Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Rheumatoid arthritis (RA) is an autoimmune ailment where the body's defense system is violated by damaging its joints. In RA treatment strategies, attempts have been made for oral, topical, and parenteral formulations with different drugs, but none of the formulations could be regarded as the perfect dosage form. In the current review, the meticulous discussion has been made on the suitability of novel topical formulations in the treatment of RA. Moreover, the emphasis has been made on activities of biodegradable polymers such as hyaluronic acid, lecithin, pluronic acid, chitosan, human serum albumin (HSA), and polylactide glycolic acid (PLGA) as well as their role in the management of RA.

The study aimed to apprehend the role of polymeric materials in developing an ideal topical drug delivery system that can bestow targeted delivery, enhanced penetration of drugs, improved stability of the formulation, and improved PKPD profile of the drugs.

These polymers possess twofold functions, primarily by increasing skin penetration and secondarily by improving joint mobility and cartilage regeneration. Furthermore, biocompatibility and biodegradability are features that increase the use of the aforementioned polymers.

The significant role of all the polymers in improving the conditions of bones and joints suffering from rheumatoid arthritis has been demonstrated by various studies.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271604999200620184631
2021-04-01
2024-12-26
Loading full text...

Full text loading...

References

  1. PerriconeC. ShoenfeldY. Mosaic of autoimmunity: The novel factors of autoimmune diseases.Academic Press2019711[Acessed March 12, 202010.1016/B978‑0‑12‑814307‑0.00002‑5
    [Google Scholar]
  2. ArnettF.C. EdworthyS.M. BlochD.A. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis.Arthritis Rheum.198831331532410.1002/art.17803103023358796
    [Google Scholar]
  3. JanakiramanK. KrishnaswamiV. RajendranV. NatesanS. KandasamyR. Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis-recent insights.Mater Today Commun20181720021310.1016/j.mtcomm.2018.09.01132289062
    [Google Scholar]
  4. RubinsteinI. WeinbergG.L. Nanomedicines for chronic non-infectious arthritis: The clinician’s perspective.Nanomedicine (Lond.)20128Suppl. 1S77S8210.1016/j.nano.2012.05.00422640912
    [Google Scholar]
  5. ThakurS. RiyazB. PatilA. KaurA. KapoorB. MishraV. Novel drug delivery systems for NSAIDs in management of rheumatoid arthritis: An overview.Biomed. Pharmacother.20181061011102310.1016/j.biopha.2018.07.02730119166
    [Google Scholar]
  6. LeeP. BaxterA. DickW.C. WebbJ. An assessment of grip strength measurement in rheumatoid arthritis.Scand. J. Rheumatol.197431172310.3109/030097474091651244609126
    [Google Scholar]
  7. DeaneK.D. El-GabalawyH. Pathogenesis and prevention of rheumatic disease: Focus on preclinical RA and SLE.Nat. Rev. Rheumatol.201410421222810.1038/nrrheum.2014.624514912
    [Google Scholar]
  8. ByramK. ChinratanalabS. SergentJ. Rheumatoid arthritis.Essentials of physical medicine and rehabilitation, musculoskeletal disorders. pain, and rehabilitation. FronteraW.R. SilverJ.K. RizzoT.D. NetherlandsElsevier2020876881[Accessed March 12, 202010.1016/B978‑0‑323‑54947‑9.00152‑8
    [Google Scholar]
  9. RazaK. HolersV.M. GerlagD. Nomenclature for the phases of the development of rheumatoid arthritis.Clin. Ther.20194171279128510.1016/j.clinthera.2019.04.01331196657
    [Google Scholar]
  10. ConigliaroP. TriggianeseP. De MartinoE. FontiG.L. ChimentiM.S. SunziniF. ViolaA. CanofariC. PerriconeR. Challenges in the treatment of rheumatoid arthritis.Autoimmun. Rev.201918770671310.1016/j.autrev.2019.05.00731059844
    [Google Scholar]
  11. YangM. FengX. DingJ. ChangF. ChenX. Nanotherapeutics relieve rheumatoid arthritis.J. Control. Release201725210812410.1016/j.jconrel.2017.02.03228257989
    [Google Scholar]
  12. MohantyS. PandaS. BhanjaA. PalA. ChandraS.S. Novel drug delivery systems for rheumatoid arthritis: An approach to better patient compliance.Biomed. Pharmacol. J.201912115717010.13005/bpj/1624
    [Google Scholar]
