Skip to content
2000
Volume 6, Issue 2
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Nanomedicine is an emerging field that utilizes nanoparticles to deliver drugs and other therapeutic agents to specific cells and tissues in the body. One of the most promising materials for creating these nanoparticles is Poly(Lactic-co-glycolic Acid) (PLGA), which has several unique properties that make it well-suited for biomedical applications. These nanomedicines, made from a combination of lactic acid and glycolic acid, can deliver drugs and other therapeutic agents directly to specific cells or tissues in the body. This allows for more precise and targeted treatment, reducing the potential for side effects and improving the effectiveness of the treatment. Additionally, PLGA nanomedicines are biocompatible and biodegradable, making them an attractive option for use in a wide range of biomedical applications to deliver a wide range of drugs, including proteins, peptides, nucleic acids, and small molecules for various biomedical applications such as neurodegenerative, cardiovascular diseases, inflammatory disorders, and cancer. In summary, research on PLGA nanoparticles for biomedical applications is ongoing and has the potential to lead a new and improved treatments for a wide range of diseases and conditions. Looking ahead, PLGA nanoparticles have the potential to revolutionize the way we treat diseases and improve human health. As research continues to advance, we can expect to see new and innovative uses for PLGA nanoparticles in the biomedical field, leading to the development of more effective and targeted therapeutics. The current review focuses on the synthesis, physicochemical properties, biodegradation properties of PLGA, method to prepare PLGA nanoparticles and biomedical application of PLGA. It examines the current progress and future directions for research on PLGA in drug delivery.

Loading

Article metrics loading...

/content/journals/caps/10.2174/0124522716282353240118114732
2024-01-31
2025-05-25
Loading full text...

Full text loading...

References

  1. Murcia ValderramaM.A. van PuttenR.J. GruterG.J.M. PLGA barrier materials from CO2. The influence of lactide co-monomer on glycolic acid polyesters.ACS Appl. Polym. Mater.2020272706271810.1021/acsapm.0c0031532954354
    [Google Scholar]
  2. BagheriA.R. LaforschC. GreinerA. AgarwalS. Fate of so-called biodegradable polymers in seawater and freshwater.Glob. Chall.201714170004810.1002/gch2.20170004831565274
    [Google Scholar]
  3. SchäferP.M. Herres-PawlisS. Robust guanidine metal catalysts for the ring-opening polymerization of lactide under industrially relevant conditions.ChemPlusChem20208551044105210.1002/cplu.20200025232449840
    [Google Scholar]
  4. RenJ. Biodegradable poly (lactic acid): Synthesis, modification, processing and applications.Springer2011
    [Google Scholar]
  5. Dechy-CabaretO. Martin-VacaB. BourissouD. Controlled ring-opening polymerization of lactide and glycolide.Chem. Rev.2004104126147617610.1021/cr040002s15584698
    [Google Scholar]
  6. LittleA. WemyssA.M. HaddletonD.M. Synthesis of poly (lactic acid-co-glycolic acid) copolymers with high glycolide ratio by ring-opening polymerisation.Polymers20211315245810.3390/polym1315245834372058
    [Google Scholar]
  7. MartinsC. SousaF. AraújoF. SarmentoB. Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications.Adv. Healthc. Mater.201871170103510.1002/adhm.20170103529171928
    [Google Scholar]
  8. LamprechtA. UbrichN. Hombreiro PérezM. LehrC.M. HoffmanM. MaincentP. Influences of process parameters on nanoparticle preparation performed by a double emulsion pressure homogenization technique.Int. J. Pharm.2000196217718210.1016/S0378‑5173(99)00422‑610699713
    [Google Scholar]
