sources201424713414110.1016/j.jpowsour.2013.08.082
    [Google Scholar]
  8. YoueW-J. KimS.J. LeeS-M. ChunS-J. KangJ. KimY.S. MnO2-deposited lignin-based carbon nanofiber mats for application as electrodes in symmetric pseudocapacitors.Int. J. Biol. Macromol.201811294395010.1016/j.ijbiomac.2018.02.048 29438754
    [Google Scholar]
  9. García-MateosF.J. Cordero-LanzacT. BerenguerR. Lignin-derived Pt supported carbon (submicron) fiber electrocatalysts for alcohol electro-oxidation.Appl. Catal. B2017211183010.1016/j.apcatb.2017.04.008
    [Google Scholar]
  10. CaoQ. ZhangY. ChenJ. Electrospun biomass based carbon nanofibers as high-performance supercapacitors.Ind. Crops Prod.202014811218110.1016/j.indcrop.2020.112181
    [Google Scholar]
  11. ChoM. JiL. LiuL-Y. High performance electrospun carbon nanofiber mats derived from flax lignin.Ind. Crops Prod.202015511283310.1016/j.indcrop.2020.112833
    [Google Scholar]
  12. WangX. XuQ. ChengJ. Bio-refining corn stover into microbial lipid and advanced energy material using ionic liquid-based organic electrolyte.Ind. Crops Prod.202014511213710.1016/j.indcrop.2020.112137
    [Google Scholar]
  13. KhezamiL. ChetouaniA. TaoukB. CapartR. Production and characterisation of activated carbon from wood components in powder: Cellulose, lignin, xylan.Powder Technol.20051571-3485610.1016/j.powtec.2005.05.009
    [Google Scholar]
  14. FierroV. Torné-FernándezV. MontanéD. CelzardA. Adsorption of phenol onto activated carbons having different textural and surface properties.Microporous Mesoporous Mater.20081111-327628410.1016/j.micromeso.2007.08.002
    [Google Scholar]
  15. FierroV. Torné-FernándezV. CelzardA. Methodical study of the chemical activation of Kraft lignin with KOH and NaOH.Microporous Mesoporous Mater.2007101341943110.1016/j.micromeso.2006.12.004
    [Google Scholar]
  16. MontanéD. Torné-FernándezV. FierroV. Activated carbons from lignin: Kinetic modeling of the pyrolysis of Kraft lignin activated with phosphoric acid.Chem. Eng. J.2005106111210.1016/j.cej.2004.11.001
    [Google Scholar]
  17. MaldhureA.V. EkheJ. Preparation and characterizations of microwave assisted activated carbons from industrial waste lignin for Cu (II) sorption.Chem. Eng. J.201116831103111110.1016/j.cej.2011.01.091
    [Google Scholar]
  18. ArulandooX. SritharanK. SubramaniamM. The Coconut Palm.201710.1016/B978‑0‑12‑394807‑6.00237‑9
    [Google Scholar]
  19. RencoretJ. RalphJ. MarquesG. GutiérrezA. MartínezÁ. del RíoJ.C. Structural characterization of lignin isolated from coconut (Cocos nucifera) coir fibers.J. Agric. Food Chem.201361102434244510.1021/jf304686x 23398235
    [Google Scholar]
  20. AgoM. JakesJ.E. RojasO.J. Thermomechanical properties of lignin-based electrospun nanofibers and films reinforced with cellulose nanocrystals: a dynamic mechanical and nanoindentation study.ACS Appl. Mater. Interfaces2013522117681177610.1021/am403451w 24168403
    [Google Scholar]
  21. DaltonN. LynchR.P. CollinsM.N. CulebrasM. Thermoelectric properties of electrospun carbon nanofibres derived from lignin.Int. J. Biol. Macromol.201912147247910.1016/j.ijbiomac.2018.10.051 30321639
    [Google Scholar]
  22. DongX. LuC. ZhouP. ZhangS. WangL. LiD. Polyacrylonitrile/lignin sulfonate blend fiber for low-cost carbon fiber.RSC Advances2015553422594226510.1039/C5RA01241D
    [Google Scholar]
  23. JinJ. YuB. ShiZ. WangC-Y. ChongC. Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries.J. Power Sources201427280080710.1016/j.jpowsour.2014.08.119
    [Google Scholar]
  24. García-MateosF.J. Ruiz-RosasR. RosasJ.M. Activation of electrospun lignin-based carbon fibers and their performance as self-standing supercapacitor electrodes.Separ. Purif. Tech.202024111672410.1016/j.seppur.2020.116724
    [Google Scholar]
  25. ZhangR. DuQ. WangL. Unlocking the response of lignin structure for improved carbon fiber production and mechanical strength.Green Chem.201921184981498710.1039/C9GC01632E
    [Google Scholar]
  26. Ruiz-RosasR. BediaJ. LallaveM. The production of submicron diameter carbon fibers by the electrospinning of lignin.Carbon201048369670510.1016/j.carbon.2009.10.014
