Skip to content
2000
image of 3D and 4D Technology for Pharmaceutical Drug Delivery: A Detailed Insight

Abstract

3D Printing, sometimes referred to as additive manufacturing, has made the concept of personalized medicine a reality. The primary objective of 3D and 4D printing is to produce intricate, customized pharmaceuticals at a reasonable cost. With improvements in materials, resolution, and speed, 3D printing technology is quickly developing. It includes faster construction, cost efficiency through reduced waste, design flexibility for complex structures, and sustainability through optimized material usage. An extensive literature survey was done on 3D and 4D printing of pharmaceuticals using PubMed, Elsevier, ScienceDirect, and Springer. The results were then filtered based on the titles, abstracts, and accessibility of the complete texts. The search engine Google Scholar was accessed for literature data mining. From the data mining, it was found that from the year 2009 to 2024 the number of research publications surged more than 200 times on the current topic. Even though 3-D and 4-D printing technologies have advanced significantly in a short amount of time, the most often used ones are still stereolithography, nozzle-based deposition, inkjet, and selective laser sintering. Their use has been modified for the production of nanoparticles, polypills, tablets, and implants, Pharma's aspirations for tailored medications are being revolutionized by 3D printing, but cost, flexibility, and bioequivalence still need to be investigated. The present review offers a thorough analysis of various 3D and 4D printing methods and emphasizes the major advantages and disadvantages and major key challenges of 3D and 4D printing related to pharmaceuticals. Compared to 3D Printing, 4D printing offers better quality, efficacy, and functionality.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031312257241011071610
2024-10-17
2025-01-24
Loading full text...

Full text loading...

References

  1. Agrawal R. Garg A. Deshmukh R. A snapshot of current updates and future prospects of 3D printing in medical and pharmaceutical science. Curr. Pharm. Des. 2023 29 8 604 619 10.2174/1381612829666230228115442
    [Google Scholar]
  2. Chahuan A. Verma A. Shekho D. Mishra R. Awasthi A. Revolutionizing the world of pharmaceuticals: Unleashing the game-changing power of 3D printing. Curr. Drug Targets 2024 25 8 513 516 10.2174/0113894501304163240429081741
    [Google Scholar]
  3. Bácskay I. Ujhelyi Z. Fehér P. Arany P. The evolution of the 3D-printed drug delivery systems: A review. Pharmaceutics 2022 14 7 1312 10.3390/pharmaceutics14071312
    [Google Scholar]
  4. Zukas V Zukas JA An Introduction to 3D Printing. United States First Edition Design Publishing 2015
    [Google Scholar]
  5. Coburn J Lee J Patkar M. Ultimate Beginner’s Guide To 3D Printing. 2017
  6. Ali A Ahmad U Akhtar J. 3D Printing in pharmaceutical sector: An overview. Pharmaceutical Formulation Design - Recent Practices London InTechOpen 2020 10.5772/intechopen.90738
    [Google Scholar]
  7. Jose PA 3D Printing of pharmaceuticals – a potential technology in developing personalized medicine. Asian J. Pharmaceut. Res. Devel. 2018 6 3 46 54 10.22270/ajprd.v6i3.375
    [Google Scholar]
  8. Reddy C.V. v B. Venkatesh M.P. Pramod Kumar T.M. First FDA Approved 3D Printed Drug Paved New Path for Increased Precision in Patient Care. Appl. Clin. Res. Clin. Trials Regul. Aff. 2020 7 2 93 103 10.2174/2213476X07666191226145027
    [Google Scholar]
  9. Paoletti I Ceccon L. The evolution of 3D Printing in AEC: From experimental to consolidated techniques. 3D Printing London InTechOpen 2018 10.5772/intechopen.79668
    [Google Scholar]
  10. Bensoussan H. The History Of 3D Printing: 3D Printing Technologies from the 80s to Today. Blog Post. Sculpteo Np. 2016 14 5 67 78
    [Google Scholar]
  11. Zhang J. Feng X. Patil H. Tiwari R.V. Repka M.A. Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int. J. Pharm. 2017 519 1-2 186 197 10.1016/j.ijpharm.2016.12.049
    [Google Scholar]
  12. Abaci A. Gedeon C. Kuna A. Guvendiren M. Additive manufacturing of oral tablets: Technologies, materials and printed tablets. Pharmaceutics 2021 13 2 156 10.3390/pharmaceutics13020156
    [Google Scholar]
