Skip to content
2000
Volume 7, Issue 1
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Aims

This study aimed to develop and evaluate mucoadhesive microspheres for the controlled release of zidovudine using a novel dual-functionalized polymer.

Background

Mucoadhesive polymers have recently been widely used to prolong the GI residence time and to modulate the release impact of various mucoadhesive dosage forms. In the present study, a recently synthesized chitosan derivative, chitosan-2-mercapto benzoic acid, was used as a mucoadhesive polymer, which was further developed as a dosage form for improving oral bioavailability of zidovudine drug.

Objective

The objective of this study is to evaluate the impact of a novel thiolated derivative, chitosan2-mercaptobenzoic acid, on the oral bioavailability of the drug zidovudine.

Methods

The microspheres were prepared using an emulsification crosslinking method with TPP as the crosslinking agent. Techniques such as FTIR, and DSC were employed to analyze the microspheres, along with drug content, entrapment efficiency, dissolution studies, mucoadhesion, permeation, and evaluations.

Results

Results from FTIR spectroscopy and DSC analysis revealed no interaction between the drug and polymers. The release kinetics and characterization assessments indicated a zero-order release profile with anomalous and super case-II transport types. permeation studies on goat intestinal mucosa demonstrated enhanced mucoadhesive properties and permeability with the optimized microspheres fabricated using thiomers compared to conventional oral therapy. Pharmacokinetic investigations showed higher zidovudine plasma levels and Cmax with the administration of microspheres, particularly those composed of thiomers. The AUC values for thiomer microspheres were significantly greater than controls and chitosan microspheres, indicating improved oral bioavailability potential.

Conclusion

In conclusion, zidovudine-loaded thiomer-based mucoadhesive microspheres showed promising results with the ability to enhance the drug's oral bioavailability.

Loading

Article metrics loading...

/content/journals/caps/10.2174/0124522716309066240611094851
2024-06-14
2025-02-26
Loading full text...

Full text loading...