  13. O’SheaJ.J. KontziasA. YamaokaK. TanakaY. LaurenceA. Janus kinase inhibitors in autoimmune diseases.Ann. Rheum. Dis.201372Suppl. 2ii111ii11510.1136/annrheumdis‑2012‑20257623532440
    [Google Scholar]
  14. MahajanA. TandonV.R. Antioxidants and rheumatoid arthritis.J Indian Rheumatol Assoc200412139142
    [Google Scholar]
  15. JaswalS. MehtaH.C. SoodA.K. KaurJ. Antioxidant status in rheumatoid arthritis and role of antioxidant therapy.Clin. Chim. Acta20033381-212312910.1016/j.cccn.2003.08.01114637276
    [Google Scholar]
  16. ChoyY.B. PrausnitzM.R. The rule of five for non-oral routes of drug delivery: Ophthalmic, inhalation and transdermal.Pharm. Res.201128594394810.1007/s11095‑010‑0292‑620967491
    [Google Scholar]
  17. JainKK Drug delivery systems-an overview.Drug Deliv Sys 2008; 1-50.200815010.1007/978‑1‑59745‑210‑6_1
    [Google Scholar]
  18. JorgeL.L. FeresC.C. TelesV.E. Topical preparations for pain relief: Efficacy and patient adherence.J. Pain Res.20104112410.2147/JPR.S949221386951
    [Google Scholar]
  19. KlingeS.A. SawyerG.A. Effectiveness and safety of topical versus oral nonsteroidal anti-inflammatory drugs: A comprehensive review.Phys. Sportsmed.2013412647410.3810/psm.2013.05.201623703519
    [Google Scholar]
  20. AltmanR. BarkinR.L. Topical therapy for osteoarthritis: Clinical and pharmacologic perspectives.Postgrad. Med.2009121213914710.3810/pgm.2009.03.198619332972
    [Google Scholar]
  21. MillerJ.E. KornD. RossJ.S. Clinical trial registration, reporting, publication and FDAAA compliance: a cross-sectional analysis and ranking of new drugs approved by the FDA in 2012.BMJ Open2015511e00975810.1136/bmjopen‑2015‑00975826563214
    [Google Scholar]
  22. HeynemanC.A. Lawless-LidayC. WallG.C. Oral versus topical NSAIDs in rheumatic diseases: A comparison.Drugs200060355557410.2165/00003495‑200060030‑0000411030467
    [Google Scholar]
  23. CevcG. MazgareanuS. RotherM. Preclinical characterisation of NSAIDs in ultradeformable carriers or conventional topical gels.Int. J. Pharm.20083601-2293910.1016/j.ijpharm.2008.01.05118337027
    [Google Scholar]
  24. RolfC. EngströmB. BeauchardC. JacobsL.D. Le LibouxA. Intra-articular absorption and distribution of ketoprofen after topical plaster application and oral intake in 100 patients undergoing knee arthroscopy.Rheumatology (Oxford)199938656456710.1093/rheumatology/38.6.56410402079
    [Google Scholar]
  25. DominkusM. NicolakisM. KotzR. WilkinsonF.E. KaiserR.R. ChludK. Comparison of tissue and plasma levels of ibuprofen after oral and topical administration.Arzneimittelforschung19964612113811439006788
    [Google Scholar]
  26. NagaiN. YoshiokaC. ItoY. Topical therapies for rheumatoid arthritis by gel ointments containing indomethacin nanoparticles in adjuvant-induced arthritis rat.J. Oleo Sci.201564333734610.5650/jos.ess1417025757439
    [Google Scholar]
  27. JohnsonG. WoodwardE. Novartis Consumer Health SA, assignee.Topical diclofenac sodium compositions.United States patent application US 15/506,7742017Available from:https://patentimages.storage.googleapis.com/7f/40/a5/3888a4d4a76df8/US20170281580A1.pdf
    [Google Scholar]
  28. MittalR. RoyS.B. KothariJ.S. SheikhS. Cadila Healthcare Ltd, assignee.Method for treatment of pain and inflammation.United States patent US 9,713,5902017Available from:https://patents.google.com/patent/US9713590B2/en
    [Google Scholar]
  29. MeisnerL.F. Topical composition for the treatment of psoriasis and related skin disorders.United States patent US 7,670,6202010Available from:https://patents.google.com/patent/US7670620B2/en
  30. AsharaK.C. PaunJ.S. SoniwalaM.M. ChavadaJ.R. MoriN.M. Micro-emulsion based emulgel: A novel topical drug delivery system.Asian Pac. J. Trop. Dis.20144S27S3210.1016/S2222‑1808(14)60411‑4
    [Google Scholar]
  31. BhowmikD. GopinathH. KumarB.P. DuraivelS. KumarK.S. Recent advances in novel topical drug delivery system.Pharma Innovation201219, Part A12
    [Google Scholar]
  32. KhullarR. KumarD. SethN. SainiS. Formulation and evaluation of mefenamic acid emulgel for topical delivery.Saudi Pharm. J.2012201636710.1016/j.jsps.2011.08.00123960777
    [Google Scholar]
  33. MahajanV.R. BasarkarG.D. Formulation design, development and characterization of dexibuprofen emulgel for topical delivery: In-vitro and in-vivo evaluation.J. Drug Deliv. Ther.201992-s330342
