Skip to content
2000
Volume 6, Issue 2
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Background

A cellulose derivative known as ethyl cellulose has gained a lot of interest because of its special qualities and prospective uses in systems for the controlled administration of medications. This study concentrates on patents that examine the use of ethyl cellulose for anticancer preparations. Polymeric drug delivery methods are gaining significant research due to their potential to enhance therapeutic effectiveness, improve bioavailability, and reduce toxicity.

Objective

The primary objective of incorporating ethyl cellulose into anticancer preparations is to develop safe, effective, and targeted therapies for the treatment of cancer. This study aims to provide a comprehensive overview of recent patents that specifically explore the use of ethyl cellulose in the prevention and treatment of different cancers.

Methods

The patent review methodology employed an extensive search across multiple patent databases to identify relevant patents on the utilization of ethyl cellulose in anticancer preparations.

Results

The formulations described in these patents demonstrated sustained and controlled drug release profiles, which resulted in improved therapeutic efficacy while minimizing potential adverse effects. Our comprehensive review revealed multiple patents that utilized ethyl cellulose as a polymer in the creation of anticancer preparations. The studies conducted in these patents showcased enhanced drug release kinetics, improved cellular uptake, and increased anticancer activity compared to conventional formulations.

Conclusion

The analysis of these patents strongly indicates that ethyl cellulose exhibits substantial potential as a versatile polymer for anticancer preparations. The findings strongly suggest that incorporating ethyl cellulose into drug delivery systems can significantly enhance the effectiveness of anticancer drugs, thus benefiting patients.

Loading

Article metrics loading...

/content/journals/caps/10.2174/0124522716273253231129104511
2023-12-28
2025-05-28
Loading full text...

Full text loading...

