Skip to content
2000
image of Polysaccharides from Nature to Technology: Grafting Techniques and their Applications

Abstract

Polysaccharides, naturally occurring and renewable biopolymers, have garnered significant attention due to their structural versatility and wide-ranging applications across the biomedical, pharmaceutical, and industrial sectors. This review explores the role of polysaccharides as excipients and their emerging importance in drug delivery systems, gene therapy, tissue engineering, medical implants, and biosensing. With detailed insights into their antioxidant, anti-inflammatory, and anticancer properties, the review highlights the significance of polysaccharides, such as chitosan, alginates, cellulose, hyaluronic acid, pullulans, and xanthan gum, in developing advanced biomaterials. Various grafting techniques, including chemical and physical methods, are examined for their potential to modify surface properties and enhance biocompatibility, targeting ability, and mechanical strength. Despite the promising biomedical applications, challenges persist in optimizing grafting techniques, ensuring biocompatibility, and overcoming regulatory hurdles. This review also enlightens the current market potential of polysaccharides, emphasizing the growing demand for natural and plant-based materials. Future directions should focus on enhancing the scalability of production, improving chemical modification processes, and addressing technical limitations in tissue engineering applications.

Loading

Article metrics loading...

/content/journals/caps/10.2174/0124522716357716250225180609
2025-03-17
2025-06-23
Loading full text...

Full text loading...

References

  1. Basu A. Kunduru K.R. Abtew E. Domb A.J. Polysaccharide-based conjugates for biomedical applications. Bioconjug. Chem. 2015 26 8 1396 1412 10.1021/acs.bioconjchem.5b00242 26106905
    [Google Scholar]
  2. Vijayanand S Ravi A Soundararajan A Sudha PN Hemapriya J Polysaccharides: An overview Pullulan Jenny Stanford Publishing 2020
    [Google Scholar]
  3. Maiti S. Jana S. Functional polysaccharides for biomedical applications. Woodhead Publishing 2019
    [Google Scholar]
  4. Fernandes P.A.R. Coimbra M.A. The antioxidant activity of polysaccharides: A structure-function relationship overview. Carbohydr. Polym. 2023 314 120965 10.1016/j.carbpol.2023.120965 37173007
    [Google Scholar]
  5. Wang H. Liu Y. Qi Z. Wang S. Liu S. Li X. Wang H. Xia X. An overview on natural polysaccharides with antioxidant properties. Curr. Med. Chem. 2013 20 23 2899 2913 10.2174/0929867311320230006 23627941
    [Google Scholar]
  6. Nayak AK Hasnain MS Dhara AK Pal D Plant polysaccharides in pharmaceutical applications. Springer Cham 2021 10.1007/978‑3‑030‑54027‑2_3
    [Google Scholar]
  7. Sudhakar S. Chandran S.V. Selvamurugan N. Nazeer R.A. Biodistribution and pharmacokinetics of thiolated chitosan nanoparticles for oral delivery of insulin in vivo. Int. J. Biol. Macromol. 2020 150 281 288 10.1016/j.ijbiomac.2020.02.079 32057846
    [Google Scholar]
  8. Ciolacu D.E. Nicu R. Ciolacu F. Cellulose-based hydrogels as sustained drug-delivery systems. Materials 2020 13 22 5270 10.3390/ma13225270 33233413
    [Google Scholar]
  9. Tchobanian A. Van Oosterwyck H. Fardim P. Polysaccharides for tissue engineering: Current landscape and future prospects. Carbohydr. Polym. 2019 205 601 625 10.1016/j.carbpol.2018.10.039 30446147
    [Google Scholar]
  10. Prasher P. Sharma M. Mehta M. Satija S. Aljabali A.A. Tambuwala M.M. Anand K. Sharma N. Dureja H. Jha N.K. Gupta G. Gulati M. Singh S.K. Chellappan D.K. Paudel K.R. Hansbro P.M. Dua K. Current-status and applications of polysaccharides in drug delivery systems. Colloid Interface Sci. Commun. 2021 42 100418 10.1016/j.colcom.2021.100418
    [Google Scholar]
  11. Sahu K.M. Patra S. Swain S.K. Host-guest drug delivery by β-cyclodextrin assisted polysaccharide vehicles: A review. Int. J. Biol. Macromol. 2023 240 124338 10.1016/j.ijbiomac.2023.124338 37030461
    [Google Scholar]
  12. Miao T. Wang J. Zeng Y. Liu G. Chen X. Polysaccharide‐based controlled release systems for therapeutics delivery and tissue engineering: From bench to bedside. Adv. Sci. 2018 5 4 1700513 10.1002/advs.201700513 29721408
    [Google Scholar]
  13. Jacob J. Haponiuk J.T. Thomas S. Gopi S. Biopolymer based nanomaterials in drug delivery systems: A review. Mater. Today Chem. 2018 9 43 55 10.1016/j.mtchem.2018.05.002
    [Google Scholar]
  14. Bernkop-Schnürch A. Dünnhaupt S. Chitosan-based drug delivery systems. Eur. J. Pharm. Biopharm. 2012 81 3 463 469 10.1016/j.ejpb.2012.04.007 22561955
    [Google Scholar]
  15. Janes K.A. Calvo P. Alonso M.J. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv. Drug Deliv. Rev. 2001 47 1 83 97 10.1016/S0169‑409X(00)00123‑X 11251247
    [Google Scholar]
  16. Panigrahi K.C. Patra C.N. Jena G.K. Ghose D. Jena J. Panda S.K. Sahu M. Gelucire: A versatile polymer for modified release drug delivery system. Fut J Pharm Sci. 2018 4 1 102 108 10.1016/j.fjps.2017.11.001
    [Google Scholar]
  17. Qing G. Li M. Deng L. Lv Z. Ding P. Sun T. Smart drug release systems based on stimuli-responsive polymers. Mini Rev. Med. Chem. 2013 13 9 1369 1380 10.2174/13895575113139990062 23746059
    [Google Scholar]
  18. Hu X. Wang Y. Zhang L. Xu M. Formation of self-assembled polyelectrolyte complex hydrogel derived from salecan and chitosan for sustained release of Vitamin C. Carbohydr. Polym. 2020 234 115920 10.1016/j.carbpol.2020.115920 32070539
    [Google Scholar]
  19. Pack DW Hoffman AS Pun S Design and development of polymers for gene delivery. Nat Rev Drug Discov 2005 4 7 581 593
    [Google Scholar]
  20. Ahmad M.U. Ali S.M. Ahmad A. Sheikh S. Chen P. Ahmad I. Carbohydrate - Lipid conjugates for targeted drug and gene delivery. Lipid Technol. 2015 27 10 223 226 10.1002/lite.201500047
    [Google Scholar]
  21. Rajalekshmy GP Devi LL Joseph J Rekha MR An overview on the potential biomedical applications of polysaccharides. Functional Polysaccharides for Biomedical Applications Woodhead Publishing 2019 10.1016/B978‑0‑08‑102555‑0.00002‑9
    [Google Scholar]
  22. Biswal T. Biopolymers for tissue engineering applications: A review. Mater. Today Proc. 2021 41 397 402 10.1016/j.matpr.2020.09.628
    [Google Scholar]
  23. Jabeen N. Atif M. Polysaccharides based biopolymers for biomedical applications: A review. Polym. Adv. Technol. 2024 35 1 e6203 10.1002/pat.6203
    [Google Scholar]