References

  1. VelmuruganS. Ashraf AliM. Formulation and evaluation of ritonavir mucoadhesive microspheres.J. Chem. Pharm. Res.20146952960Available from: www.jocpr.com
    [Google Scholar]
  2. GadaS.Y.A. SettyC.M. Preparation, evaluation and stability of lamivudine loaded alginate-tamarind mucilage microspheres.Int J Appl Pharmac20191136537010.22159/ijap.2019v11i4.33808
    [Google Scholar]
  3. MaN. XuL. WangQ. Development and evaluation of new sustained-release floating microspheres.Int. J. Pharm.20083581-2829010.1016/j.ijpharm.2008.02.02418407442
    [Google Scholar]
  4. Chandra BasakS. Senthil KumarK. RamalingamM. BasakS.C. Design and release characteristics of sustained release tablet containing metformin HCl, Rev. Bras. Ciências Farm.Braz. J. Pharm. Sci.2008544
    [Google Scholar]
  5. RaffinR. ColoméL. SchapovalE. PohlmannA. GuterresS. Increasing sodium pantoprazole photostability by microencapsulation: Effect of the polymer and the preparation technique.Eur. J. Pharm. Biopharm.20086931014101810.1016/j.ejpb.2008.01.02418374552
    [Google Scholar]
  6. ChowdaryK.P.R. Srinivasa RaoY. Mucoadhesive microspheres for controlled drug delivery.Biol. Pharm. Bull.200427111717172410.1248/bpb.27.171715516712
    [Google Scholar]
  7. PatilS. SawantK. Mucoadhesive microspheres: A promising tool in drug delivery.Curr. Drug Deliv.20085431231810.2174/15672010878591497018855602
    [Google Scholar]
  8. VasirJ.K. TambwekarK. GargS. Bioadhesive microspheres as a controlled drug delivery system.Int. J. Pharm.20032551-2133210.1016/S0378‑5173(03)00087‑512672598
    [Google Scholar]
  9. YadavS.K. KhanG. BondeG.V. BansalM. MishraB. Design, optimization and characterizations of chitosan fortified calcium alginate microspheres for the controlled delivery of dual drugs.Artif. Cells Nanomed. Biotechnol.20184661180119310.1080/21691401.2017.136633128830256
    [Google Scholar]
  10. BisenA. Pal JainA. JainS. Formulation and evaluation of zidovudine loaded microsphere.Asian J Res Pharm Sci201334200205Available from: www.asianpharmaonline.org
    [Google Scholar]
  11. Anjana AnilP.S. Mucoadhesive polymers: A review.J. Pharm. Res.201817475510.18579/jpcrkc/2018/17/1/119566
    [Google Scholar]
  12. de Sousa VictorR. Marcelo da Cunha SantosA. Viana de SousaB. de Araújo NevesG. Navarro de Lima SantanaL. Rodrigues MenezesR. A review on chitosan’s uses as biomaterial: Tissue engineering, drug delivery systems and cancer treatment.Materials20201321499510.3390/ma13214995
    [Google Scholar]
  13. SinhaV.R. SinglaA.K. WadhawanS. Chitosan microspheres as a potential carrier for drugs.Int. J. Pharm.20042741-213310.1016/j.ijpharm.2003.12.02615072779
    [Google Scholar]
  14. KaşH.S. Chitosan: Properties, preparations and application to microparticulate systems.J. Microencapsul.199714668971110.3109/026520497090068209394251
    [Google Scholar]
  15. PatelK. PatelM. Preparation and evaluation of chitosan microspheres containing nicorandil.Int. J. Pharm. Investig.201441323710.4103/2230‑973X.12773824678460
    [Google Scholar]
  16. MarwahaT.K. MadgulkarA. BhalekarM. AsgaonkarK. Molecular docking, synthesis, and characterization of chitosan‐graft‐2‐mercaptobenzoic acid derivative as potential drug carrier.J. Appl. Polym. Sci.2020137474955110.1002/app.49551
    [Google Scholar]
  17. DhawanS. SinglaA.K. SinhaV.R. Evaluation of mucoadhesive properties of chitosan microspheres prepared by different methods.AAPS PharmSciTech20045412212810.1208/pt05046715760064
    [Google Scholar]
  18. MillottiG. SambergerC. FröhlichE. Bernkop-SchnürchA. Chitosan-graft-6-mercaptonicotinic acid: Synthesis, characterization, and biocompatibility.Biomacromolecules200910113023302710.1021/bm900624819821557
    [Google Scholar]
  19. SchmitzT. GrabovacV. PalmbergerT.F. HofferM.H. Bernkop-SchnürchA. Synthesis and characterization of a chitosan-N-acetyl cysteine conjugate.Int. J. Pharm.20083471-2798510.1016/j.ijpharm.2007.06.04017681439
    [Google Scholar]
  20. NanakiS. TseklimaM. ChristodoulouE. TriantafyllidisK. KostoglouM. BikiarisD.N. Thiolated chitosan masked polymeric microspheres with incorporated mesocellular silica foam (MCF) for intranasal delivery of paliperidone.Polymers201791161710.3390/polym9110617