References

  1. DarLS Cellulose-based nanopparticles for drug delivery.WO Patent 2012103634A12012
    [Google Scholar]
  2. ShahH.S. NasrullahU. ZaibS. Preparation, characterization, and pharmacological investigation of withaferin-A loaded nanosponges for cancer therapy; in vitro, in vivo and molecular docking studies.Molecules20212622699010.3390/molecules2622699034834081
    [Google Scholar]
  3. HallJN CoppensAK Biologically active composition comprising ethylcellulose.WO Patent 2007084212A32007
    [Google Scholar]
  4. AbdellatifA.A.H. AlsharidahM. Al RugaieO. TawfeekH.M. TolbaN.S. Silver nanoparticle-coated ethyl cellulose inhibits tumor necrosis factor-α of breast cancer cells.Drug Des. Devel. Ther.202115132035204610.2147/DDDT.S31076034012256
    [Google Scholar]
  5. AhmedM.M. FatimaF. AnwerM.K. AnsariM.J. DasS.S. AlshahraniS.M. Development and characterization of ethyl cellulose nanosponges for sustained release of brigatinib for the treatment of non-small cell lung cancer.J. Polym. Eng.2020401082383210.1515/polyeng‑2019‑0365
    [Google Scholar]
  6. MorhardR. NiefC. Barrero CastedoC. Development of enhanced ethanol ablation as an alternative to surgery in treatment of superficial solid tumors.Sci. Rep.201771875010.1038/s41598‑017‑09371‑228821832
    [Google Scholar]
  7. YangH.S. MaH. Ethylcellulose formulations and methods of making same.US Patent 20190038540A12019
    [Google Scholar]
  8. ReddyM.R. ReddyM.H. Preparation and development of capecitabine microspheres for colorectal cancer.J Pharm Sci Res20179137
    [Google Scholar]
  9. MacdonaldLP RossettoP Imatinib base, and imatinib mesylate and processes for preparation thereof.EP Patent 2009008A12009
    [Google Scholar]
  10. KunjiappanS. TheivendrenP. SankaranarayananM. Design, graph theoretical analysis and bioinformatic studies of proanthocyanidins encapsulated ethyl cellulose nanoparticles for effective anticancer activity.Biomed. Phys. Eng. Express20195202500410.1088/2057‑1976/aaf2a4
    [Google Scholar]
  11. MazumderR. AllamneniY. FirdousS.M. ParyaH. ChowdhuryA.D. Formulation, development and in-vitro release effects of ethyl cellulose coated pectin microspheres for colon targeting.Asian J. Pharm. Clin. Res.2013111138144
    [Google Scholar]
  12. Pan-InP. WanichwecharungruangS. HanesJ. KimA.J. Cellular trafficking and anticancer activity of Garcinia mangostana extract-encapsulated polymeric nanoparticles.Int. J. Nanomedicine201493677368625125977
    [Google Scholar]
  13. RavikumarR. PengM.M. AbidovA. Nanofibrous polymers blend of fluorouracil loaded chitosan-hydroxy ethyl cellulose/poly vinyl alcohol: Synthesis and characterization. Int.J. Biosci. Biotechnol.201682295306
    [Google Scholar]
  14. SahuS. SarafS. KaurC.D. SarafS. Biocompatible nanoparticles for sustained topical delivery of anticancer phytoconstituent quercetin.Pak. J. Biol. Sci.2013161360160910.3923/pjbs.2013.601.60924505982
    [Google Scholar]
  15. AnwerM.K. FatimaF. AhmedM.M. Abemaciclib-loaded ethylcellulose based nanosponges for sustained cytotoxicity against MCF-7 and MDA-MB-231 human breast cancer cells lines.Saudi Pharm. J.202230672673410.1016/j.jsps.2022.03.01935812154
    [Google Scholar]
  16. AhmedM.M. FatimaF. AlaliA. Ribociclib-loaded ethylcellulose-based nanosponges: Formulation, physicochemical characterization, and cytotoxic potential against breast cancer.Adsorpt. Sci. Technol.202220221411110.1155/2022/1922263
    [Google Scholar]
  17. NawazA. LatifM.S. ShahM.K.A. ElsayedT.M. AhmadS. KhanH.A. Formulation and characterization of ethyl cellulose-based patches containing curcumin-chitosan nanoparticles for the possible management of inflammation via skin delivery.Gels20239320110.3390/gels903020136975650
    [Google Scholar]
  18. DangT. CuiY. ChenY. MengX. TangB. WuJ. Preparation and characterization of colon-specific microspheres of diclofenac for colorectal cancer.Trop. J. Pharm. Res.20151491541154710.4314/tjpr.v14i9.1
    [Google Scholar]
  19. ShiM SunP ZhaoY Formulation hvaluronan dissolving microneedles for suppressing metastasis of cutaneous melanoma202329
    [Google Scholar]