  24. Hama R. Ulziibayar A. Reinhardt J.W. Watanabe T. Kelly J. Shinoka T. Recent developments in biopolymer-based hydrogels for tissue engineering applications. Biomolecules 2023 13 2 280 10.3390/biom13020280 36830649
    [Google Scholar]
  25. Jain R. Calderon D. Kierski P.R. Schurr M.J. Czuprynski C.J. Murphy C.J. McAnulty J.F. Abbott N.L. Raman spectroscopy enables noninvasive biochemical characterization and identification of the stage of healing of a wound. Anal. Chem. 2014 86 8 3764 3772 10.1021/ac500513t 24559115
    [Google Scholar]
  26. Gomez-Florit M. Pardo A. Domingues R.M.A. Graça A.L. Babo P.S. Reis R.L. Gomes M.E. Natural-based hydrogels for tissue engineering applications. Molecules 2020 25 24 5858 10.3390/molecules25245858 33322369
    [Google Scholar]
  27. Zhang H. Lin X. Cao X. Wang Y. Wang J. Zhao Y. Developing natural polymers for skin wound healing. Bioact. Mater. 2024 33 355 376 10.1016/j.bioactmat.2023.11.012 38282639
    [Google Scholar]
  28. Abazari M. Ghaffari A. Rashidzadeh H. Momeni badeleh S. Maleki Y. Current status and future outlook of nano‐based systems for burn wound management. J. Biomed. Mater. Res. B Appl. Biomater. 2020 108 5 1934 1952 10.1002/jbm.b.34535 31886606
    [Google Scholar]
  29. Ganjali M Ganjali M Aljabali AA Barhoum A Drug delivery systems based on nano-herbal medicine. Bionanotechnology : Emerging Applications of Bionanomaterials Elsevier 2022 10.1016/B978‑0‑12‑823915‑5.00007‑1
    [Google Scholar]
  30. Chopra H. Munjal K. Gauttam V.K. Emran T.B. Application, scope, and limitations of grafting techniques and materials used in Nasal Augmentation. Int J Surg Open. 2024 62 1 64 67 10.1097/IO9.0000000000000007
    [Google Scholar]
  31. Zhang Y. Gulati K. Li Z. Di P. Liu Y. Dental implant nano-engineering: Advances, limitations and future directions. Nanomaterials 2021 11 10 2489 10.3390/nano11102489 34684930
    [Google Scholar]
  32. Kadambi P. Luniya P. Dhatrak P. Current advancements in polymer/polymer matrix composites for dental implants: A systematic review. Mater. Today Proc. 2021 46 740 745 10.1016/j.matpr.2020.12.396
    [Google Scholar]
  33. Toh H.W. Toong D.W.Y. Ng J.C.K. Ow V. Lu S. Tan L.P. Wong P.E.H. Venkatraman S. Huang Y. Ang H.Y. Polymer blends and polymer composites for cardiovascular implants. Eur. Polym. J. 2021 146 110249 10.1016/j.eurpolymj.2020.110249
    [Google Scholar]
  34. Chuysinuan P. Pengsuk C. Lirdprapamongkol K. Thanyacharoen T. Techasakul S. Svasti J. Nooeaid P. Turmeric herb extract-incorporated biopolymer dressings with beneficial antibacterial, antioxidant and anti-inflammatory properties for wound healing. Polymers 2023 15 5 1090 10.3390/polym15051090 36904331
    [Google Scholar]
  35. Kowalska G. Rosicka-Kaczmarek J. Miśkiewicz K. Zakłos-Szyda M. Rohn S. Kanzler C. Wiktorska M. Niewiarowska J. Arabinoxylan-based microcapsules being loaded with bee products as bioactive food components are able to modulate the cell migration and inflammatory response—in vitro study. Nutrients 2022 14 12 2529 10.3390/nu14122529 35745258
    [Google Scholar]
  36. Kang H. Lee M.G. Lee J.K. Choi Y.H. Choi Y.S. Enzymatically-processed wheat bran enhances macrophage activity and has in vivo anti-inflammatory effects in mice. Nutrients 2016 8 4 188 10.3390/nu8040188 27043618
    [Google Scholar]
  37. Mendez-Encinas M.A. Carvajal-Millan E. Rascon-Chu A. Astiazaran-Garcia H.F. Valencia-Rivera D.E. Ferulated arabinoxylans and their gels: Functional properties and potential application as antioxidant and anticancer agent. Oxid. Med. Cell. Longev. 2018 2018 1 2314759 10.1155/2018/2314759 30186541
    [Google Scholar]
  38. Singh B. Devi K. Sharma D. Sharma P. Synthesis and characterization of modified bioactive arabinoxylan-psyllium: Evaluation of molecular interactions, physiochemical and biomedical properties. Int. J. Biol. Macromol. 2022 221 1053 1064 10.1016/j.ijbiomac.2022.09.064 36108744
    [Google Scholar]
  39. Hasanin M.S. Saied H.E. Kamel S. Polysaccharides based biosensors for medical applications: Prospective and future aspects. Stärke 2023 75 11-12 2300037 10.1002/star.202300037
    [Google Scholar]
  40. Kumar P. Dash S.K. Ray S. Parween S. Biomaterials-Based Sensors. Singapore Springer Nature Singapore Pte Ltd 2023 10.1007/978‑981‑19‑8501‑0
    [Google Scholar]
  41. Baranwal A. Kumar A. Priyadharshini A. Oggu G.S. Bhatnagar I. Srivastava A. Chandra P. Chitosan: An undisputed bio-fabrication material for tissue engineering and bio-sensing applications. Int. J. Biol. Macromol. 2018 110 110 123 10.1016/j.ijbiomac.2018.01.006 29339286
    [Google Scholar]
  42. Abramovich H. Intelligent materials and structures. De Gruyter Boston 2021 10.1515/9783110726701
    [Google Scholar]
  43. Baron D. Esteves Amaro A.C. Pina A. Ferreira G. An overview of grafting re-establishment in woody fruit species. Sci. Hortic. 2019 243 84 91 10.1016/j.scienta.2018.08.012
    [Google Scholar]
  44. Funami T. Hiroe M. Noda S. Asai I. Ikeda S. Nishinari K. Influence of molecular structure imaged with atomic force microscopy on the rheological behavior of carrageenan aqueous systems in the presence or absence of cations. Food Hydrocoll. 2007 21 4 617 629 10.1016/j.foodhyd.2006.07.013
    [Google Scholar]
  45. Ige O.O. Umoru L.E. Aribo S. Natural products: A minefield of biomaterials. Int. Sch. Res. Notices 2012 2012 1 983062
    [Google Scholar]
  46. Rorrer G.L. Hawley M.C. Vapor-phase HF solvolysis of cellulose: Modification of the reversion oligosaccharide distribution by in-situ methanolysis. Carbohydr. Polym. 1993 22 1 9 13 10.1016/0144‑8617(93)90160‑6
    [Google Scholar]
  47. Weiner ML Kotkoskie LA Excipient toxicity and safety. Pharmacokinetics and Toxicokinetic Considerations Academic Press 1999 487 511 10.1201/9781420002270
    [Google Scholar]
  48. Pennells J. Cruickshank A. Chaléat C. Godwin I.D. Martin D.J. Sorghum as a novel biomass for the sustainable production of cellulose nanofibers. Ind. Crops Prod. 2021 171 113917 10.1016/j.indcrop.2021.113917
    [Google Scholar]
  49. Singh J. Sharma A. Sharma P. Singh S. Das D. Chawla G. Singha A. Nain L. Valorization of jute (Corchorus sp.) biomass for bioethanol production. Biomass Convers. Biorefin. 2020 Aug 1 2
    [Google Scholar]
  50. Plaza P.E. Gallego-Morales L.J. Peñuela-Vásquez M. Lucas S. García-Cubero M.T. Coca M. Biobutanol production from brewer’s spent grain hydrolysates by Clostridium beijerinckii. Bioresour. Technol. 2017 244 Pt 1 166 174 10.1016/j.biortech.2017.07.139 28779668