    [Google Scholar]
  21. FedererC. KurpiersM. Bernkop-SchnürchA. Thiolated chitosans: A multi-talented class of polymers for various applications.Biomacromolecules2021221245610.1021/acs.biomac.0c0066332567846
    [Google Scholar]
  22. MythriG. KavithaK. KumarM.R. Jagadeesh SinghS.D. Novel mucoadhesive polymers: A review.J. Appl. Pharm. Sci.2011183742
    [Google Scholar]
  23. SartiF. Bernkop-SchnürchA. Chitosan and thiolated chitosan.Adv. Polym. Sci.20112439311010.1007/12_2011_109
    [Google Scholar]
  24. AlbrechtK. Bernkop-SchnürchA. Thiomers: Forms, functions and applications to nanomedicine.Nanomedicine200721415010.2217/17435889.2.1.4117716189
    [Google Scholar]
  25. SakloetsakunD. IqbalJ. MillottiG. VetterA. Bernkop-SchnürchA. Thiolated chitosans: Influence of various sulfhydryl ligands on permeation-enhancing and P-gp inhibitory properties.Drug Dev. Ind. Pharm.201137664865510.3109/03639045.2010.53448421561400
    [Google Scholar]
  26. MarwahaT.K. MadgulkarA. BhalekarM. AsgaonkarK. GachcheR. ShewaleP. Tailoring the properties of chitosan by grafting with 2-mercaptobenzoic acid to improve mucoadhesion: In silico studies, synthesis and characterization.Prog. Biomater.202211439740810.1007/s40204‑022‑00201‑x36205916
    [Google Scholar]
  27. Santosh GadaG. Anand KumarY. MallikarjunC. Preparation and evaluation of zidovudine mucoadhesive microspheres.Eur. J. Pharm. Med. Res.20174570576Available from: www.ejpmr.com
    [Google Scholar]
  28. AshaK. VikashD. Formulation and evaluation of zidovudine loaded chitosan microspheres for controlled release.Int J Drug Dev Res2012496105Available from: http://www.ijddr.in
    [Google Scholar]
  29. BhandariN. RaghavanV. HimadriS. SurvaK. Long acting composition containing zidovudine and zidovudine.US patent 20050175694A12005
  30. GuedesM.D.V. MarquesM.S. BerlitzS.J. Lamivudine and zidovudine-loaded nanostructures: Green chemistry preparation for pediatric oral administration.Nanomaterials202313477010.3390/nano13040770
    [Google Scholar]
  31. MaculottiK. GentaI. PeruginiP. ImamM. Bernkop-SchnürchA. PavanettoF. Preparation and in vitro evaluation of thiolated chitosan microparticles.J. Microencapsul.200522545947010.1080/0265204050016222016361190
    [Google Scholar]
  32. Elhassan ImamM. Bernkop-SchnürchA. Controlled drug delivery systems based on thiolated chitosan microspheres.Drug Dev. Ind. Pharm.200531655756510.1080/0363904050021475316109629
    [Google Scholar]
  33. Abu-IzzaK. Garcia-ContrerasL. LuD.R. Preparation and evaluation of zidovudine-loaded sustained-release microspheres. 2. Optimization of multiple response variables.J. Pharm. Sci.199685657257610.1021/js960021k8773951
    [Google Scholar]
  34. PadalaN.R. PrakashK. BonepallyC.S.R. KrishnaveniB. ShantakumariK. LakshmiN.M. Stavudine loaded microcapsules using various cellulose polymers: Preparation and in-vitro evaluation.Int J Pharmac Sci Nanotechnol20092255155610.37285/ijpsn.2009.2.2.9
    [Google Scholar]
  35. Adlin Jino NesalinJ. Anton SmithA. Preparation and evaluation of stavudine loaded chitosan nanoparticles.J. Pharm. Res.20136226827410.1016/j.jopr.2013.02.004
    [Google Scholar]
  36. SalehiS. BoddohiS. New formulation and approach for mucoadhesive buccal film of rizatriptan benzoate.Prog. Biomater.20176417518710.1007/s40204‑017‑0077‑729110144
    [Google Scholar]
  37. DalpiazA. FogagnoloM. FerraroL. Nasal chitosan microparticles target a zidovudine prodrug to brain HIV sanctuaries.Antiviral Res.201512314615710.1016/j.antiviral.2015.09.01326427553
    [Google Scholar]
  38. JainR.S. BiswalI. DindaA. KohliS. Modified sustained release chitosan-coated zidovudine microspheres.Int. J. Pharm. Pharmac. Sci.201139597
    [Google Scholar]
  39. BhalekarM. UpadhayaP. MadgulkarA. Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug darunavir.Appl. Nanosci.201771-2475710.1007/s13204‑017‑0547‑1
    [Google Scholar]
  40. MagalhãesMCRS CastroBFM de CastroW V Permeability and in vivo distribution of poly(Ɛ-caprolactone) nanoparticles loaded with zidovudine.J. Nanopart. Res.20182017610.1007/s11051‑018‑4280‑9