  9. KapoorD.N. BhatiaA. KaurR. SharmaR. KaurG. DhawanS. PLGA: A unique polymer for drug delivery.Ther. Deliv.201561415810.4155/tde.14.9125565440
    [Google Scholar]
  10. MchughA.J. GrahamP.D. BrodbeckK.J. Phase inversion dynamics of PLGA solutions related to drug delivery.Proc. MRS19985504110.1557/PROC‑550‑41
    [Google Scholar]
  11. VilleminE. OngY.C. ThomasC.M. GasserG. Polymer encapsulation of ruthenium complexes for biological and medicinal applications.Nat. Rev. Chem.20193426128210.1038/s41570‑019‑0088‑0
    [Google Scholar]
  12. PanditaD. KumarS. LatherV. Hybrid poly(lactic-co-glycolic acid) nanoparticles: Design and delivery prospectives.Drug Discov. Today20152019510410.1016/j.drudis.2014.09.01825277320
    [Google Scholar]
  13. DanhierF. AnsorenaE. SilvaJ.M. CocoR. Le BretonA. PréatV. PLGA-based nanoparticles: An overview of biomedical applications.J. Control. Release2012161250552210.1016/j.jconrel.2012.01.04322353619
    [Google Scholar]
  14. YanH. HouY.F. NiuP.F. Biodegradable PLGA nanoparticles loaded with hydrophobic drugs: Confocal Raman microspectroscopic characterization.J. Mater. Chem. B Mater. Biol. Med.20153183677368010.1039/C5TB00434A32262841
    [Google Scholar]
  15. UngaroF. d’AngeloI. MiroA. La RotondaM.I. QuagliaF. Engineered PLGA nano- and micro-carriers for pulmonary delivery: Challenges and promises.J. Pharm. Pharmacol.20126491217123510.1111/j.2042‑7158.2012.01486.x22881435
    [Google Scholar]
  16. SgorlaD. BunhakÉ.J. CavalcantiO.A. FonteP. SarmentoB. Exploitation of lipid-polymeric matrices at nanoscale for drug delivery applications.Expert Opin. Drug Deliv.20161391301130910.1080/17425247.2016.118249227110648
    [Google Scholar]
  17. MaghrebiS. PrestidgeC.A. JoyceP. An update on polymer-lipid hybrid systems for improving oral drug delivery.Expert Opin. Drug Deliv.201916550752410.1080/17425247.2019.160535330957577
    [Google Scholar]
  18. TaniselassS. ArshadM.K.M. GopinathS.C.B. Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers.Biosens. Bioelectron.201913027629210.1016/j.bios.2019.01.04730771717
    [Google Scholar]
  19. HussienN.A. Işıklan N, Türk M. Aptamer-functionalized magnetic graphene oxide nanocarrier for targeted drug delivery of paclitaxel.Mater. Chem. Phys.201821147948810.1016/j.matchemphys.2018.03.015
    [Google Scholar]
  20. LinJ. HuangY. HuangP. Graphene-based nanomaterials in bioimaging.Biomedical applications of functionalized nanomaterials.Elsevier2018
    [Google Scholar]
  21. AsteteC.E. SabliovC.M. Synthesis and characterization of PLGA nanoparticles.J. Biomater. Sci. Polym. Ed.200617324728910.1163/15685620677599732216689015
    [Google Scholar]
  22. RatnerB.D. HorbettT. HoffmanA.S. HauschkaS.D. Cell adhesion to polymeric materials: Implications with respect to biocompatibility.J. Biomed. Mater. Res.19759540742210.1002/jbm.82009050551850
    [Google Scholar]
  23. BallestreroA. BoyD. MoranE. CirmenaG. BrossartP. NencioniA. Immunotherapy with dendritic cells for cancer.Adv. Drug Deliv. Rev.200860217318310.1016/j.addr.2007.08.02617977615
    [Google Scholar]
  24. MakadiaH.K. SiegelS.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier.Polymers2011331377139710.3390/polym303137722577513
    [Google Scholar]
  25. SchlieckerG. SchmidtC. FuchsS. KisselT. Characterization of a homologous series of d, l -lactic acid oligomers; a mechanistic study on the degradation kinetics in vitro.Biomaterials200324213835384410.1016/S0142‑9612(03)00243‑612818556
    [Google Scholar]
  26. AcharyaS. SahooS.K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect.Adv. Drug Deliv. Rev.201163317018310.1016/j.addr.2010.10.00820965219
    [Google Scholar]
  27. PanagiZ. BeletsiA. EvangelatosG. LivaniouE. IthakissiosD.S. AvgoustakisK. Effect of dose on the biodistribution and pharmacokinetics of PLGA and PLGA–mPEG nanoparticles.Int. J. Pharm.20012211-214315210.1016/S0378‑5173(01)00676‑711397575