    [Google Scholar]
  51. Klemm D. Heublein B. Fink H.P. Bohn A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 2005 44 22 3358 3393 10.1002/anie.200460587 15861454
    [Google Scholar]
  52. Riva R Ragelle H des Rieux A Duhem N Jérôme C Préat V Chitosan and chitosan derivatives in drug delivery and tissue engineering. Springer Berlin, Heidelberg. 2011 10.1007/12_2011_137
    [Google Scholar]
  53. Cupp M.J. Tracy T.S. Dietary supplements: Toxicology and clinical pharmacology. Springer Science & Business Media 2002 10.1385/1592593038
    [Google Scholar]
  54. Elieh-Ali-Komi D. Hamblin M.R. Chitin and chitosan: Production and application of versatile biomedical nanomaterials. Int. J. Adv. Res. 2016 4 3 411 427 27819009
    [Google Scholar]
  55. Arbia W. Arbia L. Adour L. Amrane A. Chitin extraction from crustacean shells using biological methods–A review. Food Technol. Biotechnol. 2013 51 1 12 25
    [Google Scholar]
  56. Kim S.K. Chitin, chitosan, oligosaccharides and their derivatives: Biological activities and applications. CRC Press 2010 10.1201/EBK1439816035
    [Google Scholar]
  57. Bojorges H. López-Rubio A. Martínez-Abad A. Fabra M.J. Overview of alginate extraction processes: Impact on alginate molecular structure and techno-functional properties. Trends Food Sci. Technol. 2023 140 104142 10.1016/j.tifs.2023.104142
    [Google Scholar]
  58. Layek B. Singh J. Chitosan for DNA and gene therapy. InChitosan Based Biomaterials 2017 2 209 244
    [Google Scholar]
  59. Ibrahim HM El-Zairy EM Chitosan as a Biomaterial — Structure, Properties, and Electrospun Nanofibers InTech 2015
    [Google Scholar]
  60. Staudinger H. Die hochmolekularen organischen Verbindungen-Kautschuk und Cellulose. Springer 2013
    [Google Scholar]
  61. Coffey DG Bell DA Henderson A Cellulose and cellulose derivatives. Elsevier Science 1995
    [Google Scholar]
  62. Rowley J.A. Madlambayan G. Mooney D.J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999 20 1 45 53 10.1016/S0142‑9612(98)00107‑0 9916770
    [Google Scholar]
  63. Izawa N. Hanamizu T. Iizuka R. Sone T. Mizukoshi H. Kimura K. Chiba K. Streptococcus thermophilus produces exopolysaccharides including hyaluronic acid. J. Biosci. Bioeng. 2009 107 2 119 123 10.1016/j.jbiosc.2008.11.007 19217548
    [Google Scholar]
  64. García-Ochoa F. Castro E.G. Santos V.E. Oxygen transfer and uptake rates during xanthan gum production. Enzyme Microb. Technol. 2000 27 9 680 690 10.1016/S0141‑0229(00)00272‑6 11064050
    [Google Scholar]
  65. Ghosh K. Biocompatibility of hyaluronic acid: From cell recognition to therapeutic applications. Natural-Based Polymers for Biomedical Applications Woodhead Publishing 2008 716 737
    [Google Scholar]
  66. McHugh D.J. Production, properties and uses of alginates. Production and utilization of products from commercial seaweeds. FAO Fish. Tech. Pap. 1987 288 58 115
    [Google Scholar]
  67. Hermanides-Nijhof E.J. Aureobasidium and allied genera. Stud. Mycol. 1977 15 141 177
    [Google Scholar]
  68. Born W. Rauschmayer F. Bräuer I. Economic evaluation of biological invasions—A survey. Ecol. Econ. 2005 55 3 321 336 10.1016/j.ecolecon.2005.08.014
    [Google Scholar]
  69. Dovedytis M. Liu Z.J. Bartlett S. Hyaluronic acid and its biomedical applications: A review. Engineered Regen. 2020 1 102 113 10.1016/j.engreg.2020.10.001
    [Google Scholar]
  70. Juhlin L. Hyaluronan in skin. J. Intern. Med. 1997 242 1 61 66 10.1046/j.1365‑2796.1997.00175.x 9260568
    [Google Scholar]
  71. Pinto E. Aggrey W.N. Boakye P. Amenuvor G. Sokama-Neuyam Y.A. Fokuo M.K. Karimaie H. Sarkodie K. Adenutsi C.D. Erzuah S. Rockson M.A. Cellulose processing from biomass and its derivatization into carboxymethylcellulose: A review. Sci. Am. 2022 15 e01078
    [Google Scholar]
  72. Sayakulu N. Soloi S. The effect of sodium hydroxide (NaOH) concentration on oil palm empty fruit bunch (OPEFB) cellulose yield. J. Phys.: Conf. Ser. 2022 2314 012017
    [Google Scholar]
  73. Sankhla S. Sardar H.H. Neogi S. Greener extraction of highly crystalline and thermally stable cellulose micro-fibers from sugarcane bagasse for cellulose nano-fibrils preparation. Carbohydr. Polym. 2021 251 117030 10.1016/j.carbpol.2020.117030 33142589
    [Google Scholar]
  74. Bhandari K Roy Maulik S Bhattacharyya AR Synthesis and characterization of microcrystalline cellulose from rice husk. J. Inst. Eng. India Ser. 2020 99 108 10.1007/s40034‑020‑00160‑7
    [Google Scholar]
  75. Melikoğlu A.Y. Bilek S.E. Cesur S. Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace. Carbohydr. Polym. 2019 215 330 337 10.1016/j.carbpol.2019.03.103 30981362
    [Google Scholar]
  76. Schneider L. Dong Y. Haverinen J. Jaakkola M. Lassi U. Efficiency of acetic acid and formic acid as a catalyst in catalytical and mechanocatalytical pretreatment of barley straw. Biomass Bioenergy 2016 91 134 142 10.1016/j.biombioe.2016.05.015
    [Google Scholar]
  77. Martin C. Alriksson B. Sjöde A. Nilvebrant N.O. Jönsson L.J. Dilute sulfuric acid pretreatment of agricultural and agro-industrial residues for ethanol production. The Twenty-Eighth Symposium Proceedings of the Twenty-Eight Symposium on Biotechnology for Fuels and Chemicals Held Humana Press, April 30–May 3, 2006, pp. 339-352 10.1007/978‑1‑60327‑181‑3_30
    [Google Scholar]
  78. Zhang Q. Waste to biohydrogen: Progress, challenges, and prospects. Waste to Renewable Biohydrogen Academic Press 2021
    [Google Scholar]
  79. Vanneste J. Ennaert T. Vanhulsel A. Sels B. Unconventional pretreatment of lignocellulose with low‐temperature plasma. ChemSusChem 2017 10 1 14 31 10.1002/cssc.201601381 27922209
    [Google Scholar]
  80. Zhu H. Han Z. Cheng J.H. Sun D.W. Modification of cellulose from sugarcane (Saccharum officinarum) bagasse pulp by cold plasma: Dissolution, structure and surface chemistry analysis. Food Chem. 2022 374 131675 10.1016/j.foodchem.2021.131675 34883432
    [Google Scholar]
  81. Ravindran R. Sarangapani C. Jaiswal S. Lu P. Cullen P.J. Bourke P. Jaiswal A.K. Improving enzymatic hydrolysis of brewer spent grain with nonthermal plasma. Bioresour. Technol. 2019 282 520 524 10.1016/j.biortech.2019.03.071 30902485
    [Google Scholar]
  82. John Kasongo K. Tubadi D.J. Bampole L.D. Kaniki T.A. Kanda N.J.M. Lukumu M.E. Extraction and characterization of chitin and chitosan from Termitomyces titanicus. SN Applied Sciences 2020 2 3 406 10.1007/s42452‑020‑2186‑5
    [Google Scholar]