  13. Azad M.A. Olawuni D. Kimbell G. Badruddoza A.Z.M. Hossain M.S. Sultana T. Polymers for extrusion-based 3D printing of pharmaceuticals: A holistic materials–process perspective. Pharmaceutics 2020 12 2 124 10.3390/pharmaceutics12020124
    [Google Scholar]
  14. Chatterjee P. Alvi Mm. Excipients and active pharmaceutical ingredients. Pediatric Formulations. New York, NY Springer 2014 347 361
    [Google Scholar]
  15. Mirza M.A. Iqbal Z. 3D printing in pharmaceuticals: Regulatory perspective. Curr. Pharm. Des. 2019 24 42 5081 5083 10.2174/1381612825666181130163027
    [Google Scholar]
  16. Pérez M. Carou D. Rubio E.M. Teti R. Current advances in additive manufacturing. Procedia CIRP 2020 88 439 444 10.1016/j.procir.2020.05.076
    [Google Scholar]
  17. Mwema F.M. Akinlabi E.T. Basics Of Fused Deposition Modelling (FDM). Infused Deposition Modeling. Cham Springer 2020 1 15 10.1007/978‑3‑030‑48259‑6
    [Google Scholar]
  18. Trenfield S.J. Awad A. Madla C.M. Hatton G.B. Firth J. Goyanes A. Gaisford S. Basit A.W. Shaping the future: Recent advances of 3D printing in drug delivery and healthcare. Expert Opin. Drug Deliv. 2019 16 10 1081 1094 10.1080/17425247.2019.1660318
    [Google Scholar]
  19. Park B.J. Choi H.J. Moon S.J. Kim S.J. Bajracharya R. Min J.Y. Han H.K. Pharmaceutical applications Of 3D printing technology: Current understanding and future perspectives. J. Pharm. Investig. 2019 49 6 575 585
    [Google Scholar]
  20. Xu X. Awwad S. Diaz-Gomez L. Alvarez-Lorenzo C. Brocchini S. Gaisford S. Goyanes A. Basit A.W. 3D printed punctal plugs for controlled ocular drug delivery. Pharmaceutics 2021 13 9 1421 1425 10.3390/pharmaceutics13091421
    [Google Scholar]
  21. Bailey C. Stoyanov S. Tilford T. Tourloukis G. 3D-printing and electronic packaging. 2016 Pan Pacific Microelectronics Symposium (Pan Pacific) 25-28 January 2016 Big Island, HI, USA 2016
    [Google Scholar]
  22. Zhang Y. Jarosinski W. Jung Y.G. Zhang J. Additive Manufacturing Processes and Equipment. Additive Manufacturing: Materials, Processes, Quantifications and Applications. Amsterdam Elsevier 2018 10.1016/B978‑0‑12‑812155‑9.00002‑5
    [Google Scholar]
  23. Palmero E.M. Bollero A. 3D and 4D printing of functional and smart composite materials. Encyclopedia of Materials: Composites Amsterdam Elsevier 2021
    [Google Scholar]
  24. Bae C.J. Diggs A.B. Ramachandran A. Quantification and Certification of Additive Manufacturing Materials and Processes. Additive Manufacturing: Materials, Processes, Quantifications and Applications. Amsterdam Elsevier 2018 10.1016/B978‑0‑12‑812155‑9.00006‑2
    [Google Scholar]
  25. Hanon M.M. Introduction to 3D printing technologies: Techniques, materials, and applications. 2020 Available From: https://www.researchgate.net/publication/342815109_Introduction_to_3D_printing_technologies_techniques_materials_and_applications
  26. Mohammed Aa Algahtani MS Ahmad MZ Ahmad J Kotta S 3D Printing in medicine: Technology overview and drug delivery applications. Annals 3D Printed Med 2021 6 100037 10.1016/j.stlm.2021.100037
    [Google Scholar]
  27. Khaled S.A. Burley J.C. Alexander M.R. Yang J. Roberts C.J. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J. Control. Release 2015 217 308 314 10.1016/j.jconrel.2015.09.028
    [Google Scholar]
  28. Algahtani M.S. Mohammed A.A. Ahmad J. Saleh E. Development of a 3D Printed Coating Shell to Control the Drug Release of Encapsulated Immediate-Release Tablets. Polymers (Basel) 2020 12 6 1395 10.3390/polym12061395
    [Google Scholar]
  29. Reddy Dumpa N. Bandari S. Novel gastroretentive floating pulsatile drug delivery system produced via hot-melt extrusion and fused deposition modeling 3D Printing. Pharmaceutics 2020 12 1 52 10.3390/pharmaceutics12010052
    [Google Scholar]
  30. Dabbagh S.R. Sarabi M.R. Rahbarghazi R. Sokullu E. Yetisen A.K. Tasoglu S. 3D-printed microneedles in biomedical applications. iScience 2021 24 1 102012 10.1016/j.isci.2020.102012
    [Google Scholar]
  31. Yi H.G. Choi Y.J. Kang K.S. Hong J.M. Pati R.G. Park M.N. Shim I.K. Lee C.M. Kim S.C. Cho D.W. A 3D-printed local drug delivery patch for pancreatic cancer growth suppression. J. Control. Release 2016 238 231 241 10.1016/j.jconrel.2016.06.015
    [Google Scholar]
  32. Allen E.A. O’Mahony C. Cronin M. O’Mahony T. Moore A.C. Crean A.M. Dissolvable microneedle fabrication using piezoelectric dispensing technology. Int. J. Pharm. 2016 500 1-2 1 10 10.1016/j.ijpharm.2015.12.052