  20. MuenchJ. JarvisK. GrayM. Implementing a team-based SBIRT model in primary care clinics.J. Subst. Use201520210611210.3109/14659891.2013.866176
    [Google Scholar]
  21. OliveiraM.B. da SilvaJ.B. MontanhaM.C. KimuraE. DinizA. BruschiM.L. Design and characterization of mucoadhesive gelatin-ethylcellulose microparticles for the delivery of curcumin to the bladder.Curr. Drug Deliv.20181581112112210.2174/156720181566618050312104329732969
    [Google Scholar]
  22. LiC. WallaceS. Polymer-drug conjugates: Recent development in clinical oncology.Adv. Drug Deliv. Rev.200860888689810.1016/j.addr.2007.11.00918374448
    [Google Scholar]
  23. DuncanR. The dawning era of polymer therapeutics.Nat. Rev. Drug Discov.20032534736010.1038/nrd108812750738
    [Google Scholar]
  24. RingsdorfH. Structure and properties of pharmacologically active polymers.J. Polym. Sci. Polym. Symp.197551113515310.1002/polc.5070510111
    [Google Scholar]
  25. YamaokaT. TabataY. IkadaY. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice.J. Pharm. Sci.199483460160610.1002/jps.26008304328046623
    [Google Scholar]
  26. SeymourL.W. DuncanR. StrohalmJ. Kopeček J. Effect of molecular weight (Mw) of N-(2-hydroxypropyl)methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats.J. Biomed. Mater. Res.198721111341135810.1002/jbm.8202111063680316
    [Google Scholar]
  27. DuncanR. Development of HPMA copolymer–anticancer conjugates: Clinical experience and lessons learnt.Adv. Drug Deliv. Rev.200961131131114810.1016/j.addr.2009.05.00719699249
    [Google Scholar]
  28. MatsumuraY. MaedaH. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs.Cancer Res.19864612 Pt 1638763922946403
    [Google Scholar]
  29. HashizumeH. BalukP. MorikawaS. Openings between defective endothelial cells explain tumor vessel leakiness.Am. J. Pathol.200015641363138010.1016/S0002‑9440(10)65006‑710751361
    [Google Scholar]
  30. HobbsS.K. MonskyW.L. YuanF. Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment.Proc. Natl. Acad. Sci.19989584607461210.1073/pnas.95.8.46079539785
    [Google Scholar]
  31. GreishK. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Cancer nanotechnology.Methods Protoc.20102537
    [Google Scholar]
  32. GreishK. Enhanced permeability and retention of macromolecular drugs in solid tumors: A royal gate for targeted anticancer nanomedicines.J. Drug Target.2007157-845746410.1080/1061186070153958417671892
    [Google Scholar]
  33. YuanF. DellianM. FukumuraD. Vascular permeability in a human tumor xenograft: Molecular size dependence and cutoff size.Cancer Res.19955517375237567641188
    [Google Scholar]
  34. GabizonA. ShmeedaH. BarenholzY. Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies.Clin. Pharmacokinet.200342541943610.2165/00003088‑200342050‑0000212739982
    [Google Scholar]
  35. DrummondD.C. NobleC.O. HayesM.E. ParkJ.W. KirpotinD.B. Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development.J. Pharm. Sci.200897114696474010.1002/jps.2135818351638
    [Google Scholar]
  36. LindnerL.H. HossannM. Factors affecting drug release from liposomes.Curr. Opin. Drug Discov. Devel.201013111112320047152
    [Google Scholar]
  37. HamaguchiT. KatoK. YasuiH. A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation.Br. J. Cancer200797217017610.1038/sj.bjc.660385517595665
    [Google Scholar]
  38. HamaguchiT. MatsumuraY. SuzukiM. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel.Br. J. Cancer20059271240124610.1038/sj.bjc.660247915785749
    [Google Scholar]
  39. LavasanifarA. SamuelJ. KwonG.S. Poly(ethylene oxide)-block-poly(l-amino acid) micelles for drug delivery.Adv. Drug Deliv. Rev.200254216919010.1016/S0169‑409X(02)00015‑711897144
    [Google Scholar]
  40. AhmedF. PakunluR.I. BrannanA. BatesF. MinkoT. DischerD.E. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug.J. Control. Release2006116215015810.1016/j.jconrel.2006.07.01216942814
    [Google Scholar]
  41. KatzJ.S. LevineD.H. DavisK.P. BatesF.S. HammerD.A. BurdickJ.A. Membrane stabilization of biodegradable polymersomes.Langmuir20092584429443410.1021/la803769q19239232
    [Google Scholar]