  83. Kaya M. Baran T. Asan-Ozusaglam M. Cakmak Y.S. Tozak K.O. Mol A. Mentes A. Sezen G. Extraction and characterization of chitin and chitosan with antimicrobial and antioxidant activities from cosmopolitan Orthoptera species (Insecta). Biotechnol. Bioprocess Eng.; BBE 2015 20 1 168 179 10.1007/s12257‑014‑0391‑z
    [Google Scholar]
  84. Kaya M. Baran T. Description of a new surface morphology for chitin extracted from wings of cockroach (Periplaneta americana). Int. J. Biol. Macromol. 2015 75 7 12 10.1016/j.ijbiomac.2015.01.015 25597430
    [Google Scholar]
  85. Abdel-Rahman R.M. Hrdina R. Abdel-Mohsen A.M. Fouda M.M.G. Soliman A.Y. Mohamed F.K. Mohsin K. Pinto T.D. Chitin and chitosan from Brazilian Atlantic coast: Isolation, characterization and antibacterial activity. Int. J. Biol. Macromol. 2015 80 107 120 10.1016/j.ijbiomac.2015.06.027 26093316
    [Google Scholar]
  86. Dobrinčić A. Balbino S. Zorić Z. Pedisić S. Bursać Kovačević D. Elez Garofulić I. Dragović-Uzelac V. Advanced technologies for the extraction of marine brown algal polysaccharides. Mar. Drugs 2020 18 3 168 10.3390/md18030168 32197494
    [Google Scholar]
  87. Ummat V. Sivagnanam S.P. Rajauria G. O’Donnell C. Tiwari B.K. Advances in pre-treatment techniques and green extraction technologies for bioactives from seaweeds. Trends Food Sci. Technol. 2021 110 90 106 10.1016/j.tifs.2021.01.018
    [Google Scholar]
  88. Beata Łabowska M. Michalak I. Detyna J. Methods of extraction, physicochemical properties of alginates and their applications in biomedical field – A review. Open Chem. 2019 17 1 738 762 10.1515/chem‑2019‑0077
    [Google Scholar]
  89. Hernandez-Carmona G Freile-Pelegrín Y Hernández-Garibay E Conventional and alternative technologies for the extraction of algal polysaccharides. Functional Ingredients from Algae for Foods and Nutraceuticals Woodhead Publishing 2013 475 516 10.1533/9780857098689.3.475
    [Google Scholar]
  90. Peteiro C. Alginate production from marine macroalgae, with emphasis on kelp farming. Springer Singapore 2018 10.1007/978‑981‑10‑6910‑9_2
    [Google Scholar]
  91. Guo Y. Zhang S. New extraction technology and characterization of sodium alginate. IOP Conf. Ser.: Earth Environ. Sci. 2020 474 052092 10.1088/1755‑1315/474/5/052092
    [Google Scholar]
  92. Gullón B. Gagaoua M. Barba F.J. Gullón P. Zhang W. Lorenzo J.M. Seaweeds as promising resource of bioactive compounds: Overview of novel extraction strategies and design of tailored meat products. Trends Food Sci. Technol. 2020 100 1 18 10.1016/j.tifs.2020.03.039
    [Google Scholar]
  93. Mena-García A. Ruiz-Matute A.I. Soria A.C. Sanz M.L. Green techniques for extraction of bioactive carbohydrates. Trends Analyt. Chem. 2019 119 115612 10.1016/j.trac.2019.07.023
    [Google Scholar]
  94. García-Vaquero M. Rajauria G. O’Doherty J.V. Sweeney T. Polysaccharides from macroalgae: Recent advances, innovative technologies and challenges in extraction and purification. Food Res. Int. 2017 99 Pt 3 1011 1020 10.1016/j.foodres.2016.11.016 28865611
    [Google Scholar]
  95. Rosalam S. England R. Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp. Enzyme Microb. Technol. 2006 39 2 197 207 10.1016/j.enzmictec.2005.10.019
    [Google Scholar]
  96. Ben Salah R. Chaari K. Besbes S. Ktari N. Blecker C. Deroanne C. Attia H. Optimisation of xanthan gum production by palm date (Phoenix dactylifera L.) juice by-products using response surface methodology. Food Chem. 2010 121 2 627 633 10.1016/j.foodchem.2009.12.077
    [Google Scholar]
  97. Prajapati V.D. Jani G.K. Khanda S.M. Pullulan: An exopolysaccharide and its various applications. Carbohydr. Polym. 2013 95 1 540 549 10.1016/j.carbpol.2013.02.082 23618305
    [Google Scholar]
  98. Zong A. Cao H. Wang F. Anticancer polysaccharides from natural resources: A review of recent research. Carbohydr. Polym. 2012 90 4 1395 1410 10.1016/j.carbpol.2012.07.026 22944395
    [Google Scholar]
  99. Salatin S. Jelvehgari M. Natural polysaccharide based nanoparticles for drug/gene delivery. Ulum-i Daruyi 2017 23 2 84 94 10.15171/PS.2017.14
    [Google Scholar]
  100. Shokri J Adibkia K Application of cellulose and cellulose derivatives in pharmaceutical industries. InTech 2013 10.5772/55178
    [Google Scholar]
  101. Carlmark A. Larsson E. Malmström E. Grafting of cellulose by ring-opening polymerisation – A review. Eur. Polym. J. 2012 48 10 1646 1659 10.1016/j.eurpolymj.2012.06.013
    [Google Scholar]
  102. Matica A Menghiu G Ostafe V Biodegradability of chitosan based products. NEW FRONT. CHEM 2017 26 1 75 86
    [Google Scholar]
  103. Yang Y.M. Hu W. Wang X.D. Gu X.S. The controlling biodegradation of chitosan fibers by N-acetylation in vitro and in vivo. J. Mater. Sci. Mater. Med. 2007 18 11 2117 2121 10.1007/s10856‑007‑3013‑x 17619982
    [Google Scholar]
  104. Bouhadir K.H. Lee K.Y. Alsberg E. Damm K.L. Anderson K.W. Mooney D.J. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol. Prog. 2001 17 5 945 950 10.1021/bp010070p 11587588
    [Google Scholar]
  105. Zhang L. D’Amora U. Ronca A. Li Y. Mo X. Zhou F. Yuan M. Ambrosio L. Wu J. Raucci M.G. In vitro and in vivo biocompatibility and inflammation response of methacrylated and maleated hyaluronic acid for wound healing. RSC Advances 2020 10 53 32183 32192 10.1039/D0RA06025A 35518130
    [Google Scholar]
  106. Lee J.H. Rim Y.S. Min W.K. Park K. Kim H.T. Hwang G. Song J. Kim H.J. Biocompatible and biodegradable neuromorphic device based on hyaluronic acid for implantable bioelectronics. Adv. Funct. Mater. 2021 31 50 2107074 10.1002/adfm.202107074
    [Google Scholar]
  107. Singh P. Wu L. Ren X. Zhang W. Tang Y. Chen Y. Carrier A. Zhang X. Zhang J. Hyaluronic-acid-based β-cyclodextrin grafted copolymers as biocompatible supramolecular hosts to enhance the water solubility of tocopherol. Int. J. Pharm. 2020 586 119542 10.1016/j.ijpharm.2020.119542 32553494
    [Google Scholar]
  108. Luo M. Zhang X. Wu J. Zhao J. Modifications of polysaccharide-based biomaterials under structure-property relationship for biomedical applications. Carbohydr. Polym. 2021 266 118097 10.1016/j.carbpol.2021.118097 34044964
    [Google Scholar]
  109. Bhattacharya A. Misra B.N. Grafting: A versatile means to modify polymersTechniques, factors and applications. Prog. Polym. Sci. 2004 29 8 767 814 10.1016/j.progpolymsci.2004.05.002
    [Google Scholar]
  110. Ito M. Nagai K. Degradation behavior and application of recycled PVC sheet made of floor sheet for railway vehicle. Polym. Degrad. Stabil. 2007 92 9 1692 1699 10.1016/j.polymdegradstab.2007.06.005