    [Google Scholar]
  33. Alexander N.J. Baker E. Kaptein M. Karck U. Miller L. Zampaglione E. Why consider vaginal drug administration? Fertil. Steril. 2004 82 1 1 12 10.1016/j.fertnstert.2004.01.025
    [Google Scholar]
  34. Krezić S. Krhan E. Mandžuka E. Kovaĉ N. Krajina D. Marić A. Komić S. Nikšić A. Tucak A. Sirbubalo M. Vranić E. Fabrication of rectal and vaginal suppositories using 3D printed moulds: The challenge of personalized therapy. CMBEBIH New York City Springer International Publishing 2019
    [Google Scholar]
  35. Elkasabgy N.A. Mahmoud A.A. Maged A. 3D printing: An appealing route for customized drug delivery systems. Int. J. Pharm. 2020 588 119732 10.1016/j.ijpharm.2020.119732
    [Google Scholar]
  36. Fu J. Yu X. Jin Y. 3D printing of vaginal rings with personalized shapes for controlled release of progesterone. Int. J. Pharm. 2018 539 1-2 75 82 10.1016/j.ijpharm.2018.01.036
    [Google Scholar]
  37. Picco C.J. Domínguez-Robles J. Utomo E. Paredes A.J. Volpe-Zanutto F. Malinova D. Donnelly R.F. Larrañeta E. 3D-printed implantable devices with biodegradable rate-controlling membrane for sustained delivery of hydrophobic drugs. Drug Deliv. 2022 29 1 1038 1048 10.1080/10717544.2022.2057620
    [Google Scholar]
  38. Moussi K. Bukhamsin A. Kosel J. Implantable 3D printed drug delivery system. 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). 2019 2243 2246
    [Google Scholar]
  39. Larochelle R.D. Mann S.E. Ifantides C. 3D printing in eye care. Ophthalmol. Ther. 2021 10 4 733 752 10.1007/s40123‑021‑00379‑6
    [Google Scholar]
  40. Goto E. Yagi Y. Kaido M. Matsumoto Y. Konomi K. Tsubota K. Improved functional visual acuity after punctal occlusion in dry eye patients. Am. J. Ophthalmol. 2003 135 5 704 705 10.1016/S0002‑9394(02)02147‑5
    [Google Scholar]
  41. Ahmed A.A. Musbah A. Atiyah A. 4D printing technology: A revolution across manufacturing. Int. J. Mech. Indus. Technol. 2020 7 2 45 51
    [Google Scholar]
  42. Roy A. Hossain M.S. Bhowmick A. Nizhum N. Kumar S. Prospects of 4D printing in pharmaceuticals. Pharmacologyonline 2020 3 292 302
    [Google Scholar]
  43. Reddy S. Smart materials for 4D printing: A review on developments, challenges and applications. Recent Advances in Manufacturing, Automation. Design and Energy Technologies: Proceedings from ICoFT 2021 2020 3 10
    [Google Scholar]
  44. Tibbits S. McKnelly C. Olguin C. Dikovsky D. Hirsch S. 4D Printing and universal transformation. 2014 Available From: https://papers.cumincad.org/data/works/att/acadia14_539.content.pdf
  45. Singholi A.K. Sharma A. Finding capabilities of 4D printing. Int. J. Eng. Adv. Technol. 2019 8 5 1095 1110
    [Google Scholar]
  46. Ramesh S. Kiran reddy S. Usha C. Naulakha N.K. Adithyakumar C.R. Lohith Kumar Reddy M. Advancements in the research of 4D printing-a review. IOP Conf. Series Mater. Sci. Eng. 2018 376 61 012123 10.1088/1757‑899X/376/1/012123
    [Google Scholar]
  47. Zhang Z. Demir K.G. Gu G.X. Developments in 4D-printing: A review on current smart materials, technologies, and applications. Int. J. Smart Nano Mater. 2019 10 3 205 224 10.1080/19475411.2019.1591541
    [Google Scholar]
  48. Lindquist EM Gosnell JM Khan SK Byl JL Zhou W Jiang J Vettukattil JJ 3D printing in Cardiology: A review of applications and roles for advanced cardiac imaging. Annals of 3D Printed Med. 2021 1 4 100 34 10.1016/j.stlm.2021.100034
    [Google Scholar]
  49. Krauel L Valls-Esteve A Tejo-Otero A Fenollosa-Artés F. 3D-Printing in surgery: Beyond bone structures. A review. Annals 3D Printed Med. 2021 4 100039 10.1016/j.stlm.2021.100039
    [Google Scholar]
  50. Zabala-Travers S. Biomodeling and 3D printing: A novel radiology subspecialty. Annals 3D Printed Med. 2021 4 100038 10.1016/j.stlm.2021.100038
    [Google Scholar]
  51. Ganguli A. Pagan-Diaz G.J. Grant L. Cvetkovic C. Bramlet M. Vozenilek J. Kesavadas T. Bashir R. 3D printing for preoperative planning and surgical training: a review. Biomed. Microdevices 2018 20 3 65 10.1007/s10544‑018‑0301‑9
    [Google Scholar]
  52. Dodziuk H. Applications of 3D printing in healthcare. Kardiochirurgia i Torakochirurgia Polska/Polish. J. Thorac. Cardiovasc. Surg. 2016 13 3 283 293
    [Google Scholar]
