Skip to content
2000
Volume 5, Issue 1
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Piezoelectric materials are gradually becoming attractive materials for research as far as energy harvesting technologies are concerned. The piezoelectric effect is a pressure-driven phenomenon that is exhibited by various kinds of crystals, ceramics, polymers, and composites. However, polymers are preferred in piezoelectric applications owing to their flexibility and lightweight. They can easily be incorporated into electronic wearables that cover the demand for flexibility which is one of the most important requirements to improve technology. In this regard, the piezoelectric polymers are found as suitable candidates for energy harvesting. The present review provides a conclusive outlook of polymer-based piezoelectric materials in terms of doping of different fillers in different piezoelectric polymers with a special focus on polyvinylidene fluoride [PVDF] polymer to develop flexible energy harvesters. Moreover, the electrospinning process, a composite fabrication technique has been discussed to cover all the aspects of processing and optimization. Based on significant energy storage capacity PVDF-based flexible electrospun web could be effectively used in day-to-day life.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271605666220428101732
2022-04-01
2024-12-26
Loading full text...

Full text loading...

References

  1. AbouelfadlS. Global warming – causes, effects and solution’s trials.JES J Eng Sci20124041233125410.21608/jesaun.2012.114490
    [Google Scholar]
  2. DahiyaR.S. ValleM. Robotic tactile sensing: Technologies and system.Robotic Tactile Sensing: Technologies and System.201497894007051245
    [Google Scholar]
  3. SurmenevR.A. OrlovaT. ChernozemR.V. Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: A review.Nano Energy20196247550610.1016/j.nanoen.2019.04.090
    [Google Scholar]
  4. VivesA.A. Piezoelectric transducers and applications.Piezoelectric Transducers and Applications.Springer200810.1007/978‑3‑540‑77508‑9
    [Google Scholar]
  5. LiH. TianC. DengZ.D. Energy harvesting from low frequency applications using piezoelectric materials.Appl. Phys. Rev.201414: 041301.10.1063/1.4900845
    [Google Scholar]
  6. MishraS. UnnikrishnanL. NayakS.K. MohantyS. Advances in piezoelectric polymer composites for energy harvesting applications: A systematic review.Macromol. Mater. Eng.2019304112510.1002/mame.201800463
    [Google Scholar]
  7. KholkinA.L. PertsevN.A. GoltsevA.V. Piezoelectricity and crystal symmetry.Piezoelectric Acoust Mater Transducer Appl.20081738
    [Google Scholar]
  8. RamadassN. ABOa-type oxides -- their structure and properties -- a bird’s eye view.Mater. Sci. Eng.197836223123910.1016/0025‑5416(78)90076‑9
    [Google Scholar]
  9. SmithA.J. WelchA.J.E. Some mixed metal oxides of perovskite structure.Acta Crystallogr.196013865365610.1107/S0365110X60001540
    [Google Scholar]
  10. MaederM.D. DamjanovicD. SetterN. Lead free piezoelectric materials.J. Electroceram.2004131–338539210.1007/s10832‑004‑5130‑y
    [Google Scholar]
  11. LiY. Multilayer assembly of electrospun/electrosprayed PVDF-based nanofibers and beads with enhanced piezoelectricity and high sensitivity.Chem. Eng. J.20192020388
    [Google Scholar]
  12. Nunes-PereiraJ. SencadasV. CorreiaV. RochaJ.G. Lanceros-MéndezS. Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites.Sens. Actuators A Phys.2013196556210.1016/j.sna.2013.03.023
    [Google Scholar]
  13. KalimuldinaG. TurdakynN. AbayI. A review of piezoelectric pvdf film by electrospinning and its applications.Sensors (Basel)2020201814210.3390/s2018521432932744