  42. SvensonS. TomaliaD.A. Dendrimers in biomedical applications—reflections on the field.Adv. Drug Deliv. Rev.20126410211510.1016/j.addr.2012.09.03016305813
    [Google Scholar]
  43. FarahanM. HambyM.J. FlethcerL.T. Treatment of cancer, inflammatory diseases and autoimmune diseases.US Patent 20230149399A1,2023
    [Google Scholar]
  44. WuH. Method for researching regulation and control mechanism of primary breast cancer range on distant metastasis.CN Patent 116042835A2023
    [Google Scholar]
  45. LatifM.S. AzadA.K. NawazA. Ethyl cellulose and hydroxypropyl methyl cellulose blended methotrexate-loaded transdermal patches: in vitro and ex vivo.Polymers20211320345510.3390/polym1320345534685214
    [Google Scholar]
  46. TekadeR.K. KumarP.V. JainN.K. Dendrimers in oncology: An expanding horizon.Chem. Rev.20091091498710.1021/cr068212n19099452
    [Google Scholar]
  47. TomaliaD.A. ReynaL.A. SvensonS. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging.Biochem. Soc. Trans.200735Pt 1616710.1042/BST0350061
    [Google Scholar]
  48. MisraR. AcharyaS. SahooS.K. Cancer nanotechnology: application of nanotechnology in cancer therapy.Drug Discov. Today20101519-2084285010.1016/j.drudis.2010.08.00620727417
    [Google Scholar]
  49. AbdellatifA.A.H. AlturkiH.N.H. TawfeekH.M. Different cellulosic polymers for synthesizing silver nanoparticles with antioxidant and antibacterial activities.Sci. Rep.20211118410.1038/s41598‑020‑79834‑633420131
    [Google Scholar]
  50. KolarovaK SamecD KvitekO ReznickovaA RimpelovaS SvorcikV Preparation and characterization of silver nanoparticles in methyl cellulose matrix and their antibacterial activity.Jpn J Appl Phys2017566S106GG0910.7567/JJAP.56.06GG09
    [Google Scholar]
  51. ElbakryA. ZakyA. LieblR. RachelR. GoepferichA. BreunigM. Layer-by-layer assembled gold nanoparticles for siRNA delivery.Nano Lett.2009952059206410.1021/nl900386519331425
    [Google Scholar]
  52. TawfeekH.M. AbdellatifA.A.H. Abdel-AleemJ.A. HassanY.A. FathallaD. Transfersomal gel nanocarriers for enhancement the permeation of lornoxicam.J. Drug Deliv. Sci. Technol.20205610154010.1016/j.jddst.2020.101540
    [Google Scholar]
  53. OngH.X. TrainiD. CipollaD. Liposomal nanoparticles control the uptake of ciprofloxacin across respiratory epithelia.Pharm. Res.201229123335334610.1007/s11095‑012‑0827‑022833052
    [Google Scholar]
  54. Said-ElbahrR. NasrM. AlhnanM.A. TahaI. SammourO. Nebulizable colloidal nanoparticles co-encapsulating a COX-2 inhibitor and a herbal compound for treatment of lung cancer.Eur. J. Pharm. Biopharm.201610311210.1016/j.ejpb.2016.03.02527020529
    [Google Scholar]
  55. HebeishA.A. El-RafieM.H. Abdel-MohdyF.A. Abdel-HalimE.S. EmamH.E. Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles.Carbohydr. Polym.201082393394110.1016/j.carbpol.2010.06.020
    [Google Scholar]
  56. GoiaD.V. Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions.J. Mater. Chem.200414445145810.1039/b311076a
    [Google Scholar]
  57. AlmutairyB.K. AlshetailiA. AlaliA.S. AhmedM.M. AnwerM.K. AboudzadehM.A. Design of olmesartan medoxomil-loaded nanosponges for hypertension and lung cancer treatments.Polymers20211314227210.3390/polym1314227234301030
    [Google Scholar]
  58. El-HabashyS.E. AllamA.N. El-KamelA.H. Ethyl cellulose nanoparticles as a platform to decrease ulcerogenic potential of piroxicam: formulation and in vitro/in vivo evaluation.Int. J. Nanomedicine2016112369238027307735
    [Google Scholar]
  59. WasilewskaK. WinnickaK. Ethylcellulose–a pharmaceutical excipient with multidirectional application in drug dosage forms development.Materials20191220338610.3390/ma1220338631627271
    [Google Scholar]
  60. VolmajerV SimonaV LidijaS Effects of ultrasound irradiation on the preparation of ethyl cellulose nanocapsules containing spirooxazine dye.J Nanomater 20172017
    [Google Scholar]
  61. AfonsoB.S. AzevedoA.G. GonçalvesC. Bio-based nanoparticles as a carrier of β-carotene: Production, characterisation and in vitro gastrointestinal digestion.Molecules20202519449710.3390/molecules2519449733008004
    [Google Scholar]