    [Google Scholar]
  41. ParthibanS. Senthil KumarG. Tamizh ManiT. Formulation and evaluation of microspheres encapsulating zidovudine by ionic gelation techniques.Int J Res Pharm Nano Sci20143461468Available from: www.uptodateresearchpublication.com
    [Google Scholar]
  42. SalehiS. BoddohiS. Design and optimization of kollicoat ® IR based mucoadhesive buccal film for co-delivery of rizatriptan benzoate and propranolol hydrochloride.Mater. Sci. Eng. C20199723024410.1016/j.msec.2018.12.03630678908
    [Google Scholar]
  43. RaoP.S. VijayabhaskarK. Formulation and evaluation of Zidovudine alginate microspheres.J. Drug Deliv. Ther.201995-s576410.22270/jddt.v9i5‑s.3607
    [Google Scholar]
  44. GargY. PathakK. Design and in vitro performance evaluation of purified microparticles of pravastatin sodium for intestinal delivery.AAPS PharmSciTech201112267368210.1208/s12249‑011‑9626‑x21594729
    [Google Scholar]
  45. PatelA. ShahD. DesaiT.R. NoolviM.N. Mucoadhesive buccal films based on chitosan and carboxymethylated feronia limonia fruit pulp mucilage interpolymer complex for delivery of opioid analgesics.Asian J. Pharm.201610137
    [Google Scholar]
  46. NairA.B. ShahJ. JacobS. Development of mucoadhesive buccal film for rizatriptan: In vitro and in vivo evaluation.Pharmaceutics202113572810.3390/pharmaceutics1305072834063402
    [Google Scholar]
  47. SeemaS. KapilK. DeepakT. A comprehensive review on buccal patches.GSC Biol Pharmac Sci202013113013510.30574/gscbps.2020.13.1.0308
    [Google Scholar]
  48. HenzeL.J. KoehlN.J. O’SheaJ.P. KostewiczE.S. HolmR. GriffinB.T. The pig as a preclinical model for predicting oral bioavailability and in vivo performance of pharmaceutical oral dosage forms: A pearrl review.J. Pharm. Pharmacol.201971458160210.1111/jphp.1291229635685
    [Google Scholar]
  49. NayakU.Y. GopalS. MutalikS. Glutaraldehyde cross-linked chitosan microspheres for controlled delivery of Zidovudine.J. Microencapsul.200926321422210.1080/0265204080224632518819029
    [Google Scholar]
  50. GedamS. JadhavP. TaleleS. JadhavA. Effect of crosslinking agent on development of gastroretentive mucoadhesive microspheres of risedronate sodium.Int J ApplPharmac201810413314010.22159/ijap.2018v10i4.26071
    [Google Scholar]
  51. SwamyN.G.N. AbbasZ. Preparation and in vitro characterization of mucoadhesive hydroxypropyl guar microspheres containing amlodipine besylate for nasal administration.Indian J. Pharm. Sci.201173660861410.4103/0250‑474X.10023323112393
    [Google Scholar]
  52. KayanG.Ö. KayanA. Composite of natural polymers and their adsorbent properties on the dyes and heavy metal ions.J. Polym. Environ.202129113477349610.1007/s10924‑021‑02154‑x
    [Google Scholar]
  53. KumarP. LakshmiY.S. CB GollaK KondapiAK. Improved safety, bioavailability and pharmacokinetics of zidovudine through lactoferrin nanoparticles during oral administration in rats.PLoS One20151010e014039910.1371/journal.pone.014039926461917
    [Google Scholar]
  54. SathyamoorthyN. SundarV.D. RajendranV. SirikondaN. NarayanaswamyH. Utility of different lipids and effect of soya lecithin on sustained delivery of zidovudine via biodegradable solid lipid microparticles: Formulation and in-vitro characterization.Ind JPharmac Educ Res202256368969610.5530/ijper.56.3.117
    [Google Scholar]
  55. PVenugopalaiahS. Vinay bhargavaM. ChandraY.p. RameshY. Venugopalaiah MPharmP. Formulation of zidovudine proniosomes for oral drug delivery.J Xi’an Shiyou Univ20221810831110Available from: http://xisdxjxsu.asia
    [Google Scholar]
  56. NgilirabangaJ.B. AucampM. SamsodienH. Mechanochemical synthesis and characterization of zidovudine-lamivudine solid dispersion (binary eutectic mixture).J. Drug Deliv. Sci. Technol.20216410263910.1016/j.jddst.2021.102639
    [Google Scholar]
  57. MukhopadhyayP. KunduP.P. Chitosan-graft-PAMAM–alginate core–shell nanoparticles: A safe and promising oral insulin carrier in an animal model.RSC Adv20155114939959400710.1039/C5RA17729D
    [Google Scholar]