  53. Tino R Moore R Antoline S Ravi P Wake N Ionita CN Morris JM Decker SJ Sheikh A Rybicki FJ Chepelev LL COVID-19 and the role of 3D printing in medicine. 3D Printed Med. 2020 6 1 11 10.1186/s41205‑020‑00064‑7
    [Google Scholar]
  54. Radfar P Bazaz SR Mirakhorli F Warkiani ME The role of 3D printing in the fight against COVID-19 outbreak. J. 3D Print Med 2021 5 1 51 60 10.2217/3dp‑2020‑0028
    [Google Scholar]
  55. Novak JI Loy J A quantitative analysis of 3D printed face shields and masks during COVID-19. Emerald Open Res. 2020 2 42 10.35241/emeraldopenres.13815.1
    [Google Scholar]
  56. Majrashi M.A. Yahya E.B. Mushtaq R.Y. Revolutionizing drug delivery: Exploring the impact of advanced 3D printing technologies on polymer-based systems. J. Drug Deliv. Sci. Technol. 2024 2024 105839 10.1016/j.jddst.2024.105839
    [Google Scholar]
  57. 3D Printing Industry. 2021 Available From: https://3Dprintingindustry.Com/News/Merck-Aprecia-And-Fabrx-OnTransitioning-3D-Printed-Pharmaceuticals-From-Lab-To-Clinic-194285/
  58. Ibrahim O. Five companies personalizing treatments with 3D printed drugs. 2022 Available From: https://www.labiotech.eu/best-biotech/five-companies-personalizing-treatments-with-3d-printed-drugs/
  59. Rahman M. Almalki W.H. Alghamdi S. Alharbi K.S. Khalilullah H. Habban Akhter M. Keshari A.K. Sharma N. Singh T. Soni K. Hafeez A. Beg S. Three ‘D’s: Design approach, dimensional printing, and drug delivery systems as promising tools in healthcare applications. Drug Discov. Today 2021 26 11 2726 2733 10.1016/j.drudis.2021.06.016
    [Google Scholar]
  60. Gray G. Dr S. The rise of the 4D bioprinting industry. 2021 Available From: https://www.voxelmatters.com/the-rise-of-the-4d-bioprinting-industry/
  61. Alhnan M.A. Okwuosa T.C. Solid dosage form production. US Patent 11045426 2021
  62. Tyler K.L. Method And apparatus for continuous composite three-dimensional printing. US Patent 10744708 2020
  63. Zhou J. Chang S. Direct inkjet fabrication of drug delivery devices. US Patent 9381154 2016
  64. Almutairi A. Ner Y. Karpiak J. Morachis J. Single step polymerization of covalently bound multilayer matrices. US Patent 9409322 2016
  65. Zhou S.K. Geiger B. Semantic medical image to 3D print of anatomic structure. US Patent 10409235 2019
  66. Schlachter K. 3D Printing devices and methods. US Patent 11220096 2022
  67. Dechev N. Coutts J. Shrestha P. Brussow D. Peirone M. Christie K. Treble M. Chan A. Richards M. Knowlton R. Custom fitted body powered prosthetic upper limb manufactured by 3D Printing. US Patent 11013620 2021
  68. Hull C.W. Methods and apparatus for 3D Printed hydrogel materials. US Patent 11305480 2022
  69. Ghimire T. Joshi A. Sen S. Kapruan C. Chadha U. Selvaraj S.K. Blockchain in additive manufacturing processes: Recent trends & its future possibilities. Mater. Today Proc. 2022 50 2170 2180 10.1016/j.matpr.2021.09.444
    [Google Scholar]
  70. Zhang X. Dahu W. Application of artificial intelligence algorithms in image processing. J. Vis. Commun. Image Represent. 2019 61 42 49 10.1016/j.jvcir.2019.03.004
    [Google Scholar]
  71. Muraru D. Veronesi F. Maddalozzo A. Dequal D. Frajhof L. Rabischoffsky A. Iliceto S. Badano L.P. 3D printing of normal and pathologic tricuspid valves from transthoracic 3D echocardiography data sets. Eur. Heart J. Cardiovasc. Imaging 2017 18 7 802 808 10.1093/ehjci/jew215
    [Google Scholar]
  72. Sommer K. Izzo R.L. Shepard L. Podgorsak A.R. Rudin S. Siddiqui A.H. Wilson M.F. Angel E. Said Z. Springer M. Ionita C.N. Design optimization for accurate flow simulations in 3D printed vascular phantoms derived from computed tomography angiography. Proc. SPIE Int. Soc. Opt. Eng. 2017 10138 101380R
    [Google Scholar]
  73. Grab M. Hopfner C. Gesenhues A. König F. Haas N.A. Hagl C. Curta A. Thierfelder N. Development and evaluation of 3D-printed cardiovascular phantoms for interventional planning and training. J. Vis. Exp. 2021 167 e62063
    [Google Scholar]
  74. Christensen A. Humphries S. Goh K.C. Swift D. Advanced? tactile? medical imaging for separation surgeries of conjoined twins. Childs Nerv. Syst. 2004 20 8-9 547 553 10.1007/s00381‑004‑0982‑7
    [Google Scholar]
  75. Choi J.Y. Das S. Theodore N.D. Kim I. Honsberg C. Choi H.W. Alford T.L. Advances in 2D/3D printing of functional nanomaterials and their applications. ECS J. Solid State Sci. Technol. 2015 4 4 P3001 P3009 10.1149/2.0011504jss
