Skip to content
2000
image of Applications of Polymers in Biosensors-based Medical Devices

Abstract

A biosensor-based medical device refers to a device that integrates polymers to detect and measure specific biomolecules for the treatment of disease. Biosensors are now widely used in biological diagnostics and a wide range of other sectors, such as disease treatment and progression tracking, environmental and agricultural monitoring, food safety, drug development, and biomedical and forensics research. This may be the result of concurrent developments in transdisciplinary research, microelectronics technology development, and polymer chemistry. This review summarizes the significance of polymeric materials in contemporary diagnostic techniques employed in healthcare. The study examines polymeric material advancements in the design and manufacture of biosensing agents, substrates, and components, with a focus on contemporary biosensor platforms in biosensing health and disease applications, along with their drawbacks.

Loading

Article metrics loading...

/content/journals/caps/10.2174/0124522716358371250207101535
2025-02-12
2025-07-06
Loading full text...

Full text loading...

References

  1. Aguilar M.R. San Román J. Woodhead publishing. Introduction to Smart Polymers and Their Applications. 2019 10.1016/B978‑0‑08‑102416‑4.00001‑6
    [Google Scholar]
  2. Palchetti I. Affinity biosensors for tumor-marker analysis. Bioanalysis 2014 6 24 3417 3435 10.4155/bio.14.247 25534795
    [Google Scholar]
  3. Kumar S. Ahlawat W. Kumar R. Dilbaghi N. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens. Bioelectron. 2015 70 498 503 10.1016/j.bios.2015.03.062 25899923
    [Google Scholar]
  4. Lee J. Human implantable arrhythmia monitoring sensor with wireless power and data transmission technique. Austin J. Biosens. Bioelectron. 2015 1 1008
    [Google Scholar]
  5. Rebelo R. Barbosa A.I. Caballero D. Kwon I.K. Oliveira J.M. Kundu S.C. Reis R.L. Correlo V.M. 3D biosensors in advanced medical diagnostics of high mortality diseases. Biosens. Bioelectron. 2019 130 20 39 10.1016/j.bios.2018.12.057 30716590
    [Google Scholar]
  6. Tanimu A. Electrochemical sensors using nanomaterials—A mini review. Res. Rev. J. Chem. 2017 6 38 48
    [Google Scholar]
  7. Chen C. Optical biosensors: An exhaustive and comprehensive review. The Analyst 2020 145 5 1605 1628
    [Google Scholar]
  8. Danielsson B. Calorimetric biosensors. J. Biotechnol. 1990 15 3 187 200 10.1016/0168‑1656(90)90026‑8 1366673
    [Google Scholar]
  9. Fogel R. Limson J. Seshia A.A. Acoustic biosensors. Essays Biochem. 2016 60 1 101 110 10.1042/EBC20150011 27365040
    [Google Scholar]
  10. Srivastava S. Khare E. Biosensors based medical devices for disease monitoring therapy. Int. J. Adv. Sci. 2021 4 2 263 278
    [Google Scholar]
  11. Yin S.S. Fiber Optic Sensors. Wiley Encyclopedia of Biomedical Engineering. JohnWiley & Sons, Inc. Hoboken, NJ, USA 2006 10.1002/9780471740360.ebs0480
    [Google Scholar]
  12. Priyanka B. Patil R. Dwarakanath S. A review on detection methods used for foodborne pathogens. Indian J. Med. Res. 2016 144 3 327 338 10.4103/0971‑5916.198677 28139531
    [Google Scholar]
  13. Arugula M.A. Simonian A. Novel trends in affinity biosensors: Current challenges and perspectives. Meas. Sci. Technol. 2014 25 3 032001 10.1088/0957‑0233/25/3/032001
    [Google Scholar]
  14. Hasan A. Nurunnabi M. Morshed M. Paul A. Polini A. Kuila T. Al Hariri M. Lee Y. Jaffa A.A. Recent advances in application of biosensors in tissue engineering. BioMed Res. Int. 2014 2014 1 18 10.1155/2014/307519 25165697
    [Google Scholar]