    [Google Scholar]
  14. ShiX. ZhouW. MaD. MaQ. BridgesD. Review article electrospinning of nanofibers and their applications for electrospinning of nano-fibers and their applications for.J. Nanomater.20152015120
    [Google Scholar]
  15. KimHS KimJ-H KimJ A review of piezoelectric energy harvesting based on vibration.20111261129114110.1007/s12541‑011‑0151‑3
    [Google Scholar]
  16. SafaeiM. SodanoH.A. AntonS.R. A review of energy harvesting using piezoelectric materials: State-of-the-art a decade later (2008-2018).Smart Mater. Struct.20192811: 113001.10.1088/1361‑665X/ab36e4
    [Google Scholar]
  17. KimH.A. BowenS. Piezoelectric and ferroelectric materials and structures for energy harvesting applications.Energy Environ. Sci.2014712544
    [Google Scholar]
  18. HowellsC.A. Piezoelectric energy harvesting.Energy Convers. Manage.20095071847185010.1016/j.enconman.2009.02.020
    [Google Scholar]
  19. SoinN. AnandS.C. ShahT.H. Energy harvesting and storage textiles.Handbook of Technical Textiles.2nd edElsevier Ltd.201635739610.1016/B978‑1‑78242‑465‑9.00012‑4
    [Google Scholar]
  20. SteinemC.A.J. Principles of piezoelectric sensors.Sensors (Basel)2005269276
    [Google Scholar]
  21. DinevaP. Dynamic fracture of piezoelectric materials. piezoelectric materials2014 http://link.springer.com/10.1007/978-3-319-03961-9 10.1007/978‑3‑319‑03961‑9
  22. PriyaS. SongH. ZhouY. A review on piezoelectric energy harvesting. Materials, methods, and circuits.Energy Harvest Sys.201741339
    [Google Scholar]
  23. WangZ.L. Progress in piezotronics and piezo-phototronics.Adv. Mater.201224344632464610.1002/adma.20110436522331639
    [Google Scholar]
  24. DamjanovicD. Lead-Based Piezoelectric Materials.Springer Science20085979
    [Google Scholar]
  25. RödelJ. WebberK.G. DittmerR. JoW. KimuraM. DamjanovicD. Transferring lead-free piezoelectric ceramics into application.J. Eur. Ceram. Soc.20153561659168110.1016/j.jeurceramsoc.2014.12.013
    [Google Scholar]
  26. WeiH. WangH. XiaY. An overview of lead-free piezoelectric materials and devices and devices.J. Mater. Chem. C Mater. Opt. Electron. Devices2018646124461246710.1039/C8TC04515A
    [Google Scholar]
  27. WuJ. XiaoD. ZhuJ. Potassium-sodium niobate lead-free piezoelectric materials: Past, present, and future of phase boundaries.Chem. Rev.201511572559259510.1021/cr500680925792114
    [Google Scholar]
  28. CovaciC. GonteanA. Piezoelectric energy harvesting solutions: A review.Sensors (Basel)2020201213710.3390/s2012351232575888
    [Google Scholar]
  29. MayeenA. KalarikkalN. Development of ceramic-controlled piezoelectric devices for biomedical applications.Fundamental Bio-materials: Ceramics.Elsevier Ltd.2018476210.1016/B978‑0‑08‑102203‑0.00002‑0
    [Google Scholar]
  30. Alamin DowA.B. SchmidU. KheraniN.P. Unimorph and bimorph piezoelectric energy harvester stimulated by β-emitting radioisotopes: A modeling study.Microsyst. Technol.2014204-593394410.1007/s00542‑014‑2093‑z
    [Google Scholar]
  31. ShungK.K. CannataJ.M. ZhouQ.F. Piezoelectric materials for high frequency medical imaging applications: A review.J. Electroceram.200719113914510.1007/s10832‑007‑9044‑3
    [Google Scholar]
  32. KimuraK. OhigashiH. OhigashiH. ItohT. KimuraK. FukadaE. Piezoelectric polymers and their applications.Jpn. J. Appl. Phys.198322336
    [Google Scholar]
  33. RamadanK.S. SameotoD. and EvoyS. A review of piezoelectric polymers as functional materials for electromechanical transducers.Smart Materials and Structures20142326
    [Google Scholar]
  34. KimJ.Y. ChengA. TaiY. Parylene-C as a piezoelectric material piezoelectric film preparation.MEMS2011c473476
    [Google Scholar]