    [Google Scholar]
  34. SadaraniB. MajumdarA. ParadkarS. MathurA. SachdevS. MohantyB. ChaudhariP. Enhanced skin permeation of Methotrexate from penetration enhancer containing vesicles: In vitro optimization and in vivo evaluation.Biomed. Pharmacother.201911410877010.1016/j.biopha.2019.10877030913494
    [Google Scholar]
  35. JeengarM.K. RompicharlaS.V.K. ShrivastavaS. ChellaN. ShastriN.R. NaiduV.G. SistlaR. Emu oil based nano-emulgel for topical delivery of curcumin.Int. J. Pharm.20165061-222223610.1016/j.ijpharm.2016.04.05227109049
    [Google Scholar]
  36. ChandraA. AryaR.K.K. PalG.R. TewariB. Formulation and evaluation of ginger extract loaded nanoemulgel for the treatment of rheumatoid arthritis.J. Drug Deliv. Ther.201994559570
    [Google Scholar]
  37. PreetiK.M. Development of celecoxib transfersomal gel for the treatment of rheumatoid arthritis.Indian J Pharm Biol Res2014271310.30750/ijpbr.2.2.2
    [Google Scholar]
  38. IrfanM. VermaS. RamA. Preparation and characterization of ibuprofen loaded transferosome as a novel carrier for transdermal drug delivery system.Asian J Pharmaceut Clin Res201253162165
    [Google Scholar]
  39. AliM.F.M. SalahM. RafeaM. SalehN. Liposomal methotrexate hydrogel for treatment of localized psoriasis: Preparation, characterization and laser targeting.Med. Sci. Monit.20081412PI66PI7419043379
    [Google Scholar]
  40. ZebA. QureshiO.S. YuC-H. AkramM. KimH.S. KimM.S. KangJ.H. MajidA. ChangS.Y. BaeO.N. KimJ.K. Enhanced anti-rheumatic activity of methotrexate-entrapped ultradeformable liposomal gel in adjuvant-induced arthritis rat model.Int. J. Pharm.201752519210010.1016/j.ijpharm.2017.04.03228428089
    [Google Scholar]
  41. TatheerF. MazahirR. Anshul KumarS. Development and characterization of prednisolone liposomal gel for the treatment of rheumatoid arthritis.Int Res J Pharm201561510.7897/2230‑8407.06230
    [Google Scholar]
  42. HuaS. DiasT.H. PepperallD-G. YangY. Topical loperamide-encapsulated liposomal gel increases the severity of inflammation and accelerates disease progression in the adjuvant-induced model of experimental rheumatoid arthritis.Front. Pharmacol.2017850310.3389/fphar.2017.0050328824428
    [Google Scholar]
  43. ParadkarM. VaghelaS. Thiocolchicoside niosomal gel formulation for the pain management of rheumatoid arthritis through topical drug delivery.Drug Deliv. Lett.20188215916810.2174/2210303108666180216151234
    [Google Scholar]
  44. PandeyM. BelgamwarV. GattaniS. SuranaS. TekadeA. Pluronic lecithin organogel as a topical drug delivery system.Drug Deliv.2010171384710.3109/1071754090350896122747074
    [Google Scholar]
  45. JainA. MishraS.K. VuddandaP.R. SinghS.K. SinghR. SinghS. Targeting of diacerein loaded lipid nanoparticles to intra-articular cartilage using chondroitin sulfate as homing carrier for treatment of osteoarthritis in rats.Nanomedicine (Lond.)20141051031104010.1016/j.nano.2014.01.00824512762
    [Google Scholar]
  46. KhachatryanG. KhachatryanK. GrzybJ. FiedorowiczM. Formation and properties of hyaluronan/nano Ag and hyaluronan-lecithin/nano Ag films.Carbohydr. Polym.201615145245710.1016/j.carbpol.2016.05.10427474588
    [Google Scholar]
  47. SudhaP.N. RoseM.H. Beneficial effects of hyaluronic acid advances in food and nutrition research.Elsevier2014137176[Accessed March 12, 2020https://www.sciencedirect.com/science/article/pii/B9780128002698000099
    [Google Scholar]
  48. SalwowskaN.M. BebenekK.A. ŻądłoD.A. Wcisło-DziadeckaD.L. Physiochemical properties and application of hyaluronic acid: A systematic review.J. Cosmet. Dermatol.201615452052610.1111/jocd.1223727324942
    [Google Scholar]
  49. BaeM.S. OheJ-Y. LeeJ.B. HeoD.N. ByunW. BaeH. KwonY.D. KwonI.K. Photo-cured hyaluronic acid-based hydrogels containing growth and differentiation factor 5 (GDF-5) for bone tissue regeneration.Bone20145918919810.1016/j.bone.2013.11.01924291420
    [Google Scholar]
  50. MohanN MohananPV SabareeswaranA NairP Chitosan-hyaluronic acid hydrogel for cartilage repair.Int J Biol Macromol2017104Pt B19364510.1016/j.ijbiomac.2017.03.14228359897
    [Google Scholar]