    [Google Scholar]
  76. Lin D. Nian Q. Deng B. Jin S. Hu Y. Wang W. Cheng G.J. Three-dimensional printing of complex structures: Man made or toward nature? ACS Nano 2014 8 10 9710 9715 10.1021/nn504894j
    [Google Scholar]
  77. Williams G. Hunt M. Boehm B. May A. Taverne M. Ho D. Giblin S. Read D. Rarity J. Allenspach R. Ladak S. Two-photon lithography for 3D magnetic nanostructure fabrication. Nano Res. 2018 11 2 845 854 10.1007/s12274‑017‑1694‑0
    [Google Scholar]
  78. Hospodiuk M. Dey M. Sosnoski D. Ozbolat I.T. The bioink: A comprehensive review on bioprintable materials. Biotechnol. Adv. 2017 35 2 217 239 10.1016/j.biotechadv.2016.12.006
    [Google Scholar]
  79. Ozbolat I.T. Scaffold-based or scaffold-free bioprinting: Competing or complementing approaches? J. Nanotechnol. Eng. Med. 2015 6 2 024701 10.1115/1.4030414
    [Google Scholar]
  80. Wang Q. Guo Q. Niu W. Wu L. Gong W. Yan S. Nishinari K. Zhao M. The pH-responsive phase separation of type-A gelatin and dextran characterized with static multiple light scattering (S-MLS). Food Hydrocoll. 2022 127 107503 10.1016/j.foodhyd.2022.107503
    [Google Scholar]
  81. Liu C. Wang Z. Wei X. Chen B. Luo Y. 3D printed hydrogel/PCL core/shell fiber scaffolds with NIR-triggered drug release for cancer therapy and wound healing. Acta Biomater. 2021 131 314 325 10.1016/j.actbio.2021.07.011
    [Google Scholar]
  82. Shin D.G. Kim T.H. Kim D.E. Review of 4D printing materials and their properties. Int. J. Prec. Eng. Manuf.-Green Technol. 2017 4 3 349 357 10.1007/s40684‑017‑0040‑z
    [Google Scholar]
  83. Agarwal N. Solanki V.S. Ameta K.L. Yadav V.K. Gupta P. Wanale S.G. Shrivastava R. Soni A. Sahoo D.K. Patel A. 4-Dimensional printing: Exploring current and future capabilities in biomedical and healthcare systems—a Concise review. Front. Bioeng. Biotechnol. 2023 11 1251425 10.3389/fbioe.2023.1251425
    [Google Scholar]
  84. Algahtani M.S. Assessment of pharmacist’s knowledge and perception toward 3D printing technology as a dispensing method for personalized medicine and the readiness for implementation. Pharmacy (Basel) 2021 9 1 68 10.3390/pharmacy9010068
    [Google Scholar]
  85. Goh O. Goh W. Lim S. Hoo G. Liew R. Ng T. Preferences of healthcare professionals on 3D-printed tablets: A pilot study. Pharmaceutics 2022 14 7 1521 10.3390/pharmaceutics14071521
    [Google Scholar]
  86. Tepper O.M. Rudy H.L. Lefkowitz A. Weimer K.A. Marks S.M. Stern C.S. Garfein E.S. Mixed reality with holoLens: Where virtual reality meets augmented reality in the operating room. Plast. Reconstr. Surg. 2017 140 5 1066 1070 10.1097/PRS.0000000000003802
    [Google Scholar]
  87. B Douglas D. A Wilke C. Gibson D. F Petricoin E. Liotta L. Virtual reality and augmented reality: Advances in surgery. Biol. Eng. Med. 2017 3 1 1 8 10.15761/BEM.1000131
    [Google Scholar]
  88. Lang H. Huber T. Virtual and augmented reality in liver surgery. Ann. Surg. 2020 271 1 e8 10.1097/SLA.0000000000003601
    [Google Scholar]
  89. Tian Y. Chen C. Xu X. Wang J. Hou X. Li K. Lu X. Shi H. Lee E.S. Jiang H.B. A review of 3D printing in dentistry: Technologies, affecting factors, and applications. Scanning 2021 2021 1 1 19 10.1155/2021/9950131
    [Google Scholar]
  90. Sampaio C.S. Niemann K.D. Schweitzer D.D. Hirata R. Atria P.J. Microcomputed tomography evaluation of cement film thickness of veneers and crowns made with conventional and 3D printed provisional materials. J. Esthet. Restor. Dent. 2021 33 3 487 495 10.1111/jerd.12651
    [Google Scholar]
  91. Park J.Y. Jeong D. Lee J-J. Bae S-Y. Kim J.H. Kim W-C. in vitro assessment of the marginal and internal fits of interim implant restorations fabricated with different methods. J. Prosthet. Dent. 2016 116 4 536 542 10.1016/j.prosdent.2016.03.012
    [Google Scholar]
  92. Munoz S. Ramos V. Jr Dickinson D.P. Comparison of margin discrepancy of complete gold crowns fabricated using printed, milled, and conventional hand-waxed patterns. J. Prosthet. Dent. 2017 118 1 89 94 10.1016/j.prosdent.2016.09.018
    [Google Scholar]
  93. van Noort R. The future of dental devices is digital. Dent. Mater. 2012 28 1 3 12 10.1016/j.dental.2011.10.014
    [Google Scholar]
  94. Ahmed A. Arya S. Gupta V. Furukawa H. Khosla A. 4D printing: Fundamentals, materials, applications and challenges. Polymer (Guildf.) 2021 228 123926 10.1016/j.polymer.2021.123926