  15. Dias A. Kingsley D. Corr D. Recent advances in bioprinting and applications for biosensing. Biosensors 2014 4 2 111 136 10.3390/bios4020111 25587413
    [Google Scholar]
  16. Bahadır E.B. Sezgintürk M.K. Electrochemical biosensors for hormone analyses. Biosens. Bioelectron. 2015 68 62 71 10.1016/j.bios.2014.12.054 25558874
    [Google Scholar]
  17. Kozai T.D.Y. Langhals N.B. Patel P.R. Deng X. Zhang H. Smith K.L. Lahann J. Kotov N.A. Kipke D.R. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 2012 11 12 1065 1073 10.1038/nmat3468 23142839
    [Google Scholar]
  18. Rocha P.R.F. Schlett P. Kintzel U. Mailänder V. Vandamme L.K.J. Zeck G. Gomes H.L. Biscarini F. de Leeuw D.M. Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations. Sci. Rep. 2016 6 1 34843 10.1038/srep34843 27708378
    [Google Scholar]
  19. Borisov S.M. Wolfbeis O.S. Optical biosensors. Chem. Rev. 2008 108 2 423 461 10.1021/cr068105t 18229952
    [Google Scholar]
  20. Kirsch J. Siltanen C. Zhou Q. Revzin A. Simonian A. Biosensor technology: Recent advances in threat agent detection and medicine. Chem. Soc. Rev. 2013 42 22 8733 8768 10.1039/c3cs60141b 23852443
    [Google Scholar]
  21. Mohanty S.P. Kougianos E. Biosensors: A tutorial review. IEEE Potentials 2006 25 2 35 40 10.1109/MP.2006.1649009
    [Google Scholar]
  22. Systems B. Rudi S. Kratz A. Latest trends in biosensing for microphysiological. Biosensors 2019 9 110
    [Google Scholar]
  23. Kim D.H. Lu N. Ma R. Kim Y.S. Kim R.H. Wang S. Wu J. Won S.M. Tao H. Islam A. Yu K.J. Kim T. Chowdhury R. Ying M. Xu L. Li M. Chung H.J. Keum H. McCormick M. Liu P. Zhang Y.W. Omenetto F.G. Huang Y. Coleman T. Rogers J.A. Epidermal electronics. Science 2011 333 6044 838 843 10.1126/science.1206157 21836009
    [Google Scholar]
  24. Bandodkar A.J. Jia W. Wang J. Tattoo‐based wearable electrochemical devices: A review. Electroanalysis 2015 27 3 562 572 10.1002/elan.201400537
    [Google Scholar]
  25. Poeggel S. Duraibabu D. Kalli K. Leen G. Dooly G. Lewis E. Kelly J. Munroe M. Recent improvement of medical optical fibre pressure and temperature sensors. Biosensors 2015 5 3 432 449 10.3390/bios5030432 26184331
    [Google Scholar]
  26. Wang S. Li M. Wu J. Kim D.H. Lu N. Su Y. Kang Z. Huang Y. Rogers J.A. Mechanics of epidermal electronics. J. Appl. Mech. 2012 79 3 031022 10.1115/1.4005963
    [Google Scholar]
  27. Yeo W.H. Kim Y.S. Lee J. Ameen A. Shi L. Li M. Wang S. Ma R. Jin S.H. Kang Z. Huang Y. Rogers J.A. Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 2013 25 20 2773 2778 10.1002/adma.201204426 23440975
    [Google Scholar]
  28. Lv R. Sun Y. Yu F. Zhang H. Fabrication of poly(3,4‐ethylenedioxythiophene)‐polysaccharide composites. J. Appl. Polym. Sci. 2012 124 1 855 863 10.1002/app.35117
    [Google Scholar]
  29. Ner Y. Invernale M.A. Grote J.G. Stuart J.A. Sotzing G.A. Facile chemical synthesis of DNA-doped PEDOT. Synth. Met. 2010 160 5-6 351 353 10.1016/j.synthmet.2009.11.003
    [Google Scholar]
  30. Webb R.C. Bonifas A.P. Behnaz A. Zhang Y. Yu K.J. Cheng H. Shi M. Bian Z. Liu Z. Kim Y.S. Yeo W.H. Park J.S. Song J. Li Y. Huang Y. Gorbach A.M. Rogers J.A. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 2013 12 10 938 944 10.1038/nmat3755 24037122
    [Google Scholar]
  31. Mantione D. Del Agua I. Sanchez-Sanchez A. Mecerreyes D. Poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives: Innovative conductive polymers for bioelectronics. Polymers 2017 9 8 354 10.3390/polym9080354 30971030
    [Google Scholar]
  32. Chortos A. Bao Z. Skin-inspired electronic devices. Mater. Today 2014 17 7 321 331 10.1016/j.mattod.2014.05.006
    [Google Scholar]