    [Google Scholar]
  28. PillaiC.K.S. Recent advances in biodegradable polymeric materials.Mater. Sci. Technol.201430555856610.1179/1743284713Y.0000000472
    [Google Scholar]
  29. BerklandC. PollaufE. PackD.W. KimK.K. Uniform double-walled polymer microspheres of controllable shell thickness.J. Control. Release200496110111110.1016/j.jconrel.2004.01.01815063033
    [Google Scholar]
  30. ParkT.G. Degradation of poly(lactic-co-glycolic acid) microspheres: Effect of copolymer composition.Biomaterials199516151123113010.1016/0142‑9612(95)93575‑X8562787
    [Google Scholar]
  31. LüJ.M. WangX. Marin-MullerC. Current advances in research and clinical applications of PLGA-based nanotechnology.Expert Rev. Mol. Diagn.20099432534110.1586/erm.09.1519435455
    [Google Scholar]
  32. WuH.F. GopalJ. AbdelhamidH.N. HasanN. Quantum dot applications endowing novelty to analytical proteomics.Proteomics20121219-202949296110.1002/pmic.20120029522930415
    [Google Scholar]
  33. RanadeV.V. Drug delivery systems: 3A. Role of polymers in drug delivery.J. Clin. Pharmacol.1990301102310.1002/j.1552‑4604.1990.tb03432.x2406297
    [Google Scholar]
  34. BorchardtR.T. CrevelingC.R. UelandP.M. Biological methylation and drug design: Experimental and clinical role of S-adenosylmethionine.Springer1986Vol. 1210.1007/978‑1‑4612‑5012‑8
    [Google Scholar]
  35. LuanX. BodmeierR. Influence of the poly(lactide-co-glycolide) type on the leuprolide release from in situ forming microparticle systems.J. Control. Release2006110226627210.1016/j.jconrel.2005.10.00516300851
    [Google Scholar]
  36. SchlieckerG. SchmidtC. FuchsS. WombacherR. KisselT. Hydrolytic degradation of poly(lactide-co-glycolide) films: Effect of oligomers on degradation rate and crystallinity.Int. J. Pharm.20032661-2394910.1016/S0378‑5173(03)00379‑X14559392
    [Google Scholar]
  37. GrahamP.D. BrodbeckK.J. McHughA.J. Phase inversion dynamics of PLGA solutions related to drug delivery.J. Control. Release199958223324510.1016/S0168‑3659(98)00158‑810053196
    [Google Scholar]
  38. ParkT.G. Degradation of poly(d,l-lactic acid) microspheres: Effect of molecular weight.J. Control. Release199430216117310.1016/0168‑3659(94)90263‑1
    [Google Scholar]
  39. LigginsR.T. BurtH.M. Paclitaxel loaded poly(L-lactic acid) microspheres: Properties of microspheres made with low molecular weight polymers.Int. J. Pharm.20012221193310.1016/S0378‑5173(01)00690‑111404029
    [Google Scholar]
  40. FrankA. RathS.K. VenkatramanS.S. Controlled release from bioerodible polymers: Effect of drug type and polymer composition.J. Control. Release2005102233334410.1016/j.jconrel.2004.10.01915653155
    [Google Scholar]
  41. EniolaA.O. HammerD.A. Characterization of biodegradable drug delivery vehicles with the adhesive properties of leukocytes II: Effect of degradation on targeting activity.Biomaterials200526666167010.1016/j.biomaterials.2004.03.00315282144
    [Google Scholar]
  42. JainA. JainA. GulbakeA. ShilpiS. HurkatP. JainS.K. Peptide and protein delivery using new drug delivery systems.Crit. Rev. Ther. Drug Carrier Syst.2013304293329
    [Google Scholar]
  43. HouchinM.L. ToppE.M. Chemical degradation of peptides and proteins in PLGA: A review of reactions and mechanisms.J. Pharm. Sci.20089772395240410.1002/jps.2117617828756
    [Google Scholar]
  44. MahapatroA. SinghD.K. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines.J. Nanobiotechnology2011915510.1186/1477‑3155‑9‑5522123084
    [Google Scholar]
  45. MoghimiS.M. HunterA.C. MurrayJ.C. Nanomedicine: Current status and future prospects.FASEB J.200519331133010.1096/fj.04‑2747rev15746175
    [Google Scholar]
  46. ZambauxM. BonneauxF. GrefR. Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method.J. Control. Release1998501-3314010.1016/S0168‑3659(97)00106‑59685870