  51. JungY.S. ParkW. ParkH. LeeD-K. NaK. Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and Pluronic F-127 for sustained NSAID delivery.Carbohydr. Polym.201715640340810.1016/j.carbpol.2016.08.06827842839
    [Google Scholar]
  52. CaiY. López-RuizE. WengelJ. CreemersL.B. HowardK.A. A hyaluronic acid-based hydrogel enabling CD44-mediated chondrocyte binding and gapmer oligonucleotide release for modulation of gene expression in osteoarthritis.J. Control. Release201725315315910.1016/j.jconrel.2017.03.00428274742
    [Google Scholar]
  53. LuK-Y. LinY-C. LuH-T. HoY.C. WengS.C. TsaiM.L. MiF.L. A novel injectable in situ forming gel based on carboxymethyl hexanoyl chitosan/hyaluronic acid polymer blending for sustained release of berberine.Carbohydr. Polym.201920666467310.1016/j.carbpol.2018.11.05030553371
    [Google Scholar]
  54. LeeH-Y. HwangC-H. KimH-E. JeongS-H. Enhancement of bio-stability and mechanical properties of hyaluronic acid hydrogels by tannic acid treatment.Carbohydr. Polym.201818629029810.1016/j.carbpol.2018.01.05629455990
    [Google Scholar]
  55. MalleshK. PasulaN. Kumar RanjithC.P. Piroxicam proliposomal gel: A novel approach for tropical delivery.J. Pharm. Res.20125317551763
    [Google Scholar]
  56. GeorgeA. ShahP.A. ShrivastavP.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review.Int. J. Pharm.201956124426410.1016/j.ijpharm.2019.03.01130851391
    [Google Scholar]
  57. AlamM.M. HanH.S. SungS. KangJ.H. SaK.H. Al FaruqueH. HongJ. NamE.J. KimI.S. ParkJ.H. KangY.M. Endogenous inspired biomineral-installed hyaluronan nanoparticles as pH-responsive carrier of methotrexate for rheumatoid arthritis.J. Control. Release2017252627210.1016/j.jconrel.2017.03.01228288894
    [Google Scholar]
  58. HuntC.A. MacgregorR.D. SiegelR.A. Engineering targeted in vivo drug delivery. I. The physiological and physicochemical principles governing opportunities and limitations.Pharm. Res.19863633334410.1023/A:101633202323424271832
    [Google Scholar]
  59. FarrM. GARVEYK. BoldA. KendallM. BaconP. Significance of the hydrogen ion concentration in synovial fluid.Clin. Exp. Rheumatol.19853991044017318
    [Google Scholar]
  60. ZhangY. SunT. JiangC. Biomacromolecules as carriers in drug delivery and tissue engineering.Acta Pharm. Sin. B201881345010.1016/j.apsb.2017.11.00529872621
    [Google Scholar]
  61. RautS. BhadoriyaS.S. UplanchiwarV. MishraV. GahaneA. JainS.K. Lecithin organogel: A unique micellar system for the delivery of bioactive agents in the treatment of skin aging.Acta Pharm. Sin. B20122181510.1016/j.apsb.2011.12.005
    [Google Scholar]
  62. OwenS.C. FisherS.A. TamR.Y. NimmoC.M. ShoichetM.S. Hyaluronic acid click hydrogels emulate the extracellular matrix.Langmuir201329247393740010.1021/la305000w23343008
    [Google Scholar]
  63. MeyerK. PalmerJ.W. The polysaccharide of the vitreous humor.J. Biol. Chem.1934107362963410.1016/S0021‑9258(18)75338‑6
    [Google Scholar]
  64. BalazsE.A. LaurentT.C. JeanlozR.W. Nomenclature of hyaluronic acid.Biochem. J.1986235390310.1042/bj235090316744177
    [Google Scholar]
  65. KirschningA. BechtholdA.F-W. RohrJ. Chemical and biochemical aspects of deoxysugars and deoxysugar oligosaccharides bioorganic chemistry deoxysugars, polyketides and related classes: Synthesis, biosynthesis, Enzymes.Springer1997184[Accessed March 12, 2020Available from:https://link.springer.com/chapter/10.1007/BFb0119234
    [Google Scholar]
  66. HuangG. HuangH. Application of hyaluronic acid as carriers in drug delivery.Drug Deliv.201825176677210.1080/10717544.2018.145091029536778
    [Google Scholar]
  67. TanH. ChuC.R. PayneK.A. MarraK.G. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering.Biomaterials200930132499250610.1016/j.biomaterials.2008.12.08019167750
    [Google Scholar]
  68. FlorczykS.J. WangK. JanaS. WoodD.L. SytsmaS.K. ShamJ. KievitF.M. ZhangM. Porous chitosan-hyaluronic acid scaffolds as a mimic of glioblastoma microenvironment ECM.Biomaterials20133438101431015010.1016/j.biomaterials.2013.09.03424075410
    [Google Scholar]
  69. NathS.D. AbuevaC. KimB. LeeB.T. Chitosan-hyaluronic acid polyelectrolyte complex scaffold crosslinked with genipin for immobilization and controlled release of BMP-2.Carbohydr. Polym.201511516016910.1016/j.carbpol.2014.08.07725439881
    [Google Scholar]