  33. Liu Y. Pharr M. Salvatore G.A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017 11 10 9614 9635 10.1021/acsnano.7b04898 28901746
    [Google Scholar]
  34. Yu X. Mahajan B.K. Shou W. Pan H. Materials, mechanics, and patterning techniques for elastomer-based stretchable conductors. Micromachines 2017 8 22 31
    [Google Scholar]
  35. Wang Y. Low-cost, μm-thick, tape-free electronic tattoo sensors with minimized motion and sweat artifacts. npj Flex Electron 2017 2 6 1 7
    [Google Scholar]
  36. Lipomi D.J. Vosgueritchian M. Tee B.C.K. Hellstrom S.L. Lee J.A. Fox C.H. Bao Z. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011 6 12 788 792 10.1038/nnano.2011.184 22020121
    [Google Scholar]
  37. a M. H. Carbon nanotube based pressure sensor for flexible electronics. Mater. Res. Bull. 2013 48 5036 5039
    [Google Scholar]
  38. b X Xuan A Wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens. Bioelectron. 2018 109 75 82
    [Google Scholar]
  39. Khodagholy D. Curto V.F. Fraser K.J. Gurfinkel M. Byrne R. Diamond D. Malliaras G.G. Benito-Lopez F. Owens R.M. Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing. J. Mater. Chem. 2012 22 10 4440 4443 10.1039/c2jm15716k
    [Google Scholar]
  40. Koh A. Kang D. Xue Y. Lee S. Pielak R.M. Kim J. Hwang T. Min S. Banks A. Bastien P. Manco M.C. Wang L. Ammann K.R. Jang K.I. Won P. Han S. Ghaffari R. Paik U. Slepian M.J. Balooch G. Huang Y. Rogers J.A. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 2016 8 366 366ra165 10.1126/scitranslmed.aaf2593 27881826
    [Google Scholar]
  41. a Augarten A. Hacham S. Kerem E. Kerem B.S. Szeinberg A. Laufer J. Doolman R. Altshuler R. Blau H. Bentur L. The significance of sweat Cl/Na ratio in patients with borderline sweat test. Pediatr. Pulmonol. 1995 20 369 371
    [Google Scholar]
  42. a Augarten A. Hacham S. Kerem E. Kerem B.S. Szeinberg A. Laufer J. Doolman R. Altshuler R. Blau H. Bentur L. The significance of sweat Cl/Na ratio in patients with borderline sweat test. Pediatr. Pulmonol. 1995 20 369 371
    [Google Scholar]
  43. Choi J. Ghaffari R. Baker L.B. Rogers J.A. Skin-interfaced systems for sweat collection and analytics. Sci. Adv. 2018 4 2 eaar3921 10.1126/sciadv.aar3921 29487915
    [Google Scholar]
  44. Kang J.W. Park Y.S. Chang H. Lee W. Singh S.P. Choi W. Galindo L.H. Dasari R.R. Nam S.H. Park J. So P.T.C. Direct observation of glucose fingerprint using in vivo Raman spectroscopy. Sci. Adv. 2020 6 4 eaay5206 10.1126/sciadv.aay5206 32042901
    [Google Scholar]
  45. Son D. Lee J. Qiao S. Ghaffari R. Kim J. Lee J.E. Song C. Kim S.J. Lee D.J. Jun S.W. Yang S. Park M. Shin J. Do K. Lee M. Kang K. Hwang C.S. Lu N. Hyeon T. Kim D.H. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 2014 9 5 397 404 10.1038/nnano.2014.38 24681776
    [Google Scholar]
  46. Wongkaew N. Simsek M. Griesche C. Baeumner A.J. Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: Recent progress, applications, and future perspective. Chem. Rev. 2019 119 1 120 194 10.1021/acs.chemrev.8b00172 30247026
    [Google Scholar]
  47. Barbosa A.I. Borges J. Meira D.I. Costa D. Rodrigues M.S. Rebelo R. Correlo V.M. Vaz F. Reis R.L. Development of label-free plasmonic Au-TiO2 thin film immunosensor devices. Mater. Sci. Eng. C 2019 100 424 432 10.1016/j.msec.2019.03.029 30948078
    [Google Scholar]
  48. Wang Y. Wang L. Yang T. Li X. Zang X. Zhu M. Wang K. Wu D. Zhu H. Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 2014 24 29 4666 4670 10.1002/adfm.201400379
    [Google Scholar]
  49. Miyamoto A. Lee S. Cooray N.F. Lee S. Mori M. Matsuhisa N. Jin H. Yoda L. Yokota T. Itoh A. Sekino M. Kawasaki H. Ebihara T. Amagai M. Someya T. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 2017 12 9 907 913 10.1038/nnano.2017.125 28737748