    [Google Scholar]
  27. SchleeP. HosseinaeiO. BakerD. From waste to wealth: From Kraft lignin to free-standing supercapacitors.Carbon201914547048010.1016/j.carbon.2019.01.035
    [Google Scholar]
  28. ZhaoM WangJ ChongC YuX WangL ShiZ. An electrospun lignin/polyacrylonitrile nonwoven composite separator with high porosity and thermal stability for lithium-ion batteries.RSC Adv20155122101: 1152010.1039/C5RA19371K
    [Google Scholar]
  29. SallehZ. YusopM.Y. RosdiM.S. Mechanical properties of activated carbon (AC) coir fibers reinforced with epoxy resin.J. Mech. Eng. Sci.20135631638
    [Google Scholar]
  30. MullaivananathanV. PackiyalakshmiP. KalaiselviN. Multifunctional bio carbon: A coir pith waste derived electrode for extensive energy storage device applications.RSC Advances2017738236632367010.1039/C7RA03078A
    [Google Scholar]
  31. MullaivananathanV. SathishR. KalaiselviN. Coir pith derived bio-carbon: Demonstration of potential anode behavior in lithium-ion batteries.Electrochim. Acta201722514315010.1016/j.electacta.2016.12.086
    [Google Scholar]
  32. SesukT. TammawatP. JivaganontP. SomtonK. LimthongkulP. KobsiriphatW. Activated carbon derived from coconut coir pith as high performance supercapacitor electrode material.J. Energy Storage20192510091010.1016/j.est.2019.100910
    [Google Scholar]
  33. AlNoussA. ParthasarathyP. ShahbazM. Al-AnsariT. MackeyH. McKayG. Techno-economic and sensitivity analysis of coconut coir pith-biomass gasification using ASPEN PLUS.Appl. Energy202026111435010.1016/j.apenergy.2019.114350
    [Google Scholar]
  34. MacedoJ.S. OtuboL. FerreiraO.P. de Fátima GimenezI. MazaliI.O. BarretoL.S. Biomorphic activated porous carbons with complex microstructures from lignocellulosic residues.Microporous Mesoporous Mater.2008107327628510.1016/j.micromeso.2007.03.020
    [Google Scholar]
  35. DerkachevaO. SukhovD. Investigation of lignins by FTIR spectroscopy Macromolecular symposia.Wiley Online Library2008
    [Google Scholar]
  36. MathewT. SreeR.A. AishwaryaS. Graphene-based functional nanomaterials for biomedical and bioanalysis applications.FlatChem20202310018410.1016/j.flatc.2020.100184
    [Google Scholar]
  37. SuhasD.P. AminabhaviT.M. JeongH.M. RaghuA.V. Hydrogen peroxide treated graphene as an effective nanosheet filler for separation application.RSC Advances2015512210098410099510.1039/C5RA19918B
    [Google Scholar]
  38. KimK.T. DaoT.D. JeongH.M. AnjanapuraR.V. AminabhaviT.M. Graphene coated with alumina and its utilization as a thermal conductivity enhancer for alumina sphere/thermoplastic polyurethane composite.Mater. Chem. Phys.201515329130010.1016/j.matchemphys.2015.01.016
    [Google Scholar]
  39. NguyenD.A. RaghuA.V. ChoiJ.T. JeongH.M. Properties of thermoplastic polyurethane/functionalised graphene sheet nanocomposites prepared by the in situ polymerisation method.Polym. Polymer Compos.201018735135810.1177/096739111001800701
    [Google Scholar]
  40. BakerD.A. RialsT.G. Recent advances in low cost carbon fiber manufacture from lignin.J. Appl. Polym. Sci.2013130271372810.1002/app.39273
    [Google Scholar]
  41. NadaA-A.M. El-SakhawyM. KamelS.M. Infra-red spectroscopic study of lignins.Polym. Degrad. Stabil.1998602-324725110.1016/S0141‑3910(97)00072‑4
    [Google Scholar]
  42. GhaffarS.H. FanM. Structural analysis for lignin characteristics in biomass straw.Biomass Bioenergy20135726427910.1016/j.biombioe.2013.07.015
    [Google Scholar]
  43. StarkN.M. YelleD.J. AgarwalU.P. Techniques for characterizing lignin.Lignin Polym Compos2016496610.1016/B978‑0‑323‑35565‑0.00004‑7
    [Google Scholar]
  44. HuangJ. FuS. GanL. Structure and characteristics of lignin.Lignin Chemistry and Applications20192550
    [Google Scholar]
  45. JablonskýM. KočišJ. HázA. ŠimaJ. Characterization and comparison by UV spectroscopy of precipitated lignins and commercial lignosulfonates.Cellul. Chem. Technol.2015493-4267274
    [Google Scholar]
  46. MilotskyiR. SzabóL. TakahashiK. BliardC. Chemical modification of plasticized lignins using reactive extrusion.Front Chem.2019763310.3389/fchem.2019.00633 31620426