  70. BarbucciR. LamponiS. BorzacchielloA. AmbrosioL. FiniM. TorricelliP. GiardinoR. Hyaluronic acid hydrogel in the treatment of osteoarthritis.Biomaterials200223234503451310.1016/S0142‑9612(02)00194‑112322970
    [Google Scholar]
  71. SaadatE. ShakorN. GholamiM. DorkooshF.A. Hyaluronic acid based micelle for articular delivery of triamcinolone, preparation, in vitro and in vivo evaluation.Int. J. Pharm.20154891-221822510.1016/j.ijpharm.2015.05.00125956051
    [Google Scholar]
  72. MorelandL.W. Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: Mechanisms of action.Arthritis Res. Ther.200352546710.1186/ar62312718745
    [Google Scholar]
  73. JebensE.H. Monk-JonesM.E. On the viscosity and pH of synovial fluid and the pH of blood.J. Bone Joint Surg. Br.195941-B238840010.1302/0301‑620X.41B2.38813641329
    [Google Scholar]
  74. DahlL.B. DahlI.M. Engström-LaurentA. GranathK. Concentration and molecular weight of sodium hyaluronate in synovial fluid from patients with rheumatoid arthritis and other arthropathies.Ann. Rheum. Dis.1985441281782210.1136/ard.44.12.8174083937
    [Google Scholar]
  75. LotzM. LoeserR.F. Effects of aging on articular cartilage homeostasis.Bone201251224124810.1016/j.bone.2012.03.02322487298
    [Google Scholar]
  76. EmertonK.B. DrapeauS.J. PrasadH. RohrerM. RoffeP. HopperK. SchoolfieldJ. JonesA. CochranD.L. Regeneration of periodontal tissues in non-human primates with rhGDF-5 and beta-tricalcium phosphate.J. Dent. Res.201190121416142110.1177/002203451142366521940517
    [Google Scholar]
  77. ForseyR.W. FisherJ. ThompsonJ. StoneM.H. BellC. InghamE. The effect of hyaluronic acid and phospholipid based lubricants on friction within a human cartilage damage model.Biomaterials200627264581459010.1016/j.biomaterials.2006.04.01816701868
    [Google Scholar]
  78. KimY-J. ChaeS.Y. JinC-H. SivasubramanianM. SonS. ChoiK.Y. JoD.G. KimK. Chan KwonI. LeeK.C. ParkJ.H. Ionic complex systems based on hyaluronic acid and PEGylated TNF-related apoptosis-inducing ligand for treatment of rheumatoid arthritis.Biomaterials201031349057906410.1016/j.biomaterials.2010.08.01520813405
    [Google Scholar]
  79. GalloN. NasserH. SalvatoreL. Hyaluronic acid for advanced therapies: Promises and challenges.Eur. Polym. J.201911713414710.1016/j.eurpolymj.2019.05.007
    [Google Scholar]
  80. Van NieuwenhuyzenW. The industrial uses of special lecithins: A review.J. Am. Oil Chem. Soc.1981581088688810.1007/BF02659651
    [Google Scholar]
  81. XuQ. NakajimaM. LiuZ. ShiinaT. Soybean-based surfactants and their applications.Soybean-Applications and Technology.Intech Open2011341364Available from:https://www.intechopen.com/books/soybean-applications-and-technology/soybean-based-surfactants-and-their-applications
    [Google Scholar]
  82. FahyE. SubramaniamS. MurphyR.C. Update of the LIPID MAPS comprehensive classification system for lipids.J. Lipid Res.200950Suppl.S9S1410.1194/jlr.R800095‑JLR20019098281
    [Google Scholar]
  83. PichotR. WatsonR.L. NortonI.T. Phospholipids at the interface: Current trends and challenges.Int. J. Mol. Sci.2013146117671179410.3390/ijms14061176723736688
    [Google Scholar]
  84. JoshiA. ParatkarS.G. ThoratB.N. Modification of lecithin by physical, chemical and enzymatic methods.Eur. J. Lipid Sci. Technol.2006108436337310.1002/ejlt.200600016
    [Google Scholar]
  85. ValentaC. JanischM. Permeation of cyproterone acetate through pig skin from different vehicles with phospholipids.Int. J. Pharm.20032581-213313910.1016/S0378‑5173(03)00180‑712753760
    [Google Scholar]
  86. KaiserN. KimpflerA. MassingU. BurgerA.M. FiebigH.H. BrandlM. SchubertR. 5-Fluorouracil in vesicular phospholipid gels for anticancer treatment: Entrapment and release properties.Int. J. Pharm.20032561-212313110.1016/S0378‑5173(03)00069‑312695018
    [Google Scholar]
  87. TiemessenH. van HoogevestP. LeighM.L. Characteristics of a novel phospholipid-based depot injectable technology for poorly water-soluble drugs.Eur. J. Pharm. Biopharm.200458358759310.1016/j.ejpb.2004.04.00215451533
    [Google Scholar]
  88. LinC-C. LinH-Y. ChenH-C. YuM-W. LeeM-H. Stability and characterisation of phospholipid-based curcumin-encapsulated microemulsions.Food Chem.2009116492392810.1016/j.foodchem.2009.03.052
    [Google Scholar]