    [Google Scholar]
  95. Momeni F. Ni J. Laws of 4D Printing. Engineering (Beijing) 2020 6 9 1035 1055 10.1016/j.eng.2020.01.015
    [Google Scholar]
  96. Jeong B. Gutowska A. Lessons from nature: Stimuli-responsive polymers and their biomedical applications. Trends Biotechnol. 2002 20 7 305 311 10.1016/S0167‑7799(02)01962‑5
    [Google Scholar]
  97. Liu F. Urban M.W. Recent advances and challenges in designing stimuli-responsive polymers. Prog. Polym. Sci. 2010 35 1-2 3 23 10.1016/j.progpolymsci.2009.10.002
    [Google Scholar]
  98. Zarek M. Layani M. Cooperstein I. Sachyani E. Cohn D. Magdassi S. 3D Printing of Shape Memory Polymers for Flexible Electronic Devices. Adv. Mater. 2016 28 22 4449 4454 10.1002/adma.201503132
    [Google Scholar]
  99. Miao S. Zhu W. Castro N.J. Nowicki M. Zhou X. Cui H. Fisher J.P. Zhang L.G. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci. Rep. 2016 6 1 27226 10.1038/srep27226
    [Google Scholar]
  100. Gao B. Yang Q. Zhao X. Jin G. Ma Y. Xu F. 4D Bioprinting for Biomedical Applications. Trends n. Biotechnology. 2016 34 9 746 756
    [Google Scholar]
  101. Ge Q. Qi H.J. Dunn M.L. Active materials by four-dimension printing. Appl. Phys. Lett. 2013 103 13 131901 10.1063/1.4819837
    [Google Scholar]
  102. Khoo Z.X. Teoh J.E.M. Liu Y. Chua C.K. Yang S. An J. Leong K.F. Yeong W.Y. 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual Phys. Prototyp. 2015 10 3 103 122 10.1080/17452759.2015.1097054
    [Google Scholar]
  103. Chandekar A. Mishra D.K. Sharma S. Saraogi G.K. Gupta U. Gupta G. 3D printing technology: A new milestone in the development of pharmaceuticals. Curr. Pharm. Des. 2019 25 9 937 945 10.2174/1381612825666190507115504
    [Google Scholar]
  104. Jain V. Haider N. Jain K. 3D printing in personalized drug delivery. Curr. Pharm. Des. 2018 24 42 5062 5071
    [Google Scholar]
  105. Algahtani M.S. Ahmad J. 3D printing technology in pharmaceutical manufacturing and drug delivery application. Curr. Pharm. Des. 2019 24 42 4947 4948 10.2174/138161282442190320152952
    [Google Scholar]
  106. Deshkar S. Rathi M. Zambad S. Gandhi K. Hot melt extrusion and its application in 3D printing of pharmaceuticals. Curr. Drug Deliv. 2021 18 4 387 407 10.2174/1567201817999201110193655
    [Google Scholar]
  107. Oladeji S. Mohylyuk V. Jones D.S. Andrews G.P. 3D printing of pharmaceutical oral solid dosage forms by fused deposition: The enhancement of printability using plasticised HPMCAS. Int. J. Pharm. 2022 616 121553 10.1016/j.ijpharm.2022.121553
    [Google Scholar]
  108. Gorantla S. Waghule T. Rapalli V.K. Singh P.P. Dubey S.K. Saha R.N. Singhvi G. Advanced Hydrogels Based Drug Delivery Systems for Ophthalmic Delivery. Recent Pat. Drug Deliv. Formul. 2020 13 4 291 300 10.2174/1872211314666200108094851
    [Google Scholar]
  109. Li R. Ting Y.H. Youssef S. Song Y. Garg S. Three-dimensional printing for cancer applications: Research landscape and technologies. Pharmaceuticals (Basel) 2021 14 8 787 10.3390/ph14080787
    [Google Scholar]
  110. Safhi A.Y. Three-Dimensional (3D) printing in cancer therapy and diagnostics: Current status and future perspectives. Pharmaceuticals (Basel) 2022 15 6 678 10.3390/ph15060678
    [Google Scholar]
  111. Xu X. Tang L. Bioengineered 3D scaffolds in cancer research: Focus on epithelial to mesenchymal transition and drug screening. Curr. Pharm. Des. 2017 23 11 1710 1720 10.2174/1381612822666161201151832
    [Google Scholar]
  112. Serrano DR Terres MC Lalatsa A Applications Of 3D Printing in cancer. J. 3D Print. Med. 2018 2 3 115 27
    [Google Scholar]
  113. Xia Z. Jin S. Ye K. Tissue and Organ 3D Bioprinting. SLAS Technol. 2018 23 4 301 314 10.1177/2472630318760515
    [Google Scholar]
  114. Pati F. Ha D.H. Jang J. Han H.H. Rhie J.W. Cho D.W. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials 2015 62 164 175 10.1016/j.biomaterials.2015.05.043
    [Google Scholar]
  115. Hockaday L.A. Kang K.H. Colangelo N.W. Cheung P.Y.C. Duan B. Malone E. Wu J. Girardi L.N. Bonassar L.J. Lipson H. Chu C.C. Butcher J.T. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 2012 4 3 035005 10.1088/1758‑5082/4/3/035005
    [Google Scholar]
  116. Muehleder S. Ovsianikov A. Zipperle J. Redl H. Holnthoner W. Connections matter: Channeled hydrogels to improve vascularization. Front. Bioeng. Biotechnol. 2014 2 52 10.3389/fbioe.2014.00052