    [Google Scholar]
  47. MaoS. XuJ. CaiC. GermershausO. SchaperA. KisselT. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres.Int. J. Pharm.20073341-213714810.1016/j.ijpharm.2006.10.03617196348
    [Google Scholar]
  48. ThomasinC. Nam-Trȃ;n H, Merkle HP, Gander B. Drug microencapsulation by PLA/PLGA coacervation in the light of thermodynamics. 1. Overview and theoretical considerations.J. Pharm. Sci.199887325926810.1021/js970047r9523976
    [Google Scholar]
  49. MuL. FengS.S. Fabrication, characterization and in vitro release of paclitaxel (Taxol®) loaded poly (lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers.J. Control. Release200176323925410.1016/S0168‑3659(01)00440‑011578739
    [Google Scholar]
  50. Peter ChristoperG.V. Vijaya RaghavanC. SiddharthK. Siva Selva KumarM. Hari PrasadR. Formulation and optimization of coated PLGA - Zidovudine nanoparticles using factorial design and in vitro in vivo evaluations to determine brain targeting efficiency.Saudi Pharm. J.201422213314010.1016/j.jsps.2013.04.00224648825
    [Google Scholar]
  51. TomJ.W. DebenedettiP.G. Particle formation with supercritical fluids-a review.J. Aerosol Sci.199122555558410.1016/0021‑8502(91)90013‑8
    [Google Scholar]
  52. DaviesO.R. LewisA.L. WhitakerM.J. TaiH. ShakesheffK.M. HowdleS.M. Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering.Adv. Drug Deliv. Rev.200860337338710.1016/j.addr.2006.12.00118069079
    [Google Scholar]
  53. JeongY.I. ChoC.S. KimS.H. Preparation of poly(DL-lactide- co-glycolide) nanoparticles without surfactant.J. Appl. Polym. Sci.200180122228223610.1002/app.1326
    [Google Scholar]
  54. MittalG. SahanaD.K. BhardwajV. Ravi KumarM.N.V. Estradiol loaded PLGA nanoparticles for oral administration: Effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo.J. Control. Release20071191778510.1016/j.jconrel.2007.01.01617349712
    [Google Scholar]
  55. EsmaeiliF. GhahremaniM.H. EsmaeiliB. KhoshayandM.R. AtyabiF. DinarvandR. PLGA nanoparticles of different surface properties: Preparation and evaluation of their body distribution.Int. J. Pharm.20083491-224925510.1016/j.ijpharm.2007.07.03817875373
    [Google Scholar]
  56. ZhangZ. FengS.S. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles.Biomaterials200627214025403310.1016/j.biomaterials.2006.03.00616564085
    [Google Scholar]
  57. SahH. Protein behavior at the water/methylene chloride interface.J. Pharm. Sci.199988121320132510.1021/js990065410585229
    [Google Scholar]
  58. MundargiR.C. BabuV.R. RangaswamyV. PatelP. AminabhaviT.M. Nano/micro technologies for delivering macromolecular therapeutics using poly(d,l-lactide-co-glycolide) and its derivatives.J. Control. Release2008125319320910.1016/j.jconrel.2007.09.01318083265
    [Google Scholar]
  59. LaiP.L. HongD.W. LinC.T.Y. ChenL.H. ChenW.J. ChuI.M. Effect of mixing ceramics with a thermosensitive biodegradable hydrogel as composite graft.Compos., Part B Eng.20124383088309510.1016/j.compositesb.2012.04.057
    [Google Scholar]
  60. Félix LanaoR.P. LeeuwenburghS.C.G. WolkeJ.G.C. JansenJ.A. In vitro degradation rate of apatitic calcium phosphate cement with incorporated PLGA microspheres.Acta Biomater.2011793459346810.1016/j.actbio.2011.05.03621689794
    [Google Scholar]
  61. SchleichN. SibretP. DanhierP. Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging.Int. J. Pharm.20134471-29410110.1016/j.ijpharm.2013.02.04223485340
    [Google Scholar]
  62. SunB. RanganathanB. FengS.S. Multifunctional poly(d,l-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer.Biomaterials200829447548610.1016/j.biomaterials.2007.09.03817953985
    [Google Scholar]
  63. PeruginiP. GentaI. ContiB. ModenaT. PavanettoF. Periodontal delivery of ipriflavone: New chitosan/PLGA film delivery system for a lipophilic drug.Int. J. Pharm.20032521-21910.1016/S0378‑5173(02)00602‑612550776