    [Google Scholar]
  111. Kaith BS Kalia S A study of crystallinity of graft copolymers of flax fiber with binary vinyl monomers. e-Polymers 2008 8 1 002
    [Google Scholar]
  112. Zohuriaan-Mehr M.J. Advances in chitin and chitosan modification through graft copolymerization: A comprehensive review. Iran. Polym. J. 2005 14 3 235 265
    [Google Scholar]
  113. Hsu S. Pan T. Adsorption of paraquat using methacrylic acid-modified rice husk. Bioresour. Technol. 2007 98 18 3617 3621 10.1016/j.biortech.2006.11.060 17303413
    [Google Scholar]
  114. Kumari A. Kalia S. Singh Kaith B. Singh Singha A. Susheel Kalia Synthesis, characterization and salt resistance swelling behavior of psy-g-poly (AA) hydrogel. Adv. Mater. Lett. 2010 1 2 123 128 10.5185/amlett.2010.6129
    [Google Scholar]
  115. Mino G. Kaizerman S. A new method for the preparation of graft copolymers. Polymerization initiated by ceric ion redox systems. J. Polym. Sci. 1958 31 122 242 243 10.1002/pol.1958.1203112248
    [Google Scholar]
  116. Sarmento B. Chitosan-based systems for biopharmaceuticals: Delivery, targeting and polymer therapeutics. John Wiley & Sons 2012
    [Google Scholar]
  117. Marmey P. Porté M.C. Baquey C. PVDF multifilament yarns grafted with polystyrene induced by γ-irradition: Influence of the grafting parameters on the mechanical properties. Nucl. Instrum. Methods Phys. Res. B 2003 208 429 433 10.1016/S0168‑583X(03)00887‑5
    [Google Scholar]
  118. Yamaki T. Asano M. Maekawa Y. Morita Y. Suwa T. Chen J. Tsubokawa N. Kobayashi K. Kubota H. Yoshida M. Radiation grafting of styrene into crosslinked PTEE films and subsequent sulfonation for fuel cell applications. Radiat. Phys. Chem. 2003 67 3-4 403 407 10.1016/S0969‑806X(03)00075‑6
    [Google Scholar]
  119. Kaur I. Misra B.N. Chauhan M.S. Chauhan S. Gupta A. Viscometric, conductometric, and ultrasonic studies of gelatin-g-polyacrylamide composite. J. Appl. Polym. Sci. 1996 59 3 389 397 10.1002/(SICI)1097‑4628(19960118)59:3<389::AID‑APP2>3.0.CO;2‑L
    [Google Scholar]
  120. Bajpai U.D.N. Jain A. Rai S. Grafting of polyacrylamide on to guar gum using K 2 S 2 O 8 ascorbic acid redox system. J. Appl. Polym. Sci. 1990 39 11-12 2187 2204 10.1002/app.1990.070391101
    [Google Scholar]
  121. Pradhan A.K. Pati N.C. Nayak P.L. Grafting vinyl monomers onto nylon 6. IV. Graft copolymerization of methyl methacrylate onto nylon 6 using the V5–thiourea redox system. J. Appl. Polym. Sci. 1982 27 5 1839 1843 10.1002/app.1982.070270540
    [Google Scholar]
  122. Kalia S. Sabaa M.W. Polysaccharide based graft copolymers. Berlin Springer 2013 10.1007/978‑3‑642‑36566‑9
    [Google Scholar]
  123. Tizzotti M. Charlot A. Fleury E. Stenzel M. Bernard J. Modification of polysaccharides through controlled/living radical polymerization grafting-towards the generation of high performance hybrids. Macromol. Rapid Commun. 2010 31 20 1751 1772 10.1002/marc.201000072 21567591
    [Google Scholar]
  124. Thakur V.K. Thakur M.K. Recent advances in graft copolymerization and applications of chitosan: A review. ACS Sustain. Chem.& Eng. 2014 2 12 2637 2652 10.1021/sc500634p
    [Google Scholar]
  125. Misra B.N. Chauhan G.S. Rawat B.R. Effects of acids on gamma‐radiation induced graft copolymerization of ethylmethacrylate onto wool fiber. J. Appl. Polym. Sci. 1991 42 12 3223 3227 10.1002/app.1991.070421215
    [Google Scholar]
  126. Stannett V.T. Radiation induced ionic polymerisation and grafting of vinyl monomers. Br. Polym. J. 1981 13 3 93 98 10.1002/pi.4980130302
    [Google Scholar]
  127. Alferey T. Bandel D. Paper presented in 118th American chemical society annual fall meeting, through mark HF. Rec. Chem. Prog. 1951 12 139
    [Google Scholar]
  128. Kaith B.S. Jindal R. Bhatia J.K. Morphological and thermal evaluation of soy protein concentrate on graft copolymerization with ethylmethacrylate. J. Appl. Polym. Sci. 2011 120 4 2183 2190 10.1002/app.33448
    [Google Scholar]
  129. Basu D. Khan A.K. Maji T.K. Banerjee A. Mechanical property studies of poly(methyl methacrylate)-grafted viscose fibers. J. Appl. Polym. Sci. 1998 69 13 2585 2591 10.1002/(SICI)1097‑4628(19980926)69:13<2585::AID‑APP8>3.0.CO;2‑6
    [Google Scholar]
  130. TAGHI ZM. Kinetic study of graft polymerization of acrylic acid and ethyl methacrylate onto starch by ceric ammonium nitrate. Iran J Chem Chem Eng. 2006 25 1 1 12
    [Google Scholar]
  131. Aly AA El-Bisi MK Grafting of polysaccharides: Recent advances Biopolym Graft. Elsevier 2018 469 519
    [Google Scholar]
  132. Kumar G. Smith P.J. Payne G.F. Enzymatic grafting of a natural product onto chitosan to confer water solubility under basic conditions. Biotechnol. Bioeng. 1999 63 2 154 165 10.1002/(SICI)1097‑0290(19990420)63:2<154::AID‑BIT4>3.0.CO;2‑R 10099592
    [Google Scholar]
  133. Cosnier S. Fologea D. Szunerits S. Marks R.S. Poly(dicarbazole-N-hydroxysuccinimide) film: A new polymer for the reagentless grafting of enzymes and redox mediators. Electrochem. Commun. 2000 2 12 827 831 10.1016/S1388‑2481(00)00131‑4
    [Google Scholar]
  134. Peng T. Cheng Y.L. PNIPAAm and PMAA co-grafted porous PE membranes: Living radical co-grafting mechanism and multi-stimuli responsive permeability. Polymer 2001 42 5 2091 2100 10.1016/S0032‑3861(00)00369‑4
    [Google Scholar]
  135. Gupta B. Hilborn J. Hollenstein C. Plummer C.J.G. Houriet R. Xanthopoulos N. Surface modification of polyester films by RF plasma. J. Appl. Polym. Sci. 2000 78 5 1083 1091 10.1002/1097‑4628(20001031)78:5<1083::AID‑APP170>3.0.CO;2‑5
    [Google Scholar]
  136. Kaur I. Misra B.N. Gupta A. Chauhan G.S. Radiochemical grafting of methacrylonitrile and its binary mixture with methyl acrylate onto gelatin. Polym. Int. 1998 46 4 275 279 10.1002/(SICI)1097‑0126(199808)46:4<275::AID‑PI991>3.0.CO;2‑0
    [Google Scholar]
  137. Khan M.A. Shehrzade S. Sarwar M. Chowdhury U. Rahman M.M. Effect of pretreatment with UV radiation on physical and mechanical properties of photocured jute yarn with 1, 6-hexanediol diacrylate (HDDA). J. Polym. Environ. 2001 9 3 115 124 10.1023/A:1020450827424
    [Google Scholar]
  138. Zhu Y. Gao C. Shen J. Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility. Biomaterials 2002 23 24 4889 4895 10.1016/S0142‑9612(02)00247‑8 12361630
    [Google Scholar]
  139. Deng J. Wang L. Liu L. Yang W. Developments and new applications of UV-induced surface graft polymerizations. Prog. Polym. Sci. 2009 34 2 156 193 10.1016/j.progpolymsci.2008.06.002