  89. HanF. YinR. CheX. YuanJ. CuiY. YinH. LiS. Nanostructured lipid carriers (NLC) based topical gel of flurbiprofen: Design, characterization and in vivo evaluation.Int. J. Pharm.20124391-234935710.1016/j.ijpharm.2012.08.04022989987
    [Google Scholar]
  90. ChangL.C. ChangY.Y. GauC.S. Interfacial properties of Pluronics and the interactions between Pluronics and cholesterol/DPPC mixed monolayers.J. Colloid Interface Sci.2008322126327310.1016/j.jcis.2008.02.05118377918
    [Google Scholar]
  91. KabanovA.V. BatrakovaE.V. AlakhovV.Y. Pluronic block copolymers for overcoming drug resistance in cancer.Adv. Drug Deliv. Rev.200254575977910.1016/S0169‑409X(02)00047‑912204601
    [Google Scholar]
  92. BatrakovaE.V. KabanovA.V. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers.J. Control. Release200813029810610.1016/j.jconrel.2008.04.01318534704
    [Google Scholar]
  93. SchmolkaI.R. A review of block polymer surfactants.J. Am. Oil Chem. Soc.197754311011610.1007/BF02894385
    [Google Scholar]
  94. Ur-RehmanT. TavelinS. GröbnerG. Effect of DMSO on micellization, gelation and drug release profile of Poloxamer 407.Int. J. Pharm.20103941-2929810.1016/j.ijpharm.2010.05.01220472044
    [Google Scholar]
  95. AlakhovV. KlinskiE. LemieuxP. PietrzynskiG. KabanovA. Block copolymeric biotransport carriers as versatile vehicles for drug delivery.Expert Opin. Biol. Ther.20011458360210.1517/14712598.1.4.58311727496
    [Google Scholar]
  96. JeongB. GutowskaA. Lessons from nature: stimuli-responsive polymers and their biomedical applications.Trends Biotechnol.200220730531110.1016/S0167‑7799(02)01962‑512062976
    [Google Scholar]
  97. BatrakovaE. LeeS. LiS. VenneA. AlakhovV. KabanovA. Fundamental relationships between the composition of pluronic block copolymers and their hypersensitization effect in MDR cancer cells.Pharm. Res.19991691373137910.1023/A:101894282367610496652
    [Google Scholar]
  98. KabanovA.V. NazarovaI.R. AstafievaI.V. Micelle formation and solubilization of fluorescent probes in poly (oxyethylene-b-oxypropylene-b-oxyethylene) solutions.Macromolecules19952872303231410.1021/ma00111a026
    [Google Scholar]
  99. TatiniD. TempestiP. RidiF. FratiniE. BoniniM. BaglioniP. Pluronic/gelatin composites for controlled release of actives.Colloids Surf. B Biointerfaces201513540040710.1016/j.colsurfb.2015.08.00226277715
    [Google Scholar]
  100. RapoportN. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery.Prog. Polym. Sci.2007328-996299010.1016/j.progpolymsci.2007.05.009
    [Google Scholar]
  101. BodrattiA.M. AlexandridisP. Formulation of poloxamers for drug delivery.J. Funct. Biomater.2018911110.3390/jfb901001129346330
    [Google Scholar]
  102. DinizI.M. ChenC. XuX. AnsariS. ZadehH.H. MarquesM.M. ShiS. MoshaveriniaA. Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells.J. Mater. Sci. Mater. Med.201526315310.1007/s10856‑015‑5493‑425773231
    [Google Scholar]
  103. TharmalingamT. GhebehH. WuerzT. ButlerM. Pluronic enhances the robustness and reduces the cell attachment of mammalian cells.Mol. Biotechnol.200839216717710.1007/s12033‑008‑9045‑818327558
    [Google Scholar]
  104. CurryD.J. WrightD.A. LeeR.C. KangU.J. FrimD.M. Surfactant poloxamer 188-related decreases in inflammation and tissue damage after experimental brain injury in rats.J. Neurosurg.20041011Suppl.919616206978
    [Google Scholar]
  105. JacksonJ.K. SpringateC.M. HunterW.L. BurtH.M. Neutrophil activation by plasma opsonized polymeric microspheres: Inhibitory effect of pluronic F127.Biomaterials200021141483149110.1016/S0142‑9612(00)00034‑X10872777
    [Google Scholar]
  106. Escobar-ChávezJ.J. Quintanar-GuerreroD. Ganem-QuintanarA. In vivo skin permeation of sodium naproxen formulated in pluronic F-127 gels: Effect of Azone and Transcutol.Drug Dev. Ind. Pharm.2005314-544745410.1080/0363904050021466216093210
    [Google Scholar]
  107. SharmaK. SinghV. AroraA. Natural biodegradable polymers as matrices in transdermal drug delivery.Int J Drug Dev Res2011385103
    [Google Scholar]
  108. SchmittF. LagopoulosL. KäuperP. RossiN. BussoN. BargeJ. WagnièresG. LaueC. WandreyC. Juillerat-JeanneretL. Chitosan-based nanogels for selective delivery of photosensitizers to macrophages and improved retention in and therapy of articular joints.J. Control. Release2010144224225010.1016/j.jconrel.2010.02.00820152870