    [Google Scholar]
  64. NafeaE.H. El-MassikM.A. El-KhordaguiL.K. MareiM. KhalafallahN.M. Alendronate PLGA microspheres with high loading efficiency for dental applications.J. Microencapsul.200724652553810.1080/0265204070143980717654173
    [Google Scholar]
  65. TranT.N.T. Cutaneous drug delivery: An update.J. Investig. Dermatol. Symp. Proc.2013161S67S6910.1038/jidsymp.2013.2824326566
    [Google Scholar]
  66. KlugherzB.D. JonesP.L. CuiX. Gene delivery from a DNA controlled-release stent in porcine coronary arteries.Nat. Biotechnol.200018111181118410.1038/8117611062438
    [Google Scholar]
  67. TomodaK. TerashimaH. SuzukiK. InagiT. TeradaH. MakinoK. Enhanced transdermal delivery of indomethacin using combination of PLGA nanoparticles and iontophoresis in vivo.Colloids Surf. B Biointerfaces201292505410.1016/j.colsurfb.2011.11.01622154100
    [Google Scholar]
  68. LuengoJ. WeissB. SchneiderM. Influence of nanoencapsulation on human skin transport of flufenamic acid.Skin Pharmacol. Physiol.200619419019710.1159/00009311416679821
    [Google Scholar]
  69. HanlonD.J. AldoP.B. DevineL. Enhanced stimulation of anti-ovarian cancer CD8(+) T cells by dendritic cells loaded with nanoparticle encapsulated tumor antigen.Am. J. Reprod. Immunol.201165659760910.1111/j.1600‑0897.2010.00968.x21241402
    [Google Scholar]
  70. RoyA. SinghM.S. UpadhyayP. BhaskarS. Combined chemo-immunotherapy as a prospective strategy to combat cancer: A nanoparticle based approach.Mol. Pharm.2010751778178810.1021/mp100153r20822093
    [Google Scholar]
  71. DerakhshandehK. ErfanM. DadashzadehS. Encapsulation of 9-nitrocamptothecin, a novel anticancer drug, in biodegradable nanoparticles: Factorial design, characterization and release kinetics.Eur. J. Pharm. Biopharm.2007661344110.1016/j.ejpb.2006.09.00417070678
    [Google Scholar]
  72. ChittasuphoC. XieS.X. BaoumA. YakovlevaT. SiahaanT.J. BerklandC.J. ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells.Eur. J. Pharm. Sci.200937214115010.1016/j.ejps.2009.02.00819429421
    [Google Scholar]
  73. AvgoustakisK. BeletsiA. PanagiZ. KlepetsanisP. KarydasA.G. IthakissiosD.S. PLGA–mPEG nanoparticles of cisplatin: In vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties.J. Control. Release2002791-312313510.1016/S0168‑3659(01)00530‑211853924
    [Google Scholar]
  74. DanhierF. LecouturierN. VromanB. Paclitaxel-loaded PEGylated PLGA-based nanoparticles. in vitro and in vivo evaluation.J. Control. Release200913311117
    [Google Scholar]
  75. AgnihotriS.M. VaviaP.R. Diclofenac-loaded biopolymeric nanosuspensions for ophthalmic application.Nanomed200951909510.1016/j.nano.2008.07.00318823824
    [Google Scholar]
  76. AraújoJ. VegaE. LopesC. EgeaM.A. GarciaM.L. SoutoE.B. Effect of polymer viscosity on physicochemical properties and ocular tolerance of FB-loaded PLGA nanospheres.Colloids Surf. B Biointerfaces2009721485610.1016/j.colsurfb.2009.03.02819403277
    [Google Scholar]
  77. GuptaH. AqilM. KharR.K. AliA. BhatnagarA. MittalG. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery.Nanomedicine20106232433310.1016/j.nano.2009.10.00419857606
    [Google Scholar]
  78. KashiT.S.J. EskandarionS. Esfandyari-ManeshM. Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method.Int. J. Nanomedicine2012722123422275837
    [Google Scholar]
  79. KimS.E. JeonO. LeeJ.B. Enhancement of ectopic bone formation by bone morphogenetic protein-2 delivery using heparin-conjugated PLGA nanoparticles with transplantation of bone marrow-derived mesenchymal stem cells.J. Biomed. Sci.200815677177710.1007/s11373‑008‑9277‑418773307
    [Google Scholar]
/content/journals/caps/10.2174/0124522716282353240118114732
Loading
/content/journals/caps/10.2174/0124522716282353240118114732
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test