    [Google Scholar]
  140. Trbojević-Gobac S. Vlatković M. Meić Z. Gamma radiation-induced graft copolymerization of divinylbenzene onto cellulose fabric. J. Appl. Polym. Sci. 1979 24 4 1101 1107 10.1002/app.1979.070240422
    [Google Scholar]
  141. Chauhan G.S. Dhiman S.K. Guleria L.K. Misra B.N. Kaur I. Polymers from renewable resources: Kinetics of 4-vinyl pyridine radiochemical grafting onto cellulose extracted from pine needles. Radiat. Phys. Chem. 2000 58 2 181 190 10.1016/S0969‑806X(99)00363‑1
    [Google Scholar]
  142. Singh V. Tiwari A. Tripathi D.N. Sanghi R. Microwave enhanced synthesis of chitosan-graft-polyacrylamide. Polymer 2006 47 1 254 260 10.1016/j.polymer.2005.10.101
    [Google Scholar]
  143. Singh V. Kumar P. Sanghi R. Use of microwave irradiation in the grafting modification of the polysaccharides – A review. Prog. Polym. Sci. 2012 37 2 340 364 10.1016/j.progpolymsci.2011.07.005
    [Google Scholar]
  144. Luzinov I. Minko S. Tsukruk V.V. Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Prog. Polym. Sci. 2004 29 7 635 698 10.1016/j.progpolymsci.2004.03.001
    [Google Scholar]
  145. Littunen K. Hippi U. Johansson L.S. Österberg M. Tammelin T. Laine J. Seppälä J. Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr. Polym. 2011 84 3 1039 1047 10.1016/j.carbpol.2010.12.064
    [Google Scholar]
  146. Ghiasvand S. Rahmani A. Samadi M. Asgari G. Azizian S. Poormohammadi A. Application of polystyrene nanofibers filled with sawdust as separator pads for separation of oil spills. Process Saf. Environ. Prot. 2021 146 161 168 10.1016/j.psep.2020.08.044
    [Google Scholar]
  147. Awadallah-F A. Sobhy A. Dual function of cellulose triacetate–graft–polymethacrylic acid films for dyes removal and for high-dose radiation dosimetry. J. Polym. Environ. 2018 26 7 2758 2772 10.1007/s10924‑017‑1163‑6
    [Google Scholar]
  148. Luzinov I. Minko S. Tsukruk V.V. Responsive brush layers: From tailored gradients to reversibly assembled nanoparticles. Soft Matter 2008 4 4 714 725 10.1039/b718999k 32907173
    [Google Scholar]
  149. Henze M. Mädge D. Prucker O. Rühe J. “Grafting through”: Mechanistic aspects of radical polymerization reactions with surface-attached monomers. Macromolecules 2014 47 9 2929 2937 10.1021/ma402607d
    [Google Scholar]
  150. Sun W. Liu W. Wu Z. Chen H. Chemical surface modification of polymeric biomaterials for biomedical applications. Macromol. Rapid Commun. 2020 41 8 1900430 10.1002/marc.201900430 32134540
    [Google Scholar]
  151. Azhar U Alwahabi Z Dai S Synthesis and spectroscopic study of dual-encoded microbeads by raman scattering and surface enhanced raman scattering. J Raman Spectrosc. 2019 51 6 910 918
    [Google Scholar]
  152. Pandiyarajan C.K. Rubinstein M. Genzer J. Surface-anchored poly (N-isopropylacrylamide) orthogonal gradient networks. Macromolecules 2016 49 14 5076 5083 10.1021/acs.macromol.6b01048 27660374
    [Google Scholar]
  153. Matyjaszewski K. Atom transfer radical polymerization (ATRP): Current status and future perspectives. Macromolecules 2012 45 10 4015 4039 10.1021/ma3001719
    [Google Scholar]
  154. Matyjaszewski K. Tsarevsky N.V. Macromolecular engineering by atom transfer radical polymerization. J. Am. Chem. Soc. 2014 136 18 6513 6533 10.1021/ja408069v 24758377
    [Google Scholar]
  155. Andrade F. Goycoolea F. Chiappetta D.A. das Neves J. Sosnik A. Sarmento B. Chitosan‐Grafted copolymers and chitosan‐ligand conjugates as matrices for pulmonary drug delivery. Int. J. Carbohydr. Chem. 2011 2011 1 1 14 10.1155/2011/865704
    [Google Scholar]
  156. Jintapattanakit A. Mao S. Kissel T. Junyaprasert V.B. Physicochemical properties and biocompatibility of N-trimethyl chitosan: Effect of quaternization and dimethylation. Eur. J. Pharm. Biopharm. 2008 70 2 563 571 10.1016/j.ejpb.2008.06.002 18602467
    [Google Scholar]
  157. Anitha A. Deepa N. Chennazhi K.P. Lakshmanan V.K. Jayakumar R. Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment. Biochim. Biophys. Acta, Gen. Subj. 2014 1840 9 2730 2743 10.1016/j.bbagen.2014.06.004 24946270
    [Google Scholar]
  158. Hoffman S. Surface modification of polymers. Chin. J. Polym. Sci. 1995 13 3 195 203
    [Google Scholar]
  159. De France K.J. Hoare T. Cranston E.D. Review of hydrogels and aerogels containing nanocellulose. Chem. Mater. 2017 29 11 4609 4631 10.1021/acs.chemmater.7b00531
    [Google Scholar]
  160. Zhang W. Sun J. Li Q. Liu C. Niu F. Yue R. Zhang Y. Zhu H. Ma C. Deng S. Free radical-mediated grafting of natural polysaccharides such as chitosan, starch, inulin, and pectin with some polyphenols: Synthesis, structural characterization, bioactivities, and applications—A review. Foods 2023 12 19 3688 10.3390/foods12193688 37835341
    [Google Scholar]
  161. Liu J. Yong H. Liu Y. Bai R. Recent advances in the preparation, structural characteristics, biological properties and applications of gallic acid grafted polysaccharides. Int. J. Biol. Macromol. 2020 156 1539 1555 10.1016/j.ijbiomac.2019.11.202 31785294
    [Google Scholar]
  162. Raj V. Shim J.J. Lee J. Grafting modification of okra mucilage: Recent findings, applications, and future directions. Carbohydr. Polym. 2020 246 116653 10.1016/j.carbpol.2020.116653 32747285
    [Google Scholar]
  163. Bontempo D. Masci G. De Leonardis P. Mannina L. Capitani D. Crescenzi V. Versatile grafting of polysaccharides in homogeneous mild conditions by using atom transfer radical polymerization. Biomacromolecules 2006 7 7 2154 2161 10.1021/bm0601373 16827582
    [Google Scholar]
  164. Kumar D. Pandey J. Raj V. Kumar P. A review on the modification of polysaccharide through graft copolymerization for various potential applications. Open Med. Chem. J. 2017 11 1 109 126 10.2174/1874104501711010109 29151987
    [Google Scholar]
  165. Verma C. Pathania D. Anjum S. Gupta B. Smart designing of tragacanth gum by graft functionalization for advanced materials. Macromol. Mater. Eng. 2020 305 4 1900762 10.1002/mame.201900762
    [Google Scholar]
  166. Jose R. Ramakrishna S. Materials 4.0: Materials big data enabled materials discovery. Appl. Mater. Today 2018 10 127 132 10.1016/j.apmt.2017.12.015
    [Google Scholar]
  167. Dhamankar S. Webb M.A. Chemically specific coarse‐graining of polymers: Methods and prospects. J. Polym. Sci. 2021 59 22 2613 2643 10.1002/pol.20210555
    [Google Scholar]
  168. Jules B. Process for grafting a monomer onto an oxidized polysaccharide. Patent US 3,138,564, 1964