    [Google Scholar]
  109. XieW. XuP. LiuQ. Antioxidant activity of water-soluble chitosan derivatives.Bioorg. Med. Chem. Lett.200111131699170110.1016/S0960‑894X(01)00285‑211425541
    [Google Scholar]
  110. ComblainF. RocasalbasG. GauthierS. HenrotinY. Chitosan: A promising polymer for cartilage repair and viscosupplementation.Biomed. Mater. Eng.201728s1S209S21510.3233/BME‑17164328372297
    [Google Scholar]
  111. KimS. Competitive biological activities of chitosan and its derivatives: Antimicrobial, antioxidant, anticancer, and anti-inflammatory activities.Int. J. Polym. Sci.201817081721310.1155/2018/1708172
    [Google Scholar]
  112. DuttaJ. TripathiS. DuttaP.K. Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications.Food Sci. Technol. Int.201218133410.1177/108201321139919521954316
    [Google Scholar]
  113. RenK. DusadA. DongR. QuanL. Albumin as a delivery carrier for rheumatoid arthritis.J. Nanomed. Nanotechnol.201344176
    [Google Scholar]
  114. LeeP. WuX. Review: Modifications of human serum albumin and their binding effect.Curr. Pharm. Des.201521141862186510.2174/138161282166615030211502525732553
    [Google Scholar]
  115. WeberC. CoesterC. KreuterJ. LangerK. Desolvation process and surface characterisation of protein nanoparticles.Int. J. Pharm.200019419110210.1016/S0378‑5173(99)00370‑110601688
    [Google Scholar]
  116. AhmedF. HusainQ. Suppression in advanced glycation adducts of human serum albumin by bio-enzymatically synthesized gold and silver nanoformulations: A potential tool to counteract hyperglycemic condition.Biochimie2019162667610.1016/j.biochi.2019.04.00430959081
    [Google Scholar]
  117. DasR.P. GandhiV.V. SinghB.G. KunwarA. KumarN.N. PriyadarsiniK. Preparation of albumin nanoparticles: Optimum size for cellular uptake of entrapped drug (Curcumin).Colloids Surf. A Physicochem. Eng. Asp.2019567869510.1016/j.colsurfa.2019.01.043
    [Google Scholar]
  118. ArroyoV. García-MartinezR. SalvatellaX. Human serum albumin, systemic inflammation, and cirrhosis.J. Hepatol.201461239640710.1016/j.jhep.2014.04.01224751830
    [Google Scholar]
  119. Bar-OrD. ThomasG.W. RaelL.T. GerschE.D. RubinsteinP. BrodyE. Low molecular weight fraction of commercial human serum albumin induces morphologic and transcriptional changes of bone marrow-derived mesenchymal stem cells.Stem Cells Transl. Med.20154894595510.5966/sctm.2014‑029326041739
    [Google Scholar]
  120. SahE. SahH. Recent trends in preparation of poly (lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent.J. Nanomater.20157946012210.1155/2015/794601
    [Google Scholar]
  121. Luis de RedínI. BoieroC. Martínez-OhárrizM.C. AgüerosM. RamosR. PeñuelasI. AllemandiD. LlabotJ.M. IracheJ.M. Human serum albumin nanoparticles for ocular delivery of bevacizumab.Int. J. Pharm.20185411-221422310.1016/j.ijpharm.2018.02.00329481946
    [Google Scholar]
  122. AllahyariM. MohitE. Peptide/protein vaccine delivery system based on PLGA particles.Hum. Vaccin. Immunother.201612380682810.1080/21645515.2015.110280426513024
    [Google Scholar]
  123. SahooS.K. MaW. LabhasetwarV. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer.Int. J. Cancer2004112233534010.1002/ijc.2040515352049
    [Google Scholar]
  124. SahuP. KashawS.K. JainS. SauS. IyerA.K. Assessment of penetration potential of pH responsive double walled biodegradable nanogels coated with eucalyptus oil for the controlled delivery of 5-fluorouracil: In vitro and ex vivo studies.J. Control. Release201725312213610.1016/j.jconrel.2017.03.02328322977
    [Google Scholar]
  125. NimeshS. Poly (D, L-lactide-co-glycolide)-based nanoparticles.Woodhead Publishing series in biomedicine, gene therapyWoodhead PublishingSawston201330929
    [Google Scholar]
  126. AvgoustakisK. Polylactic-co-glycolic acid (PLGA)Encyclopedia of biomaterials and biomedical engineering. WnekGE. BowlinGL. Encyclopedia of Biomaterials and Biomedical Engineering.UK: Informa Healthcare20051111
    [Google Scholar]
  127. ChereddyK.K. PayenV.L. PréatV. PLGA: From a classic drug carrier to a novel therapeutic activity contributor.J. Control. Release2018289101310.1016/j.jconrel.2018.09.01730244137