  62. BožičM ElschnerT TkaučičD Effect of different surface active polysaccharide derivatives on the formation of ethyl cellulose particles by the emulsion-solvent evaporation method.Cellulose2018251269012210.1007/s10570‑018‑2062‑2
    [Google Scholar]
  63. SrikarG. RaniA.P. Study on influence of polymer and surfactant on in vitro performance of biodegradable aqueous-core nanocapsules of tenofovirdisoproxil fumarate by response surface methodology.Braz. J. Pharm. Sci.201955e1873610.1590/s2175‑97902019000118736
    [Google Scholar]
  64. DoratiR. DeTrizioA. SpallaM. Gentamicin Sulfate PEG-PLGA/PLGA-H nanoparticles: Screening design and antimicrobial effect evaluation toward clinic bacterial isolates.Nanomaterials2018813710.3390/nano801003729329209
    [Google Scholar]
  65. AhmedM. AnwerM.K. FatimaF. Development of ethylcellulose based nanosponges of apremilast: in vitro and in vivo pharmacokinetic evaluation.Lat. Am. J. Pharm.202039712921299
    [Google Scholar]
  66. JongkhumkrongJ. ThaveesangsakulthaiI. SukbangnopW. Helicene-hydrazide encapsulated ethyl cellulose as a potential fluorescence sensor for highly specific detection of nonanal in aqueous solutions and a proof-of-concept clinical study in lung fluid.ACS Appl. Mater. Interfaces20221444494954950710.1021/acsami.2c1106436301188
    [Google Scholar]
  67. KinghamT.P. AlatiseO.I. VanderpuyeV. Treatment of cancer in sub-Saharan Africa.Lancet Oncol.2013144e158e16710.1016/S1470‑2045(12)70472‑223561747
    [Google Scholar]
  68. GoldbergS.N. GazelleG.S. MuellerP.R. Thermal ablation therapy for focal malignancy: A unified approach to underlying principles, techniques, and diagnostic imaging guidance.AJR Am. J. Roentgenol.2000174232333110.2214/ajr.174.2.174032310658699
    [Google Scholar]
  69. BurnsR.A. KlaunigJ.E. ShulokJ.R. DavisW.J. GoldblattP.J. Tumor-localizing and photosensitizing properties of hematoporphyrin derivative in hamster buccal pouch carcinoma.Oral Surg. Oral Med. Oral Pathol.198661436837210.1016/0030‑4220(86)90421‑42939386
    [Google Scholar]
  70. LiuY. YinT. FengY. Mammalian models of chemically induced primary malignancies exploitable for imaging-based preclinical theragnostic research.Quant. Imaging Med. Surg.20155570872926682141
    [Google Scholar]
  71. KuangM. LuM.D. XieX.Y. Ethanol ablation of hepatocellular carcinoma Up to 5.0 cm by using a multipronged injection needle with high-dose strategy.Radiology2009253255256110.1148/radiol.253208202119709992
    [Google Scholar]
  72. EbaraM. OkabeS. KitaK. Percutaneous ethanol injection for small hepatocellular carcinoma: Therapeutic efficacy based on 20-year observation.J. Hepatol.200543345846410.1016/j.jhep.2005.03.03316005538
    [Google Scholar]
  73. SannierK. DompmartinA. ThéronJ. A new sclerosing agent in the treatment of venous malformations. Study on 23 cases.Interv. Neuroradiol.200410211312710.1177/15910199040100020320587223
    [Google Scholar]
  74. DompmartinA. VikkulaM. BoonL.M. Venous malformation: update on aetiopathogenesis, diagnosis and management.Phlebology201025522423510.1258/phleb.2009.00904120870869
    [Google Scholar]
  75. RaoM. HarikaK. SunithaK. KumarP. MaheshwarK. Basic concepts of cellulose polymers- A comprehensive review.Arch. Pharm. Pract.20123320210.4103/2045‑080X.116598
    [Google Scholar]
  76. Ethocel premium polymers for pharmaceutical applications: Proven organosoluble polymers for controlled release coatings, microencapsulation, granulation and flavor markings Form No: 198-0200219981098
  77. KentD.J. RoweR.C. Solubility studies on ethyl cellulose used in film coating.J. Pharm. Pharmacol.1978301280881032255
    [Google Scholar]
  78. RoweR.C. The prediction of compatibility/incompatibility in blends of ethyl cellulose with hydroxypropyl methylcellulose or hydroxypropyl cellulose using 2-dimensional solubility parameter maps.J. Pharm. Pharmacol.201138321421510.1111/j.2042‑7158.1986.tb04546.x2871157
    [Google Scholar]
  79. SakellariouP. RoweR.C. WhiteE.F.T. The solubility parameters of some cellulose derivatives and polyethylene glycols used in tablet film coating.Int. J. Pharm.1986311-217517710.1016/0378‑5173(86)90229‑2
    [Google Scholar]