  169. Carl H. Method of grafting polymerizable monomer onto substrates and resultant article. Patent US 3,401,049 1968
  170. Dekking H.G. Method for preparing polysaccharide graft copolymers. Patent US 3,455,853 1969
  171. Gunn E. Liu L. Priou C. Gabbianelli A. Warburton S. Polysaccharide graft copolymers and their use in personal care applications. Patent US 11,196,359 2006
  172. DeAngelis P.L. Polymer grafting by polysaccharide synthases. Patent US 7,575,904 2009
  173. Liu L.Z. Priou C. Grafting polymerization of guar and other polysaccharides by electron beams. Patent US 7,838,667 2010
  174. Cartilier L. Mateescu M.A. Dumoulin Y. Lenaerts V. Cross-linked amylose as a binder/disintegrant in tablets. Patent US 5,616,343 1997
  175. Cartilier L. Chebli C. Cross-linked cellulose as a tablet excipient. Patent US 5,989,589 1999
  176. Petzold O.N. Ravichandran V. Senaratne W. Irradiation induced grafting of polysaccharides to cell culture vessels. Patent US 12/547,144 2011
  177. Patil D.R. Fan L.G. Fan J.C. Yu J. Method of making graft copolymers from sodium poly (aspartate) and the resulting graft copolymer. Patent US 7,999,040 2011
  178. Celli A. Sabaa M.W. Jyothi A.N. Kalia S. Chitosan and starch-based hydrogels via graft copolymerization. Polymeric Hydrogels as Smart Biomaterials Springer Cham 2016 189 234 10.1007/978‑3‑319‑25322‑0_8
    [Google Scholar]
  179. Giri T.K. Verma P. Tripathi D.K. Grafting of vinyl monomer onto gellan gum using microwave: Synthesis and characterization of grafted copolymer. Adv. Compos. Mater. 2015 24 6 531 543 10.1080/09243046.2014.906977
    [Google Scholar]
  180. Barkat K. Ahmad M. Usman Minhas M. Khalid I. Nasir B. Development and characterization of pH ‐responsive polyethylene glycol‐co‐poly(methacrylic acid) polymeric network system for colon target delivery of oxaliplatin: Its acute oral toxicity study. Adv. Polym. Technol. 2018 37 6 1806 1822 10.1002/adv.21840
    [Google Scholar]
  181. Mishra S. Sen G. Microwave initiated synthesis of polymethylmethacrylate grafted guar (GG-g-PMMA), characterizations and applications. Int. J. Biol. Macromol. 2011 48 4 688 694 10.1016/j.ijbiomac.2011.02.013 21356236
    [Google Scholar]
  182. Panda S. Suryawanshi M. Fabrication, characterization and toxicity evaluation chemically cross linked polymeric material: A proof of concept. IJPSN 2023 16 3 6522 6532 [IJPSN]. 10.37285/ijpsn.2023.16.3.6
    [Google Scholar]
  183. Messina M.S. Messina K.M.M. Bhattacharya A. Montgomery H.R. Maynard H.D. Preparation of biomolecule-polymer conjugates by grafting-from using ATRP, RAFT, or ROMP. Prog. Polym. Sci. 2020 100 101186 10.1016/j.progpolymsci.2019.101186 32863465
    [Google Scholar]
  184. Rashid A. Tulain U.R. Iqbal F.M. Shamshad Malikd N. Erum A. Synthesis, characterization and in vivo evaluation of ph sensitive hydroxypropyl methyl cellulose-graft-acrylic acid hydrogels for sustained drug release of model drug nicorandil. Gomal Journal of Medical Sciences 2020 18 3 99 106 10.46903/gjms/18.03.875
    [Google Scholar]
  185. Singh V. Tiwari A. Tripathi D.N. Sanghi R. Poly(acrylonitrile) grafted Ipomoea seed-gums: A renewable reservoir to industrial gums. Biomacromolecules 2005 6 1 453 456 10.1021/bm049518b 15638552
    [Google Scholar]
  186. El-Ghoul Y. Alminderej F.M. Bioactive and superabsorbent cellulosic dressing grafted alginate and Carthamus tinctorius polysaccharide extract for the treatment of chronic wounds. Text. Res. J. 2021 91 3-4 235 248 10.1177/0040517520935213
    [Google Scholar]
  187. kumar D. kumar S. Grafting of acrylic acid on to Plantago psyllium mucilage. IOSR J Appl Chem. 2014 7 7 76 82 10.9790/5736‑07727682
    [Google Scholar]
  188. Hu Y. Zhang Z. Li Y. Ding X. Li D. Shen C. Xu F.J. Dual‐crosslinked amorphous polysaccharide hydrogels based on chitosan/alginate for wound healing applications. Macromol. Rapid Commun. 2018 39 20 1800069 10.1002/marc.201800069 29855096
    [Google Scholar]
  189. Vijayan A. A S. Kumar G.S.V. PEG grafted chitosan scaffold for dual growth factor delivery for enhanced wound healing. Sci. Rep. 2019 9 1 19165 10.1038/s41598‑019‑55214‑7 31844069
    [Google Scholar]
  190. Yu J. Wang P. Yin M. Zhang K. Wang X. Han B. Carboxymethyl chitosan-grafted polyvinylpyrrolidone-iodine microspheres for promoting the healing of chronic wounds. Bioengineered 2022 13 4 8735 8746 10.1080/21655979.2022.2054911 35322745
    [Google Scholar]
  191. Drápalová E. Michlovská L. Poštulková H. Chamradová I. Lipový B. Holoubek J. Vacek L. Růžička F. Hanslianová M. Svobodová T. Černá E. Hrdličková B. Vojtová L. Antimicrobial cost-effective transparent hydrogel films from renewable gum karaya/chitosan polysaccharides for modern wound dressings. ACS Appl. Polym. Mater. 2023 5 4 2774 2786 10.1021/acsapm.3c00025
    [Google Scholar]
  192. Afrin K. Fatema K. Afrose F. Azad M.A.S. Akter M.S. Alam M.S. Haque P. Akter Y. Bahadur N.M. ZnO incorporated acrylamide grafted chitosan based composite film for advanced wound healing applications. Ozean J. Appl. Sci. 2024 14 4 1034 1051 10.4236/ojapps.2024.144069
    [Google Scholar]
  193. Rai N. Bal T. Swain S. In vitro evaluations of biodegradable polyacrylamide grafted moringa bark gum graft copolymer (MOG-g-PAAM) as biomedical and controlled drug delivery device synthesized by microwave accelerated free radical synthesis. Indian J Pharm Educ Res. 2020 54 2 385 396 10.5530/ijper.54.2.44
    [Google Scholar]
  194. Bal T. Yadav S.K. Rai N. Swain S. Shambhavi Garg S. Sen G. Invitro evaluations of free radical assisted microwave irradiated polyacrylamide grafted cashew gum (CG) biocompatible graft copolymer (CG-g-PAM) as effective polymeric scaffold. J. Drug Deliv. Sci. Technol. 2020 56 101572 10.1016/j.jddst.2020.101572
    [Google Scholar]
  195. Kumar D. Gautam A. Kundu P.P. Synthesis of pH ‐sensitive grafted psyllium: Encapsulation of quercetin for colon cancer treatment. J. Appl. Polym. Sci. 2022 139 4 51552 10.1002/app.51552
    [Google Scholar]
  196. Kumar B. Panday S.K. Kumar P. Synthesis of pH-sensitive nanocarrier-based acrylic acid-grafted-flaxseed gum for quercetin delivery for anti-cancer application. Bioact Carbohydr Diet Fibre. 2023 30 100370 10.1016/j.bcdf.2023.100370
    [Google Scholar]
  197. Mukhopadhyay P. Maity S. Mandal S. Chakraborti A.S. Prajapati A.K. Kundu P.P. Preparation, characterization and in vivo evaluation of pH sensitive, safe quercetin-succinylated chitosan-alginate core-shell-corona nanoparticle for diabetes treatment. Carbohydr. Polym. 2018 182 42 51 10.1016/j.carbpol.2017.10.098 29279124