    [Google Scholar]
  128. MakadiaH.K. SiegelS.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier.Polymers (Basel)2011331377139710.3390/polym303137722577513
    [Google Scholar]
  129. RezvantalabS. DrudeN.I. MoravejiM.K. GüvenerN. KoonsE.K. ShiY. LammersT. KiesslingF. PLGA-based nanoparticles in cancer treatment.Front. Pharmacol.20189126010.3389/fphar.2018.0126030450050
    [Google Scholar]
  130. GentileP. ChionoV. CarmagnolaI. HattonP.V. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering.Int. J. Mol. Sci.20141533640365910.3390/ijms1503364024590126
    [Google Scholar]
  131. SinghG. KaurT. KaurR. KaurA. Recent biomedical applications and patents on biodegradable polymer-PLGA.Int. J. Pharm. Pharm. Sci.2014123042
    [Google Scholar]
  132. ChronopoulouL. DomeniciF. GiantulliS. PLGA based particles as “drug reservoir” for antitumor drug delivery: characterization and cytotoxicity studies.Colloids Surf. B Biointerfaces201918049550210.1016/j.colsurfb.2019.05.00631103709
    [Google Scholar]
  133. WeiJ. WangH. ZhuM. Janus nanogels of PEGylated Taxol and PLGA-PEG-PLGA copolymer for cancer therapy.Nanoscale20135209902990710.1039/c3nr02937a23982346
    [Google Scholar]
  134. PanZ. DingJ. Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine.Interface Focus20122336637710.1098/rsfs.2011.012323741612
    [Google Scholar]
  135. WangZ. ZhangZ. ZhangJ. SheZ. DingJ. Distribution of bone marrow stem cells in large porous polyester scaffolds.Chin. Sci. Bull.200954172968297510.1007/s11434‑009‑0181‑8
    [Google Scholar]
  136. FanH. HuY. ZhangC. LiX. LvR. QinL. ZhuR. Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold.Biomaterials200627264573458010.1016/j.biomaterials.2006.04.01316720040
    [Google Scholar]
  137. GeZ. TianX. HengB.C. FanV. YeoJ.F. CaoT. Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model.Biomed. Mater.20094202100110.1088/1748‑6041/4/2/02100119208943
    [Google Scholar]
  138. ShuqiangM KunzhengW XiaoqiangD WeiW MingyuZ DaochengW Osteogenic growth peptide incorporated into PLGA scaffolds accelerates healing of segmental long bone defects in rabbits.Journal of plastic, reconstructive aesthetic surgery2008611215586010.1016/j.bjps.2008.03.040
    [Google Scholar]
  139. HuangW. ShiX. RenL. DuC. WangY. PHBV microspheres--PLGA matrix composite scaffold for bone tissue engineering.Biomaterials201031154278428510.1016/j.biomaterials.2010.01.05920199806
    [Google Scholar]
  140. LuptonJ.R. AlsterT.S. Cutaneous hypersensitivity reaction to injectable hyaluronic acid gel.Dermatol. Surg.200026213513710.1046/j.1524‑4725.2000.99202.x10691942
    [Google Scholar]
  141. IsailovicT.M. TodosijevicM.N. DordevicS.M. SavicS.D. Natural surfactants-based micro/nanoemulsion systems for NSAIDs—practical formulation approach, physicochemical and biopharmaceutical characteristics/performances.Microsized and Nanosized Carriers for Nonsteroidal Anti-Inflammatory Drugs.LondonAcademic Press201717921710.1016/B978‑0‑12‑804017‑1.00007‑8
    [Google Scholar]
  142. LippensE. SwennenI. GironèsJ. DeclercqH. VertentenG. VlaminckL. GasthuysF. SchachtE. CornelissenR. Cell survival and proliferation after encapsulation in a chemically modified Pluronic(R) F127 hydrogel.J. Biomater. Appl.201327782883910.1177/088532821142777422090430
    [Google Scholar]
  143. ChambersP. McCarthyH.O. DunneN.J. Emerging areas of bone repair materials: nucleic acid therapy and drug delivery.Bone Repair Biomaterials.Elsevier201941144610.1016/B978‑0‑08‑102451‑5.00016‑0
    [Google Scholar]
  144. WangS. LiuS. ZhangY. HeJ. CoyD.H. SunL. Human serum albumin (HSA) and its applications as a drug delivery vehicle.Health Sci. J.202014218
    [Google Scholar]
  145. BairagiU MittalP MishraB. Albumin: A versatile drug carrier Austin therapeutics.201522102127
    [Google Scholar]
  146. DanhierF. AnsorenaE. SilvaJ.M. CocoR. Le BretonA. PréatV. PLGA-based nanoparticles: An overview of biomedical applications.J. Control. Release2012161250552210.1016/j.jconrel.2012.01.04322353619
    [Google Scholar]
/content/journals/caps/10.2174/2452271604999200620184631
Loading
/content/journals/caps/10.2174/2452271604999200620184631
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test