  58. DanaeiM. DehghankholdM. AtaeiS. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems.Pharmaceutics20181025710.3390/pharmaceutics10020057
    [Google Scholar]
  59. ClaytonK.N. SalamehJ.W. WereleyS.T. Kinzer-UrsemT.L. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry.Biomicrofluidics201610505410710.1063/1.496299227703593
    [Google Scholar]
  60. LinceF. MarchisioD.L. BarresiA.A. Strategies to control the particle size distribution of poly-ε-caprolactone nanoparticles for pharmaceutical applications.J. Colloid Interface Sci.2008322250551510.1016/j.jcis.2008.03.03318402975
    [Google Scholar]
  61. Rodriguez-EmmeneggerC. JägerA. JägerE. Polymeric nanocapsules ultra stable in complex biological media.Colloids Surf. B Biointerfaces201183237638110.1016/j.colsurfb.2010.12.01321208786
    [Google Scholar]
  62. EsquivelR. JuárezJ. AlmadaM. IbarraJ. ValdezM.A. Synthesis and characterization of new thiolated chitosan nanoparticles obtained by ionic gelation method.Int. J. Polym. Sci.2015201511810.1155/2015/502058
    [Google Scholar]
  63. AraújoA. StorpirtisS. MercuriL.P. CarvalhoF.M.S. dos Santos FilhoM. MatosJ.R. Thermal analysis of the antiretroviral zidovudine (AZT) and evaluation of the compatibility with excipients used in solid dosage forms.Int. J. Pharm.2003260230331410.1016/S0378‑5173(03)00288‑612842349
    [Google Scholar]
  64. ChiengN. ZujovicZ. BowmakerG. RadesT. SavilleD. Effect of milling conditions on the solid-state conversion of ranitidine hydrochloride form 1.Int. J. Pharm.20063271-2364410.1016/j.ijpharm.2006.07.03216949221
    [Google Scholar]
  65. KumarA. SawantK. Encapsulation of exemestane in polycaprolactone nanoparticles: optimization, characterization, and release kinetics.Cancer Nanotechnol.201344-5577110.1007/s12645‑013‑0037‑426069501
    [Google Scholar]
  66. DubernetC. Thermoanalysis of microspheres.Thermochim. Acta199524825926910.1016/0040‑6031(94)01947‑F
    [Google Scholar]
  67. RoyS. Effect formulation variables on physicochemical characteristics and drug release potential of oral glipizide microspheres.Int. J. Adv. Sci. Res.201124654Available from: https://sciensage.info/index.php/JASR/article/view/58
    [Google Scholar]
  68. PachuauL. MazumderB. A study on the effects of different surfactants on ethylcellulose microspheres.Int. J. Pharm. Tech. Res.20091966971
    [Google Scholar]
  69. UnagollaJ.M. JayasuriyaA.C. Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system.Eur. J. Pharm. Sci.201811419920910.1016/j.ejps.2017.12.01229269322
    [Google Scholar]
  70. SubediG. ShresthaA.K. ShakyaS. Study of effect of different factors in formulation of micro and nanospheres with solvent evaporation technique.Open Pharm. Sci. J.20163118219510.2174/1874844901603010182
    [Google Scholar]
  71. SrikarG. RaniA.P. Study on influence of polymer and surfactant on in vitro performance of biodegradable aqueous-core nanocapsules of tenofovirdisoproxil fumarate by response surface methodology.Braz. J. Pharm. Sci.2019551590
    [Google Scholar]
  72. TatiyaG.D. BasarkarG.D. Formulation development and in vitro evaluation of mucoadhesive microspheres of simvastatin for nasal delivery.Int. J. Pharm. Sci. Rev. Res.201321334341
    [Google Scholar]
  73. LeichnerC. JelkmannM. Bernkop-SchnürchA. Thiolated polymers: Bioinspired polymers utilizing one of the most important bridging structures in nature.Adv. Drug Deliv. Rev.2019151-15219122110.1016/j.addr.2019.04.00731028759
    [Google Scholar]
  74. KulkarniA.D. PatelH.M. SuranaS.J. VanjariY.H. BelgamwarV.S. PardeshiC.V. N,N,N-trimethyl chitosan: An advanced polymer with myriad of opportunities in nanomedicine.Carbohydr. Polym.201715787590210.1016/j.carbpol.2016.10.04127988003
    [Google Scholar]
  75. Bernkop-SchnürchA. KastC.E. GuggiD. Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: Thiomer/GSH systems.J. Control. Release20039329510310.1016/j.jconrel.2003.05.00114636716
    [Google Scholar]
/content/journals/caps/10.2174/0124522716309066240611094851
Loading
/content/journals/caps/10.2174/0124522716309066240611094851
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test