    [Google Scholar]
  117. Huang Y. He K. Wang X. Rapid prototyping of a hybrid hierarchical polyurethane-cell/hydrogel construct for regenerative medicine. Mater. Sci. Eng. C 2013 33 6 3220 3229 10.1016/j.msec.2013.03.048
    [Google Scholar]
  118. Norotte C. Marga F.S. Niklason L.E. Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 2009 30 30 5910 5917 10.1016/j.biomaterials.2009.06.034
    [Google Scholar]
  119. Mironov V. Visconti R.P. Kasyanov V. Forgacs G. Drake C.J. Markwald R.R. Organ printing: Tissue spheroids as building blocks. Biomaterials 2009 30 12 2164 2174 10.1016/j.biomaterials.2008.12.084
    [Google Scholar]
  120. Liu Y. Shaw B. Dickey M.D. Genzer J. Sequential self-folding of polymer sheets. Sci. Adv. 2017 3 3 e1602417 10.1126/sciadv.1602417
    [Google Scholar]
  121. Javaid M. Haleem A. 4D printing applications in medical field: A brief review. Clin. Epidemiol. Glob. Health 2019 7 3 317 321 10.1016/j.cegh.2018.09.007
    [Google Scholar]
  122. Celi S. Gasparotti E. Capellini K. Vignali E. Fanni B.M. Ali L.A. Cantinotti M. Murzi M. Berti S. Santoro G. Positano V. 3D printing in modern cardiology. Curr. Pharm. Des. 2021 27 16 1918 1930 10.2174/1381612826666200622132440
    [Google Scholar]
  123. Wang C. Zhang L. Qin T. Xi Z. Sun L. Wu H. Li D. 3D printing in adult cardiovascular surgery and interventions: A systematic review. J. Thorac. Dis. 2020 12 6 3227 3237 10.21037/jtd‑20‑455
    [Google Scholar]
  124. Huanbutta K. Burapapadh K. Sriamornsak P. Sangnim T. Practical application of 3D printing for pharmaceuticals in hospitals and pharmacies. Pharmaceutics 2023 15 7 1877 10.3390/pharmaceutics15071877
    [Google Scholar]
  125. Hani U. Jaswanth Gowda B.H. Siddiqua A. Wahab S. Begum M.Y. Sathishbabu P. Usmani S. Ahmad M.P. Herbal approach for treatment of cancer using curcumin as an anticancer agent: A review on novel drug delivery systems. J. Mol. Liq. 2023 390 123037 10.1016/j.molliq.2023.123037
    [Google Scholar]
  126. Khan M.S. Gowda B.H.J. Nasir N. Wahab S. Pichika M.R. Sahebkar A. Kesharwani P. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer. Int. J. Pharm. 2023 643 123276 10.1016/j.ijpharm.2023.123276
    [Google Scholar]
  127. Ahamed J. Jaswanth Gowda B.H. Almalki W.H. Gupta N. Sahebkar A. Kesharwani P. Recent advances in nanoparticle-based approaches for the treatment of brain tumors: Opportunities and challenges. Eur. Polym. J. 2023 193 112111 10.1016/j.eurpolymj.2023.112111
    [Google Scholar]
  128. Gowda B.H.J. Mohanto S. Singh A. Bhunia A. Abdelgawad M.A. Ghosh S. Ansari M.J. Pramanik S. Nanoparticle-based therapeutic approaches for wound healing: A review of the state-of-the-art. Mater. Today Chem. 2023 27 101319 10.1016/j.mtchem.2022.101319
    [Google Scholar]
  129. Damiri F Gowda BJ Andra S Balu S Rojekar S Berrada M Chitosan nanocomposites as scaffolds for bone tissue regeneration. Chitosan Nanocomposites Berlin, Heidelberg Springer Link 2023 10.1007/978‑981‑19‑9646‑7_16
    [Google Scholar]
  130. Narayana S. Nasrine A. Gulzar Ahmed M. Sultana R. Jaswanth Gowda B.H. Surya S. Almuqbil M. Asdaq S.M.B. Alshehri S. Arif Hussain S. Potential benefits of using chitosan and silk fibroin topical hydrogel for managing wound healing and coagulation. Saudi Pharm. J. 2023 31 3 462 471 10.1016/j.jsps.2023.01.013
    [Google Scholar]
  131. Hani U. Osmani R.A.M. Yasmin S. Gowda B.H.J. Ather H. Ansari M.Y. Siddiqua A. Ghazwani M. Fatease A.A. Alamri A.H. Rahamathulla M. Begum M.Y. Wahab S. Novel drug delivery systems as an emerging platform for stomach cancer therapy. Pharmaceutics 2022 14 8 1576 10.3390/pharmaceutics14081576
    [Google Scholar]
  132. Gowda B.H.J. Ahmed M.G. Chinnam S. Paul K. Ashrafuzzaman M. Chavali M. Gahtori R. Pandit S. Kesari K.K. Gupta P.K. Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery. J. Drug Deliv. Sci. Technol. 2022 71 103305 10.1016/j.jddst.2022.103305
    [Google Scholar]
  133. Narayana S. Ahmed M.G. Gowda B.H.J. Shetty P.K. Nasrine A. Thriveni M. Noushida N. Sanjana A. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: A comprehensive review. Future J. Pharmaceut. Sci. 2021 7 1 186 10.1186/s43094‑021‑00331‑2
    [Google Scholar]