    [Google Scholar]
  198. Bal T. Swain S. Microwave assisted synthesis of polyacrylamide grafted polymeric blend of fenugreek seed mucilage-Polyvinyl alcohol (FSM-PVA-g-PAM) and its characterizations as tissue engineered scaffold and as a drug delivery device. Daru 2020 28 1 33 44 10.1007/s40199‑019‑00237‑8 30712231
    [Google Scholar]
  199. Choudhury P. Kumar S. Singh A. Kumar A. Kaur N. Sanyasi S. Chawla S. Goswami C. Goswami L. Hydroxyethyl methacrylate grafted carboxy methyl tamarind (CMT-g-HEMA) polysaccharide based matrix as a suitable scaffold for skin tissue engineering. Carbohydr. Polym. 2018 189 87 98 10.1016/j.carbpol.2018.01.079 29580430
    [Google Scholar]
  200. Choudhury P. Chawla S. Agarwal S. Singh A. Nayak A. Kumar A. Maji P.K. Goswami C. Goswami L. Modified tamarind kernel polysaccharide-based matrix alters neuro-keratinocyte cross-talk and serves as a suitable scaffold for skin tissue engineering. Mater. Sci. Eng. C 2021 121 111779 10.1016/j.msec.2020.111779 33579440
    [Google Scholar]
  201. Shaw G.S. Biswal D. B A. Banerjee I. Pramanik K. Anis A. Pal K. Preparation, characterization and assessment of the novel gelatin–tamarind gum/carboxymethyl tamarind gum-based phase-separated films for skin tissue engineering applications. Polym. Plast. Technol. Eng. 2017 56 2 141 152 10.1080/03602559.2016.1185621
    [Google Scholar]
  202. Yadav I. Rathnam V.S.S. Yogalakshmi Y. Chakraborty S. Banerjee I. Anis A. Pal K. Synthesis and characterization of polyvinyl alcohol- carboxymethyl tamarind gum based composite films. Carbohydr. Polym. 2017 165 159 168 10.1016/j.carbpol.2017.02.026 28363536
    [Google Scholar]
  203. Alipour E. Norouzi S. Yousefzadeh H. Mohammadi R. Amini-Fazl M.S. Synthesis of chitosan-grafted poly-acrylic acid (CTS-g-PAA) hydrogel and its potential application in biosensors for signal enhancing and bioanalysis. J. Mater. Sci. Mater. Electron. 2021 32 20 24812 24824 10.1007/s10854‑021‑06939‑7 38624983
    [Google Scholar]
  204. Essawy H.A. Ghazy M.B.M. El-Hai F.A. Mohamed M.F. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. Int. J. Biol. Macromol. 2016 89 144 151 10.1016/j.ijbiomac.2016.04.071 27126169
    [Google Scholar]
  205. Cui C. Shao C. Meng L. Yang J. High-strength, self-adhesive, and strain-sensitive chitosan/poly (acrylic acid) double-network nanocomposite hydrogels fabricated by salt-soaking strategy for flexible sensors. ACS Appl. Mater. Interfaces 2019 11 42 39228 39237 10.1021/acsami.9b15817 31550132
    [Google Scholar]
  206. Li L. Wang Y. Pan L. Shi Y. Cheng W. Shi Y. Yu G. A nanostructured conductive hydrogels-based biosensor platform for human metabolite detection. Nano Lett. 2015 15 2 1146 1151 10.1021/nl504217p 25569673
    [Google Scholar]
  207. Duan J. Liang X. Guo J. Zhu K. Zhang L. Ultra‐stretchable and force‐sensitive hydrogels reinforced with chitosan microspheres embedded in polymer networks. Adv. Mater. 2016 28 36 8037 8044 10.1002/adma.201602126 27380145
    [Google Scholar]
  208. Chudzik S.J. Chinn J.A. Swan D.G. Burkstrand M.J. Coatings for medical articles including natural biodegradable polysaccharides. Patent US 8,241,655 2012
  209. Medina J.G. Sherman E.G. Chitosan paste wound dressing. Patent US 9,192,574 2015
  210. Mobarak NN Jaafar SN Mohamed MA Patents on polysaccharide applications. Wiley 2021 10.1002/9781119711414.ch28
    [Google Scholar]
  211. Brown R.M. Jr Czaja W. Jeschke M. Young D.J. Multiribbon nanocellulose as a matrix for wound healing. Patent US 8,951,551 2015
  212. Hwang D.S. Oh D.Y. Lee D.H. Hydrogel including surface-treated nanofiber and preparation method thereof. Patent US 15/310,696 2017
  213. Chen H. Lan G. Ran L. Xiao Y. Yu K. Lu B. Dai F. Wu D. Lu F. A novel wound dressing based on a Konjac glucomannan/silver nanoparticle composite sponge effectively kills bacteria and accelerates wound healing. Carbohydr. Polym. 2018 183 70 80 10.1016/j.carbpol.2017.11.029 29352894
    [Google Scholar]
  214. Freier T. Processing of acylchitosan hydrogels. Patent US 8,414,925 2013
  215. Leeson D.T. Lou K.K. Petkov J.T. Dried rehydratable composition. Patent US 16/551,066 2020
  216. Delage-Grouiller H. Noe B. Mahe C. Cosmetic composition with skin tightening effect. Patent US 7,700,084 2010
  217. Boiteau J.G. Larkner H. Cyclodextrin-grafted hyaluronic acid crosslinked with dextran and uses thereof. Patent US 15,314,823 2017
  218. Hu H. Xu F.J. Rational design and latest advances of polysaccharide-based hydrogels for wound healing. Biomater. Sci. 2020 8 8 2084 2101 10.1039/D0BM00055H 32118241
    [Google Scholar]
  219. Yang Q. Peng J. Xiao H. Xu X. Qian Z. Polysaccharide hydrogels: Functionalization, construction and served as scaffold for tissue engineering. Carbohydr. Polym. 2022 278 118952 10.1016/j.carbpol.2021.118952 34973769
    [Google Scholar]
  220. Dedhia N. Marathe S.J. Singhal R.S. Food polysaccharides: A review on emerging microbial sources, bioactivities, nanoformulations and safety considerations. Carbohydr. Polym. 2022 287 119355 10.1016/j.carbpol.2022.119355 35422305
    [Google Scholar]
  221. Berradi A. Aziz F. Achaby M.E. Ouazzani N. Mandi L. A comprehensive review of polysaccharide-based hydrogels as promising biomaterials. Polymers 2023 15 13 2908 10.3390/polym15132908 37447553
    [Google Scholar]
  222. Mouro C. Gomes A.P. Gouveia I.C. Microbial exopolysaccharides: Structure, diversity, applications, and future frontiers in sustainable functional materials. Polysaccharides 2024 5 3 241 287 10.3390/polysaccharides5030018
    [Google Scholar]
  223. Venugopal V. Marine polysaccharides: Food applications. CRC press 2016
    [Google Scholar]
  224. Singh V. Srivastava P. Singh A. Singh D. Malviya T. Polysaccharide-silica hybrids: Design and applications. Polym. Rev. 2016 56 1 113 136 10.1080/15583724.2015.1090449
    [Google Scholar]
  225. Chakka V.P. Zhou T. Carboxymethylation of polysaccharides: Synthesis and bioactivities. Int. J. Biol. Macromol. 2020 165 Pt B 2425 2431 10.1016/j.ijbiomac.2020.10.178 33132131
    [Google Scholar]
  226. Han Q.B. Critical problems stalling progress in natural bioactive polysaccharide research and development. J. Agric. Food Chem. 2018 66 18 4581 4583 10.1021/acs.jafc.8b00493 29659260
    [Google Scholar]
/content/journals/caps/10.2174/0124522716357716250225180609
Loading
/content/journals/caps/10.2174/0124522716357716250225180609
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test