  35. SezerN. KoçM. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting.Nano Energy202180: 105567.10.1016/j.nanoen.2020.105567
    [Google Scholar]
  36. WalubitaL.F. DjebouD.C.S. FarukA.N.M. LeeS.I. DessoukyS. HuX. Prospective of societal and environmental benefits of piezoelectric technology in road energy harvesting.Sustainability (Basel)201810211310.3390/su10020383
    [Google Scholar]
  37. MartinsP. LopesA.C. Lanceros-MendezS. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications.Prog. Polym. Sci.201439468370610.1016/j.progpolymsci.2013.07.006
    [Google Scholar]
  38. LiuF. GraingerD.W. Biomaterials science: An introduction to materials.Fluorinated Biomaterials.3rd edElsevier20139210310.1016/B978‑0‑08‑087780‑8.00011‑5
    [Google Scholar]
  39. GregorioR.Jr UenoE.M. Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride) (PVDF).J. Mater. Sci.199934184489450010.1023/A:1004689205706
    [Google Scholar]
  40. VinogradovA. HollowayF. Electro-mechanical properties of the piezoelectric polymer PVDF.Ferroelectrics2011226169181
    [Google Scholar]
  41. RuanL YaoX ChangY ZhouL QinG ZhangX. Properties and Applications of the β Phase Poly(vinylidene fluoride).Polymers (Basel)201810312710.3390/polym1003022830966263
    [Google Scholar]
  42. EbnesajjadS. Introduction to fluoropolymers.Applied Plastics Engineering Handbook.2nd edElsevier Inc.20175571
    [Google Scholar]
  43. SajkiewiczP. WasiakA.L. GocłowskiZ. Phase transitions during stretching of poly (vinylidene ¯ uoride).Eur. Polym. J.199935March42342910.1016/S0014‑3057(98)00136‑0
    [Google Scholar]
  44. SencadasV. GregorioR.Jr Lanceros-MéndezS. α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch.J. Macromol. Sci. Part B Phys.200948351452510.1080/00222340902837527
    [Google Scholar]
  45. BairagiS. AliS.W. Poly (vinylidine fluoride) (PVDF)/Potassium Sodium Niobate (KNN) nanorods based flexible nanocomposite film: Influence of KNN concentration in the performance of nanogenerator.Org. Electron.202078: 105547.10.1016/j.orgel.2019.105547
    [Google Scholar]
  46. BairagiS. AliS.W. Effects of surface modification on electrical properties of KNN nanorod-incorporated PVDF composites.J. Mater. Sci.20195417114621148410.1007/s10853‑019‑03719‑x
    [Google Scholar]
  47. BairagiS. AliS.W. Investigating the role of carbon nanotubes (CNTs) in the piezoelectric performance of a PVDF/KNN-based electrospun nanogenerator.Soft Matter202016204876488610.1039/D0SM00438C32424391
    [Google Scholar]
  48. BairagiS. AliS.W. A hybrid piezoelectric nanogenerator comprising of KNN/ZnO nanorods incorporated PVDF electrospun nanocomposite webs.Int. J. Energy Res.20204475545556310.1002/er.5306
    [Google Scholar]
  49. KangH.B. HanC.S. PyunJ.C. RyuW.H. KangC.Y. ChoY.S. (Na,K)NbO3 nanoparticle-embedded piezoelectric nanofiber composites for flexible nanogenerators.Compos. Sci. Technol.20151111810.1016/j.compscitech.2015.02.015
    [Google Scholar]
  50. GeeS. JohnsonB. SmithA.L. Optimizing electrospinning parameters for piezoelectric PVDF nano fiber membranes.J. Membr. Sci.201856380481210.1016/j.memsci.2018.06.050
    [Google Scholar]
  51. Al-HazeemN.Z.A. Nanofibers and electrospinning method.Nov Nanomater - Synth Appl.201810.5772/intechopen.72060
    [Google Scholar]
  52. MariaL. CostaM. ElidaR. BretasS. GregorioR. Effect of solution concentration on the electrospray / electrospinning transition and on the crystalline phase of PVDF.Mater. Sci. Appl.2010247252
    [Google Scholar]
  53. HwangY.J. ChoiS. KimH.S. Structural deformation of PVDF nanoweb due to electrospinning behavior affected by solvent ratio.E-Polymers201818433934510.1515/epoly‑2018‑0037