  134. Sanjana A. Ahmed M.G. Gowda BH J. Development and evaluation of dexamethasone loaded cubosomes for the treatment of vitiligo. Mater. Today Proc. 2022 50 197 205 10.1016/j.matpr.2021.04.120
    [Google Scholar]
  135. Sameer Khan M. Jaswanth Gowda B.H. Hasan N. Gupta G. Singh T. Md S. Kesharwani P. Carbon nanotube-mediated platinum-based drug delivery for the treatment of cancer: Advancements and future perspectives. Eur. Polym. J. 2024 206 112800 10.1016/j.eurpolymj.2024.112800
    [Google Scholar]
  136. Nag S. Mitra O. Tripathi G. Adur I. Mohanto S. Nama M. Samanta S. Gowda B.H.J. Subramaniyan V. Sundararajan V. Kumarasamy V. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives. Photodiagn. Photodyn. Ther. 2024 45 103959 10.1016/j.pdpdt.2023.103959
    [Google Scholar]
  137. Sharma D. Thomas A.M. Koshy G. Tumor infiltrating lymphocytes as immunebiomarkers in oral cancer: An update. J. Cancer Res. Updates 2023 12 33 39 10.30683/1929‑2279.2023.12.6
    [Google Scholar]
  138. Nag S. Mitra O. P S. Bhattacharjee A. Mohanto S. Gowda B.H.J. Kar S. Ramaiah S. Anbarasu A. Ahmed M.G. Exploring the emerging trends in the synthesis and theranostic paradigms of cerium oxide nanoparticles (CeONPs): A comprehensive review. Mater. Today Chem. 2024 35 101894 10.1016/j.mtchem.2023.101894
    [Google Scholar]
  139. Riccardi D. Baldino L. Reverchon E. Liposomes, transfersomes and niosomes: Production methods and their applications in the vaccinal field. J. Transl. Med. 2024 22 1 339 10.1186/s12967‑024‑05160‑4
    [Google Scholar]
  140. Gowda B.H.J. Ahmed M.G. Almoyad M.A.A. Wahab S. Almalki W.H. Kesharwani P. Nanosponges as an emerging platform for cancer treatment and diagnosis. Adv. Funct. Mater. 2024 34 7 2307074 10.1002/adfm.202307074
    [Google Scholar]
  141. Banazadeh M. Behnam B. Ganjooei N.A. Gowda B.H.J. Kesharwani P. Sahebkar A. Curcumin-based nanomedicines: A promising avenue for brain neoplasm therapy. J. Drug Deliv. Sci. Technol. 2023 89 105040 10.1016/j.jddst.2023.105040
    [Google Scholar]
  142. Mohanto S. Narayana S. Merai K.P. Kumar J.A. Bhunia A. Hani U. Al Fatease A. Gowda B.H.J. Nag S. Ahmed M.G. Paul K. Vora L.K. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review. Int. J. Biol. Macromol. 2023 253 127143 10.1016/j.ijbiomac.2023.127143
    [Google Scholar]
  143. Gowda B.H.J. Ahmed M.G. Alshehri S.A. Wahab S. Vora L.K. Singh Thakur R.R. Kesharwani P. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics. Environ. Res. 2023 237 116894 10.1016/j.envres.2023.116894
    [Google Scholar]
  144. Singh O.P. Ahmed M. Abhilash M. Modern 3D printing technologies: Future trends and developments. Recent Pat. Eng. 2015 9 2 91 103 10.2174/1872212109666150213000747
    [Google Scholar]
  145. Sinha P. Lahare P. Sahu M. Cimler R. Schnitzer M. Hlubenova J. Hudak R. Singh N. Gupta B. Kuca K. Concept and evolution in 3-D printing for excellence in healthcare. Curr. Med. Chem. 2024 31 9102520 10.2174/0109298673262300231129102520
    [Google Scholar]
  146. Chaudhary A. Sharma S. Thakkar A.R. 3D Printing – A revolution in modern healthcare: Recent achievements & challenges. Curr. Drug Ther. 2024 19 3 279 288 10.2174/1574885519666230828152530
    [Google Scholar]
  147. Tang L. Xie B. Research progress of 3D printing technology for pharmaceutical preparation. Recent Pat. Eng. 2024 18 2 e060323214353 10.2174/1872212118666230306091103
    [Google Scholar]
  148. Singh S. Kumar M. Doolaanea A.A. Mandal U.K. A recent review on 3D-printing: Scope and challenges with special focus on pharmaceutical field. Curr. Pharm. Des. 2022 28 30 2488 2507 10.2174/1381612828666220623091629
    [Google Scholar]
  149. Gao B Zhao H Yu H Lin Y Liu J Wang J. Application of 3D printing technology in the medical field. Recent Adv. Electric. Electron. Eng. 2022 15 8 621 33 10.2174/2352096515666221006142356
    [Google Scholar]
  150. Long J. Gholizadeh H. Lu J. Bunt C. Seyfoddin A. Application of fused deposition modelling (FDM) method of 3D printing in drug delivery. Curr. Pharm. Des. 2017 23 3 433 439 10.2174/1381612822666161026162707
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031312257241011071610
Loading
/content/journals/ddl/10.2174/0122103031312257241011071610
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: additive manufacturing ; 3D Printing ; 4D printing ; drug delivery systems ; 3D printers
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test