  80. ArwidssonH. NicklassonM. Application of intrinsic viscosity and interaction constant as a formulation tool for film coating. I. Studies on ethyl cellulose 10 cps in organic solvents.Int. J. Pharm.198956218719310.1016/0378‑5173(89)90013‑6
    [Google Scholar]
  81. SingamA. KilliN. PatelP.R. GundlooriR.V.N. PEGylated ethyl cellulose micelles as a nanocarrier for drug delivery.RSC Advances20211149305323054310.1039/D1RA04242D35479870
    [Google Scholar]
  82. ZhaoQ. HanB. WangZ. GaoC. PengC. ShenJ. Hollow chitosan-alginate multilayer microcapsules as drug delivery vehicle: doxorubicin loading and in vitro and in vivo studies.Nanomedicine200731637410.1016/j.nano.2006.11.00717379170
    [Google Scholar]
  83. WuW-J.L.T-L. WuT.L. Modification of the initial release of a highly water-soluble drug from ethyl cellulose microspheres.J. Microencapsul.199916563964610.1080/02652049928882510499843
    [Google Scholar]
  84. LiX.W. YangT.F. Fabrication of ethyl cellulose microspheres: Chitosan solution as a stabilizer.Korean J. Chem. Eng.20082551201120410.1007/s11814‑008‑0198‑8
    [Google Scholar]
  85. BuckanovichJ.R. CoukosG. FacciabeneA. Methods and compositions for treating solid tumors and enhancing tumor vaccines.US Patent 20190375845A1,2019
    [Google Scholar]
  86. HamdyA. RothbaumW. LzumiiR. BTK inhibitors to treat solid tumors through modulation of the tumor microenvironment.US Patent 20190381044A12021
    [Google Scholar]
  87. ChopraSK MartinoV MartinoGD Combination therapy to treat malignant tumors.JP Patent 6895956B22021
    [Google Scholar]
  88. HuLifu Combined marker for colorectal cancer detection and application thereof. CN Patent 116121387A2023
    [Google Scholar]
  89. NathB. Kanta NathL. MazumderB. KumarP. SharmaN. Pratap SahuB. Preparation and characterization of salbutamol sulphate loaded ethyl cellulose microspheres using water-in-oil-oil emulsion technique.Iran. J. Pharm. Res.2010929710524363714
    [Google Scholar]
  90. WuH. DingZ. HuD. Central role of lactic acidosis in cancer cell resistance to glucose deprivation-induced cell death.J. Pathol.2012227218919910.1002/path.397822190257
    [Google Scholar]
  91. ChaoM. WuH. JinK. A nonrandomized cohort and a randomized study of local control of large hepatocarcinoma by targeting intratumoral lactic acidosis.eLife20165e1569110.7554/eLife.1569127481188
    [Google Scholar]
  92. WuJ.H. WangX.J. LiS.J. Preparation of ethyl cellulose microspheres for sustained release of sodium bicarbonate.Iran. J. Pharm. Res.201918255656831531041
    [Google Scholar]
  93. ChourasiaM.K. JainS.K. Pharmaceutical approaches to colon targeted drug delivery systems.J. Pharm. Pharm. Sci.200361336612753729
    [Google Scholar]
  94. GuruprasadS. Formulation and invitro evaluation of sustained release tablets of vildagliptin using natural polymers.Doctoral dissertation, JKK Nattraja College of Pharmacy, Kumarapalayam2022
    [Google Scholar]
  95. OmwanchaW.S. MallipeddiR. ValleB.L. NeauS.H. Chitosan as a pore former in coated beads for colon specific drug delivery of 5-ASA.Int. J. Pharm.20134411-234335110.1016/j.ijpharm.2012.11.02223200955
    [Google Scholar]
  96. Vishal GuptaN. GowdaD. BalamuralidharaV. Mohammed KhanS. Formulation and evaluation of olanzapine matrix pellets for controlled release.Daru201119424925622615665
    [Google Scholar]
  97. SteckelH. Mindermann-NoglyF. Production of chitosan pellets by extrusion/spheronization.Eur. J. Pharm. Biopharm.200457110711410.1016/S0939‑6411(03)00156‑514729086
    [Google Scholar]
  98. HeW. DuQ. CaoD. XiangB. FanL. Study on colon-specific pectin/ethylcellulose film-coated 5-fluorouracil pellets in rats.Int. J. Pharm.20083481-2354510.1016/j.ijpharm.2007.07.00517697758
    [Google Scholar]
  99. ParadkarM. AminJ. Formulation development and evaluation of colon targeted delayed release methotrexate pellets for the treatment of colonic carcinoma.Braz. J. Pharm. Sci.201954
    [Google Scholar]
  100. KosarajuS.L. Colon targeted delivery systems: Review of polysaccharides for encapsulation and delivery.Crit. Rev. Food Sci. Nutr.200545425125810.1080/1040869049047809116047493
    [Google Scholar]