    [Google Scholar]
  47. AlbinssonB. LiS. LundquistK. StombergR. The origin of lignin fluorescence.J. Mol. Struct.19995081-3192710.1016/S0022‑2860(98)00913‑2
    [Google Scholar]
  48. DonaldsonL. WilliamsN. Imaging and spectroscopy of natural fluorophores in pine needles.Plants2018711010.3390/plants7010010 29393922
    [Google Scholar]
  49. DenceC. Methods in Lignin Chemistry.Berlin, HeidelbergSpringer Verlag1992336110.1007/978‑3‑642‑74065‑7_3
    [Google Scholar]
  50. LuC-J. BennerR. FichotC.G. FukudaH. YamashitaY. OgawaH. Sources and transformations of dissolved lignin phenols and chromophoric dissolved organic matter in Otsuchi Bay, Japan.Front. Mar. Sci.201638510.3389/fmars.2016.00085
    [Google Scholar]
  51. BoerjanW. RalphJ. BaucherM. Lignin biosynthesis.Annu. Rev. Plant Biol.200354151954610.1146/annurev.arplant.54.031902.134938 14503002
    [Google Scholar]
  52. MacedaA. TerrazasT. Fluorescence microscopy methods for the analysis and characterization of lignin.Polymers (Basel)202214596110.3390/polym14050961 35267784
    [Google Scholar]
  53. RadotićK. KalauziA. DjikanovićD. JeremićM. LeblancR.M. CerovićZ.G. Component analysis of the fluorescence spectra of a lignin model compound.J. Photochem. Photobiol. B200683111010.1016/j.jphotobiol.2005.12.001 16406801
    [Google Scholar]
  54. DonaldsonL.A. RadoticK. Fluorescence lifetime imaging of lignin autofluorescence in normal and compression wood.J. Microsc.2013251217818710.1111/jmi.12059 23763341
    [Google Scholar]
  55. SalantiA. OrlandiM. ZoiaL. Fluorescence labeling of technical lignin for the study of phenolic group distribution as a function of the molecular weight.ACS Sustain. Chem.& Eng.20208228279828710.1021/acssuschemeng.0c01571
    [Google Scholar]
  56. SaisuM. SatoT. WatanabeM. AdschiriT. AraiK. Conversion of lignin with supercritical water-phenol mixtures.Energy Fuels200317492292810.1021/ef0202844
    [Google Scholar]
  57. DastpakA. LourenҫonT.V. BalakshinM. HashmiS.F. LundströmM. WilsonB.P. Solubility study of lignin in industrial organic solvents and investigation of electrochemical properties of spray-coated solutions.Ind. Crops Prod.202014811231010.1016/j.indcrop.2020.112310
    [Google Scholar]
  58. KadlaJ. KuboS. VendittiR. GilbertR. CompereA. GriffithW. Lignin-based carbon fibers for composite fiber applications.Carbon200240152913292010.1016/S0008‑6223(02)00248‑8
    [Google Scholar]
  59. WikbergH. Ohra-AhoT. PileidisF. TitiriciM-M. Structural and morphological changes in kraft lignin during hydrothermal carbonization.ACS Sustain. Chem.& Eng.20153112737274510.1021/acssuschemeng.5b00925
    [Google Scholar]
  60. KanetakeT. SasakiM. GotoM. Decomposition of a lignin model compound under hydrothermal conditions. chemical engineering & technology.Indus Chem Plant Equip Proc Eng Biotechnol200730811131122
    [Google Scholar]
  61. OkudaK. OharaS. UmetsuM. TakamiS. AdschiriT. Disassembly of lignin and chemical recovery in supercritical water and p-cresol mixture. Studies on lignin model compounds.Bioresour. Technol.20089961846185210.1016/j.biortech.2007.03.062 17540557
    [Google Scholar]
  62. KundieF. AzhariC.H. MuchtarA. AhmadZ.A. Effects of filler size on the mechanical properties of polymer-filled dental composites: A review of recent developments.J. Physiol. Sci.201829114116510.21315/jps2018.29.1.10
    [Google Scholar]
  63. SamalS. Effect of shape and size of filler particle on the aggregation and sedimentation behavior of the polymer composite.Powder Technol.2020366435110.1016/j.powtec.2020.02.054
    [Google Scholar]
  64. LeeS. KontopoulouM. ParkC. Effect of nanosilica on the co-continuous morphology of polypropylene/polyolefin elastomer blends.Polymer (Guildf.)20105151147115510.1016/j.polymer.2010.01.018
    [Google Scholar]
  65. LiW. YangK. PengJ. ZhangL. GuoS. XiaH. Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars.Ind. Crops Prod.200828219019810.1016/j.indcrop.2008.02.012
    [Google Scholar]
/content/journals/caps/10.2174/2452271605666220523161615
Loading
/content/journals/caps/10.2174/2452271605666220523161615
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test