    [Google Scholar]
  54. ZaarourB. ZhuL. HuangC. JinX. Enhanced piezoelectric properties of randomly oriented and aligned electrospun PVDF fibers by regulating the surface morphology.J. Appl. Polym. Sci.20184704918
    [Google Scholar]
  55. ShaoH. WangH. FangJ. Piezoelectric energy conversion performance of electrospun nanofibers.Energy Harvesting Properties of Electrospun Nanofibers201914210.1088/978‑0‑7503‑2005‑4ch4
    [Google Scholar]
  56. PonnammaD. ParangusanH. TanvirA. AlM. AlmaA. Smart and robust electrospun fabrics of piezoelectric polymer nanocomposite for self-powering electronic textiles.Mater. Des.2019184: 108176.10.1016/j.matdes.2019.108176
    [Google Scholar]
  57. EddiaiA. MeddadM. FarhanR. MazrouiM. RguitiM. GuyomarD. Using PVDF piezoelectric polymers to maximize power harvested by mechanical structure.Superlattices Microstruct.2019127202610.1016/j.spmi.2018.03.044
    [Google Scholar]
  58. GuoW. TanC. ShiK. Wireless piezoelectric devices based on electrospun PVDF/BaTiO3 NW nanocomposite fibers for human motion monitoring.Nanoscale201810371775117760
    [Google Scholar]
  59. NwB. Nanoscale wireless piezoelectric devices based on.20181775117760
    [Google Scholar]
  60. LiuY. KhanbarehH. HalimM.A. Piezoelectric energy harvesting for self‐powered wearable upper limb applications.Nano Sel2021281459147910.1002/nano.202000242
    [Google Scholar]
  61. JuB. OhJ. YunC. ParkC.H. Development of a superhydrophobic electrospun poly (vinylidene fl uoride) web via plasma etching.RSC Advances20188288252883510.1039/C8RA04652B
    [Google Scholar]
  62. GheibiA. LatifiM. MeratiA.A. Piezoelectric electrospun nanofibrous materials for self-powering wearable piezoelectric electrospun nano-fibrous materials for self-powering wearable electronic textiles applications.J. Polym. Res.201417
    [Google Scholar]
  63. BairagiS. AliS.W. Flexible lead-free PVDF/SM-KNN electrospun nanocomposite based piezoelectric materials: Significant enhancement of energy harvesting efficiency of the nanogenerator.Energy2020198: 117385.10.1016/j.energy.2020.117385
    [Google Scholar]
  64. GuoS. DuanX. XieM. AwK.C. XueQ. Composites, fabrication and application of polyvinylidene fluoride for flexible electromechanical devices: A review.Micromachines (Basel)2020111212910.3390/mi1112107633287450
    [Google Scholar]
  65. ShiK. SunB. HuangX. JiangP. Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators.Nano Energy20185215316210.1016/j.nanoen.2018.07.053
    [Google Scholar]
  66. BajiA. MaiY. LiQ. LiuY. Nanoscale investigation of ferroelectric properties in electrospun barium titanate / polyvinylidene fluoride composite fibers using piezoresponse force microscopy.Compos. Sci. Technol.201171111435144010.1016/j.compscitech.2011.05.017
    [Google Scholar]
  67. WuC.M. ChouM.H. Polymorphism, piezoelectricity and sound absorption of electrospun PVDF membranes with and without carbon nanotubes.Compos. Sci. Technol.201612712713310.1016/j.compscitech.2016.03.001
    [Google Scholar]
  68. PonnammaD. AljarodO. ParangusanH. Al-Maadeed. Electrospun nanofibers of PVDF-HFP composites containing magnetic nickel ferrite for energy harvesting application.Mater. Chem. Phys.2020239: 122257.10.1016/j.matchemphys.2019.122257
    [Google Scholar]
  69. TiwariS. GaurA. KumarC. MaitiP. Enhanced piezoelectric response in nanoclay induced electrospun PVDF nanofibers for energy harvesting.Energy201917148549210.1016/j.energy.2019.01.043
    [Google Scholar]
/content/journals/caps/10.2174/2452271605666220428101732
Loading
/content/journals/caps/10.2174/2452271605666220428101732
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test