  101. ChaurasiaM. ChourasiaM.K. JainN.K. Cross-linked guar gum microspheres: A viable approach for improved delivery of anticancer drugs for the treatment of colorectal cancer.AAPS PharmSciTech200673E143E15110.1208/pt07037417025254
    [Google Scholar]
  102. ShabarayaA.R. NarayanacharyuluR. Design and evaluation of chitosan microspheres of metoprolol tartrate for sustained release.Indian J. Pharm. Sci.2003653250
    [Google Scholar]
  103. GreyJK AslakS ErikGJ ClemBB Use of 5-aminolevulinic acid and derivatives in a solid form for photodynamic treatment and diagnosis.CN Patent 104306968A,2015
    [Google Scholar]
  104. JingcaiC. LongguiW. RenweiQ. HaiyaJ. ChengjuanW. Study on colon-specific pectin/ethylcellulose film-coated 5-fluorouracil pellets in rats.Int. J. Pharm.20103481-23545
    [Google Scholar]
  105. ZhangCD DongLD ChenL Aimin Liao Dandan Reagent for diagnosing or assisting in diagnosing bladder cancer and detection kit.CN Patent 116004831A2023
    [Google Scholar]
  106. XuanlingX MinggenY JianZ MengyuL SihanY Method, device, medium and equipment for classifying skin cancer with interpretability.CN Patent 116129199A2022
    [Google Scholar]
  107. SemaltyA. SemaltyM. SinghD. RawatM. Development and physicochemical evaluation of pharmacosomes of diclofenac.Acta Pharm.200959333534410.2478/v10007‑009‑0023‑x19819829
    [Google Scholar]
  108. GuptaB.K. Kinetics of release of pentazocine hydrochloride from mictropellets of ethylcellulose and eudragit RL-100.Indian J. Pharm. Sci.1997594181
    [Google Scholar]
  109. NathB. NathL.K. MazumdarB. SharmaN. SarkarM. Design and development of metformin hcl floating microcapsules using two polymers of different permeability characteristics.Int J Pharm Sci Nanotechnol200923627637[IJPSN10.37285/ijpsn.2009.2.3.6
    [Google Scholar]
  110. KozonoS. NobumasaH. KondouS. Stomach cancer detection kit or device, and detection.US Patent 11486009B22022
    [Google Scholar]
  111. TooHP ZhouL ZouR Micro rna biomarker for diagnosing stomach cancer.JP Patent 2022188053A,2022
    [Google Scholar]
  112. BasitH.M. Mohd AminM.C.I. NgS.F. KatasH. ShahS.U. KhanN.R. Formulation and evaluation of microwave-modified chitosan-curcumin nanoparticles—A promising nanomaterials platform for skin tissue regeneration applications following burn wounds.Polymers20201211260810.3390/polym1211260833171959
    [Google Scholar]
  113. DuarteA.R.C. GordilloM.D. CardosoM.M. SimplícioA.L. DuarteC.M.M. Preparation of ethyl cellulose/methyl cellulose blends by supercritical antisolvent precipitation.Int. J. Pharm.20063111-2505410.1016/j.ijpharm.2005.12.01016423476
    [Google Scholar]
  114. CruceriuD. BaldasiciO. BalacescuO. Berindan-NeagoeI. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: Molecular insights and therapeutic approaches.Cell Oncol. (Dordr.)202043111810.1007/s13402‑019‑00489‑131900901
    [Google Scholar]
  115. SinghD. SoniG.C. PrajapatiS.K. Recent advances in nanosponges as drug delivery system: a review.Eur J Pharm Res2016310364371
    [Google Scholar]
  116. CransD.C. HenryL. CardiffG. PosnerB.I. Developing vanadium as an antidiabetic or anticancer drug: A clinical and historical perspective.Met. Ions Life Sci.20191920323010.1515/9783110527872‑00830855109
    [Google Scholar]
  117. ClinicalTrials.gov, US National Library of MedicineAvailable from: https://www.clinicaltrials.gov
  118. DouglasAL SanjayK RandyZD Formulations of enzalutamide.JP Patent 2021178871A2021
    [Google Scholar]
  119. SharpZ.D. StrongZ.R. GalvanV. OddoS. WheelerZ.D. Inhibition of mammalian target of rapamycin.US Patent 20220023230A1,2022
    [Google Scholar]
  120. MannickJ GlassD MurphyL Low, immune enhancing, dose mtor inhibitors and uses thereof.TWI Patent 679976B,2019
    [Google Scholar]
  121. JeffreyB. The oral formulations of cytidine analog and its using method.CN Patent 102099018B2016
    [Google Scholar]
/content/journals/caps/10.2174/0124522716273253231129104511
Loading
/content/journals/caps/10.2174/0124522716273253231129104511
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bladder; Breast; cancer; colon; ethyl cellulose; lung; polymer; stomach
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test