    [Google Scholar]
  50. Bandodkar A.J. Wang J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol. 2014 32 7 363 371 10.1016/j.tibtech.2014.04.005 24853270
    [Google Scholar]
  51. Liang Y. Ernst M. Brings F. Kireev D. Maybeck V. Offenhäusser A. Mayer D. High performance flexible organic electrochemical transistors for monitoring cardiac action potential. Adv. Healthc. Mater. 2018 7 19 1800304 10.1002/adhm.201800304 30109770
    [Google Scholar]
  52. Kang C. Gwon S. Song C. Kang P.M. Park S.C. Jeon J. Hwang D.W. Lee D. Fibrin-targeted and H 2 O 2 -responsive nanoparticles as a theranostics for thrombosed vessels. ACS Nano 2017 11 6 6194 6203 10.1021/acsnano.7b02308 28481519
    [Google Scholar]
  53. Chien J.S. Mohammed M. Eldik H. Ibrahim M.M. Martinez J. Nichols S.P. Wisniewski N. Klitzman B. Injectable phosphorescence-based oxygen biosensors identify post ischemic reactive hyperoxia. Sci. Rep. 2017 7 1 8255 10.1038/s41598‑017‑08490‑0 28811566
    [Google Scholar]
  54. Mohankumar P. Ajayan J. Mohanraj T. Yasodharan R. Recent developments in biosensors for healthcare and biomedical applications: A review. Measurement 2021 167 108293 10.1016/j.measurement.2020.108293
    [Google Scholar]
  55. Gupta S. Sharma A. Verma R.S. Polymers in biosensor devices for cardiovascular applications. Curr. Opin. Biomed. Eng. 2020 13 69 75 10.1016/j.cobme.2019.10.002
    [Google Scholar]
  56. Verma A. A review of composite conducting polymer-based sensors for detection of industrial waste gases. Sensors and Actuators Reports 2023 5 5100143
    [Google Scholar]
  57. Solangi N.H. Karri R.R. Mubarak N.M. Mazari S.A. Mechanism of polymer composite-based nanomaterial for biomedical applications. Adv. Ind. Eng. Polym. Res. 2024 7 1 1 19 10.1016/j.aiepr.2023.09.002
    [Google Scholar]
  58. Thirumalai D. Santhamoorthy M. Kim S.C. Lim H.R. Conductive polymer-based hydrogels for wearable electrochemical biosensors. Gels 2024 10 7 459 10.3390/gels10070459 39057482
    [Google Scholar]
  59. Sharma A. Koochana P.K. Mathew R. Ajayan J. Polymer Organic Biosensors. Biosensors: Developments, Challenges and Perspectives. Springer Tracts in Electrical and Electronics Engineering. Springer Singapore 2024 10.1007/978‑981‑97‑3048‑3_9
    [Google Scholar]
  60. Schafer E.A. Davis E. Manzer Z. Daniel S. Rivnay J. Hybrid supported lipid bilayers for bioinspired bioelectronics with enhanced stability. ACS Appl. Mater. Interfaces 2023 15 20 24638 24647 10.1021/acsami.3c01054 37158805
    [Google Scholar]
  61. Sýs M. Bártová M. Mikysek T. Švancara I. Electrodeposited carbonyl functional polymers as suitable supports for preparation of the first-generation biosensors. Sensors 2023 23 7 3724 10.3390/s23073724 37050783
    [Google Scholar]
  62. Kumar P.P.P. Mahajan R. Gold polymer nanomaterials: A promising approach for enhanced biomolecular imaging. Nanotheranostics 2024 8 1 64 89 10.7150/ntno.89087 38164503
    [Google Scholar]
  63. Smutok O. Katz E. Biosensors: Electrochemical devices—general concepts and performance. Biosensors 2022 13 1 44 10.3390/bios13010044 36671878
    [Google Scholar]
  64. Patel S.K. Surve J. Parmar J. Ahmed K. Bui F.M. Al-Zahrani F.A. Recent advances in biosensors for detection of COVID-19 and other viruses. IEEE Rev. Biomed. Eng. 2023 16 22 37 10.1109/RBME.2022.3212038 36197867
    [Google Scholar]
/content/journals/caps/10.2174/0124522716358371250207101535
Loading
/content/journals/caps/10.2174/0124522716358371250207101535
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test